Files
sics/tacov.c

628 lines
21 KiB
C

/* tacov.f -- translated by f2c (version 20000817).
You must link the resulting object file with the libraries:
-lf2c -lm (in that order)
*/
#include "f2c.h"
/* Common Block Declarations */
struct {
integer inx;
real c1rx, c2rx, rmin, rmax, cl1r;
} curve_;
#define curve_1 curve_
/* Table of constant values */
static doublereal c_b7 = 1.;
static doublereal c_b9 = 360.;
/* ----------------------------------------------------------------------- */
/* FILE T_CONV */
/* SUBROUTINE T_CONV(EI,AKI,EF,AKF,QHKL,EN,HX,HY,HZ,IF1,IF2,LDK,LDH,LDF */
/* 1 LPA,DM,DA,HELM,F1H,F1V,F2H,F2V,F,IFX,ISS,ISM,ISA, */
/* 2 T_A,T_RM,T_ALM,LDRA,LDR_RM,LDR_ALM,P_IH,C_IH,IER) */
/* SUBROUTINE EX_CASE(DX,ISX,AKX,AX1,AX2,RX,ALX,IER) */
/* SUBROUTINE SAM_CASE(QT,QM,QS,AKI,AKF,AX3,AX4,ISS,IER) */
/* SUBROUTINE HELM_CASE(HX,HY,HZ,P_IH,AKI,AKF,A4,QM,HELM,IER) */
/* SUBROUTINE FLIP_CASE(IF1,IF2,P_IH,F1V,F1H,F2V,F2H,AKI,AKF,IER) */
/* ----------------------------------------------------------------------- */
/* Subroutine */ int t_conv__(real * ei, real * aki, real * ef, real * akf,
real *
qhkl, real * en, real * hx, real * hy,
real * hz, integer * if1, integer * if2,
logical * ldk, logical * ldh, logical * ldf,
logical * lpa, real * dm, real * da,
real * helm, real * f1h, real * f1v,
real * f2h, real * f2v, real * f,
integer * ifx, integer * iss, integer * ism,
integer * isa, real * t_a__, real * t_rm__,
real * t_alm__, real * qm, logical * ldra,
logical * ldr_rm__, logical * ldr_alm__,
real * p_ih__, real * c_ih__, integer * ier)
{
/* System generated locals */
doublereal d__1;
/* Builtin functions */
double sqrt(doublereal);
/* Local variables */
static doublereal edef[2], dakf, daki;
static integer imod;
extern /* Subroutine */ int sam_case__(doublereal *, doublereal *,
doublereal *, doublereal *,
doublereal *, doublereal *,
doublereal *, integer *,
integer *);
static integer i__;
static doublereal akdef[2];
extern /* Subroutine */ int helm_case__(real *, real *, real *, real *,
real *, real *, real *,
doublereal *, real *, real *,
integer *);
static doublereal dqhkl[3];
extern /* Subroutine */ int flip_case__(integer *, integer *, real *,
real *, real *, real *, real *,
real *, real *, integer *);
static logical lmoan[2];
static doublereal a1, a2, a3, a4, a5, a6;
static integer id;
static doublereal ra;
extern /* Subroutine */ int rl2spv_(doublereal *, doublereal *,
doublereal *, doublereal *,
integer *);
static integer iq;
static doublereal rm;
static logical lqhkle;
extern /* Subroutine */ int erreso_(integer *, integer *);
static doublereal dda, ala, def, dei, ddm, alm, dqm;
extern /* Subroutine */ int ex_case__(doublereal *, integer *, doublereal
*, doublereal *, doublereal *,
doublereal *, doublereal *,
integer *);
static doublereal dqt[3], dqs;
/* ----------------------------------------------------------------------- */
/* INPUT */
/* EI,AKI,EF,AKF,QHKL,EN,HX,HY,HZ : POTENTIAL TARGETS */
/* IF1,IF2 Status of flippers On (1) Off (0) */
/* LDK(8) LOGICAL INDICATING IF (ENERGY,K OR Q) ARE DRIVEN */
/* LDH,LDF LOGICAL INDICATING IF (HX,HY,HZ) OR (F1,F2) ARE DRIVEN */
/* configuration of the machine */
/* LPA LOGICAL TRUE IF MACHINE IN POLARIZATION MODE */
/* DM,DA,HELM,F1H,F1V,F2H,F2V,F,IFX,ISS,ISM,ISA,QM (F ENERGY UNIT) */
/* OUTPUT */
/* T_A TARGETS OF ANGLES A1-A6 */
/* T_RM,T_ALM TARGETS OF RM ,LM */
/* QM TARGETS OF QM */
/* LDRA LOGICAL INDICATING WHICH ANGLES ARE TO BE DRIVEN */
/* LDR_RM,LDR_ALM LOGICAL INDICATING IF RM OR ALM ARE TO BE DRIVEN */
/* P_IH TARGETS OF CURRENTS FOR FLIPPERS AND HELMOTZ (8 CURRENTS) */
/* C_IH CONVERSION FACTORS FOR HELMOTZ (4 CURRENTS) */
/* SPECIAL OUTPUTS */
/* TARGET OF EI(EF) IS UPDATED IS KI(KF) IS DRIVEN */
/* TARGET OF VARIABLE ENERGY IS UPDATED IF EN IS DRIVEN */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* PASSED PARAMETERS */
/* ----------------------------------------------------------------------- */
/* LOCAL VARIABLES */
/* ----------------------------------------------------------------------- */
/* SET UP */
/* IMOD INDEX FOR ERROR TREATMENAT BY ERRESO */
/* LDQHKLE : LOGICAL INDICATING THAT WE ARE DEALING WITH A MOVE */
/* IN RECIPROCICAL SPACE */
/* WE REMAP THE ENERGY PB AS FIXED ENERGY IN EDEF(1) */
/* AND VARIABLE ENERGY IN EDEF(2) */
/* IF ISA IS NUL SET IFX TO 1 AND PUT EF,KF, EQUAL TO EI,KI */
/* Parameter adjustments */
--c_ih__;
--p_ih__;
--ldra;
--t_a__;
--ldk;
--qhkl;
/* Function Body */
imod = 3;
ddm = *dm;
dda = *da;
for (i__ = 1; i__ <= 2; ++i__) {
lmoan[i__ - 1] = FALSE_;
}
lqhkle = FALSE_;
for (iq = 5; iq <= 8; ++iq) {
lqhkle = lqhkle || ldk[iq];
}
daki = *aki;
dakf = *akf;
if (*isa == 0) {
*ifx = 1;
}
edef[*ifx - 1] = *ei;
akdef[*ifx - 1] = *aki;
edef[3 - *ifx - 1] = *ef;
akdef[3 - *ifx - 1] = *akf;
if (*isa == 0) {
edef[1] = edef[0];
akdef[1] = akdef[0];
ldk[3] = TRUE_;
ldk[4] = TRUE_;
t_a__[5] = 0.f;
t_a__[6] = 0.f;
ldra[5] = TRUE_;
ldra[6] = TRUE_;
}
/* ----------------------------------------------------------------------- */
/* FIRST TAKE IN ACCOUNT THE FIXED ENERGY PB */
if (ldk[(*ifx << 1) - 1] || ldk[*ifx * 2]) {
lmoan[*ifx - 1] = TRUE_;
if (ldk[(*ifx << 1) - 1]) {
*ier = 1;
if (edef[0] < .1) {
goto L999;
}
*ier = 0;
akdef[0] = sqrt(edef[0] / *f);
} else {
*ier = 1;
if (akdef[0] < .1) {
goto L999;
}
*ier = 0;
/* Computing 2nd power */
d__1 = akdef[0];
edef[0] = *f * (d__1 * d__1);
}
}
/* ----------------------------------------------------------------------- */
/* NOW TAKE IN ACCOUNT THE VARIABLE ENERGY PB */
/* VARIABLE ENERGUY IS DRIVEN EITHER EXPLICITLY */
/* E.G. BY DRIVING EI OR KI WITH IFX=2 */
/* ( AND WE MUST CALCULATE EN FROM EVAR) */
/* THE RULE IS : EI=EF+EN : EN IS THE ENERGY LOSS OF NEUTRONS */
/* OR ENERGY GAIN OF SAMPLE */
/* OR IMPLICITLY BY DRIVING THE TRANSFERED ENERGY EN */
/* ( AND WE MUST CALCULATE EVAR FROM EN) */
/* IF KI IS CONSTANT USE THE CURRENT VALUE CONTAINED IN POSN ARRAY */
/* TO CALCULATE THE NON-"CONSTANT" K. */
/* IF KF IS CONSTANT USE ALWAYS THE VALUE IN TARGET AND */
/* DO A DRIVE OF KF TO KEEP A5/A6 IN RIGHT POSITION */
if (ldk[5 - (*ifx << 1)] || ldk[6 - (*ifx << 1)]) {
lmoan[3 - *ifx - 1] = TRUE_;
if (ldk[5 - (*ifx << 1)]) {
*ier = 1;
if (edef[1] < 1e-4) {
goto L999;
}
*ier = 0;
akdef[1] = sqrt(edef[1] / *f);
} else {
*ier = 1;
if (akdef[1] < 1e-4) {
goto L999;
}
*ier = 0;
/* Computing 2nd power */
d__1 = akdef[1];
edef[1] = *f * (d__1 * d__1);
}
*en = (3 - (*ifx << 1)) * (edef[0] - edef[1]);
} else if (lqhkle) {
lmoan[3 - *ifx - 1] = TRUE_;
edef[1] = edef[0] + ((*ifx << 1) - 3) * *en;
*ier = 1;
if (edef[1] < 1e-4) {
goto L999;
}
*ier = 0;
akdef[1] = sqrt(edef[1] / *f);
}
/* ----------------------------------------------------------------------- */
/* CALCULATE MONOCHROMATOR AND ANALYSER ANGLES */
if (lmoan[0]) {
dei = edef[*ifx - 1];
daki = akdef[*ifx - 1];
ex_case__(&ddm, ism, &daki, &a1, &a2, &rm, &alm, ier);
if (*ier == 0) {
*aki = daki;
*ei = dei;
t_a__[1] = a1;
t_a__[2] = a2;
*t_rm__ = rm;
*t_alm__ = alm;
ldra[1] = TRUE_;
ldra[2] = TRUE_;
*ldr_rm__ = TRUE_;
*ldr_alm__ = TRUE_;
} else {
goto L999;
}
}
if (lmoan[1]) {
def = edef[3 - *ifx - 1];
dakf = akdef[3 - *ifx - 1];
ex_case__(&dda, isa, &dakf, &a5, &a6, &ra, &ala, ier);
if (*ier == 0) {
*akf = dakf;
*ef = def;
t_a__[5] = a5;
t_a__[6] = a6;
ldra[5] = TRUE_;
ldra[6] = TRUE_;
} else {
goto L999;
}
}
/* ----------------------------------------------------------------------- */
/* USE (QH,QK,QL) TO CALCULATE A3 AND A4 */
/* CALCULATE Q1 AND Q2 IN SCATTERING PLANE */
imod = 2;
if (lqhkle) {
for (id = 1; id <= 3; ++id) {
dqhkl[id - 1] = qhkl[id];
}
rl2spv_(dqhkl, dqt, &dqm, &dqs, ier);
if (*ier != 0) {
goto L999;
}
sam_case__(dqt, &dqm, &dqs, &daki, &dakf, &a3, &a4, iss, ier);
if (*ier == 0) {
t_a__[3] = a3;
t_a__[4] = a4;
ldra[3] = TRUE_;
ldra[4] = TRUE_;
*qm = dqm;
} else {
goto L999;
}
}
/* ----------------------------------------------------------------------- */
/* DEAL WITH FLIPPERS AND HELMOTZ COILS IF LPA */
if (*lpa && (lmoan[0] || lmoan[1])) {
if (*ldf) {
flip_case__(if1, if2, &p_ih__[1], f1v, f1h, f2v, f2h, aki, akf, ier);
}
if (*ldh) {
helm_case__(hx, hy, hz, &p_ih__[1], &c_ih__[1], aki, akf, &a4, qm,
helm, ier);
}
}
/* ----------------------------------------------------------------------- */
L999:
if (*ier != 0) {
erreso_(&imod, ier);
}
return 0;
} /* t_conv__ */
/* Subroutine */ int ex_case__(doublereal * dx, integer * isx,
doublereal * akx,
doublereal * ax1, doublereal * ax2,
doublereal * rx, doublereal * alx,
integer * ier)
{
/* System generated locals */
doublereal d__1, d__2;
/* Builtin functions */
double asin(doublereal), sin(doublereal), cos(doublereal),
sqrt(doublereal);
/* Local variables */
static doublereal dcl1r, dc1rx, dc2rx, drmin, drmax, arg;
/* ----------------------------------------------------------------------- */
/* CALCULATE ANGLES ON MONO/ANALYSER */
/* CALCULATE AX1 AX2 */
/* CALCULATE RX LX MONO CURVATURE AND LM FOR IN8 */
/* INPUT */
/* DX D-SPACINGS */
/* ISX SENS OF SCATTERING ON CRYSTAL */
/* AKX TARGET OF MOMENTUM */
/* OUTPUT */
/* AX1 AX2 THETA 2*THETA ANGLES */
/* RX MONO OR ANALYSER CURVATURE */
/* ALX SPECIAL TRANSLATION FOR IN8 */
/* IER */
/* 1 ' KI OR KF CANNOT BE OBTAINED CHECK D-SPACINGS', */
/* 2 ' KI OR KF TOO SMALL', */
/* 3 ' KI OR KF TOO BIG', */
/* ----------------------------------------------------------------------- */
/* Values of parameters */
/* INX=1 IN8 , INX=0 others instruments */
/* C1RX C2RX constants values to calculate RM on all instruments */
/* RMIN, RMAX min max on RNM */
/* CL1R constant value to calculate LM for IN8 */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* PASSED PARAMETERS */
/* ----------------------------------------------------------------------- */
/* LOCAL VAR */
/* ----------------------------------------------------------------------- */
/* INIT AND TEST */
*ier = 0;
dc1rx = curve_1.c1rx;
dc2rx = curve_1.c2rx;
drmin = curve_1.rmin;
drmax = curve_1.rmax;
dcl1r = curve_1.cl1r;
if (*dx < .1f) {
*ier = 1;
}
if (*akx < .1f) {
*ier = 2;
}
arg = 3.1415926535897932384626433832795f / (*dx * *akx);
if (abs(arg) > 1.f) {
*ier = 3;
}
if (*ier != 0) {
goto L999;
}
/* ----------------------------------------------------------------------- */
/* CALCULATION OF THE TWO ANGLES */
*ax1 = asin(arg) * *isx * 57.29577951308232087679815481410517f;
*ax2 = *ax1 * 2.;
/* ----------------------------------------------------------------------- */
/* CALCULATION OF MONO CURVATURE RM OR ANALYSER CURVATURE RA */
/* STANDARD LAW IS C1RX+C2RX/SIN(A1/RD) */
/* C1RX AND C2RX ARE CONSTANTS DEPENDING ON MONO AND MACHINES */
/* C1RX=.47 */
/* C2RX=.244 */
/* RMIN=0. */
/* RMAX=20. */
/* IN1/IN3/IN12/IN14/IN20 CASE */
if (curve_1.inx == 0) {
/* Computing MIN */
/* Computing MAX */
d__2 = dc1rx + dc2rx / sin(abs(*ax1) /
57.29577951308232087679815481410517f);
d__1 = max(d__2, drmin);
*rx = min(d__1, drmax);
} else {
/* IN8 CASE */
*alx =
dcl1r / sin(*ax2 / 57.29577951308232087679815481410517f) *
cos(*ax2 / 57.29577951308232087679815481410517f);
*rx = dc2rx * sqrt(sin(*ax2 / 57.29577951308232087679815481410517f))
- dc1rx;
}
/* ----------------------------------------------------------------------- */
L999:
return 0;
} /* ex_case__ */
/* ========================================================================= */
/* Subroutine */ int sam_case__(doublereal * qt, doublereal * qm,
doublereal *
qs, doublereal * aki, doublereal * akf,
doublereal * ax3, doublereal * ax4,
integer * iss, integer * ier)
{
/* System generated locals */
doublereal d__1, d__2;
/* Builtin functions */
double acos(doublereal), atan2(doublereal, doublereal), d_sign(doublereal
*,
doublereal
*),
d_mod(doublereal *, doublereal *);
/* Local variables */
static doublereal arg, sax3;
/* ----------------------------------------------------------------------- */
/* DEAL WITH SAMPLE ANGLES CALCULATION FROM Q VERTOR IN C-N PLANE */
/* CALCULATE A3 AND A4 */
/* INPUT */
/* QT Q-VECTOR IN SCATTERING PLANE */
/* QM,QS Q MODULUS AND QMODULUS SQUARED */
/* AKI,AKF MOMEMTA ON MONO AND ANYLSER */
/* ISS SENS OF SCATTERING ON SAMPLE */
/* OUTPUT */
/* AX3 AX4 ANGLES ON SAMPLES */
/* IER SAME ERROR AS RL2SPV */
/* IER */
/* 1 ' MATRIX S NOT OK', */
/* 2 ' Q NOT IN SCATTERING PLANE', */
/* 3 ' Q MODULUS TOO SMALL', */
/* 4 ' Q MODULUS TOO BIG', */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* PASSED PARAMETERS */
/* ----------------------------------------------------------------------- */
/* INIT AND TEST */
/* Parameter adjustments */
--qt;
/* Function Body */
*ier = 0;
if (abs(*qs) < 1e-6 || abs(*qm) < .001) {
*ier = 3;
goto L999;
}
/* ----------------------------------------------------------------------- */
/* CALCULATE A3 AND MOVE IT INTHE -180 ,+180 INTERVAL */
/* Computing 2nd power */
d__1 = *aki;
/* Computing 2nd power */
d__2 = *akf;
arg = (d__1 * d__1 + d__2 * d__2 - *qs) / (*aki * 2. * *akf);
if (abs(arg) > 1.) {
*ier = 4;
goto L999;
} else {
*ax4 = acos(arg) * *iss * 57.29577951308232087679815481410517;
}
/* Computing 2nd power */
d__1 = *akf;
/* Computing 2nd power */
d__2 = *aki;
*ax3 =
(-atan2(qt[2], qt[1]) -
acos((d__1 * d__1 - *qs -
d__2 * d__2) / (*qm * -2. * *aki)) * d_sign(&c_b7,
ax4)) *
57.29577951308232087679815481410517;
sax3 = d_sign(&c_b7, ax3);
d__1 = *ax3 + sax3 * 180.;
*ax3 = d_mod(&d__1, &c_b9) - sax3 * 180.;
/* IF(LPLATE) AX3=-ATAN(SIN(AX4/RD)/(LSA*TAN(AX5/RD)/(ALMS*C */
/* 1 TAN(AX1/RD))*(AKI/KF)**2-COS(AX4/RD)))*RD !PLATE FOCALIZATION OPTION */
/* IF(AXX3.GT.180.D0) AX3=AX3-360.D0 */
/* IF( A3.LT.-180.D0) AX3=AX3+360.D0 */
/* IF(LPLATE.AND.A3.GT.0.0) AX3=AX3-180 */
/* C----------------------------------------------------------------------- */
L999:
return 0;
} /* sam_case__ */
/* ============================================================================ */
/* Subroutine */ int helm_case__(real * hx, real * hy, real * hz,
real * t_ih__,
real * c_ih__, real * aki, real * akf,
doublereal * a4, real * qm, real * helm,
integer * ier)
{
/* System generated locals */
real r__1, r__2;
/* Builtin functions */
double cos(doublereal), sin(doublereal), atan2(doublereal, doublereal),
sqrt(doublereal);
/* Local variables */
static real hrad, hdir, qpar, hdir2, qperp;
static integer ic;
static real phi;
/* ----------------------------------------------------------------------- */
/* DEAL WITH HELMOTZ COIL FIELD CALCULATIONS */
/* CALCULATE HX HY HZ */
/* ----------------------------------------------------------------------- */
/* ----------------------------------------------------------------------- */
/* PASSED PARAMETERS */
/* ----------------------------------------------------------------------- */
/* INIT AND TEST */
/* Parameter adjustments */
--c_ih__;
--t_ih__;
/* Function Body */
*ier = 1;
if (dabs(*qm) < 1e-4f) {
goto L999;
}
*ier = 0;
for (ic = 1; ic <= 4; ++ic) {
if (c_ih__[ic] < 1e-4f) {
*ier = 2;
}
}
if (*ier != 0) {
goto L999;
}
/* ----------------------------------------------------------------------- */
/* CALCULATE MODULE AND ANGLES OF IN PLANE FIELD H */
/* PHI !ANGLE BETWEEN Q AND KI */
/* HRAD !RADIAL COMP. OF H */
/* HDIR !DIRECTION OF H (IN RADIANS) */
/* HDIR2 !ANGLE BETWEEN FIELD AND AXE OF COIL 1 */
qpar = *aki - *akf * cos(*a4 / 57.29577951308232087679815481410517f);
qperp = *akf * sin(*a4 / 57.29577951308232087679815481410517f);
phi = atan2(qpar, qperp);
/* Computing 2nd power */
r__1 = *hx;
/* Computing 2nd power */
r__2 = *hy;
hrad = sqrt(r__1 * r__1 + r__2 * r__2);
if (hrad > 1e-4f) {
hdir = atan2(*hy, *hx);
}
hdir2 = phi + hdir + *helm / 57.29577951308232087679815481410517f +
1.5707963267948966f;
/* ----------------------------------------------------------------------- */
/* !CALC CURRENTS */
/* !POSITION OF PSP FOR COIL I */
for (ic = 1; ic <= 3; ++ic) {
t_ih__[ic + 4] = cos(hdir2 + (ic - 1) * 2.f *
3.1415926535897932384626433832795f / 3.f) * hrad /
c_ih__[ic]
/ 1.5f;
}
t_ih__[8] = *hz / c_ih__[4];
/* ----------------------------------------------------------------------- */
L999:
return 0;
} /* helm_case__ */
/* Subroutine */ int flip_case__(integer * if1, integer * if2,
real * t_ih__,
real * f1v, real * f1h, real * f2v,
real * f2h, real * aki, real * akf,
integer * ier)
{
/* ----------------------------------------------------------------------- */
/* DEAL WITH FLIPPER COIL CALCULATIONS */
/* CALCULATE P_IF CURRENTS FOR THE TWO FLIPPERS */
/* ----------------------------------------------------------------------- */
/* PASSED PARAMETERS */
/* ----------------------------------------------------------------------- */
/* INIT AND TEST */
/* Parameter adjustments */
--t_ih__;
/* Function Body */
*ier = 0;
/* ----------------------------------------------------------------------- */
if (*if1 == 1) {
t_ih__[1] = *f1v;
t_ih__[2] = *aki * *f1h;
} else {
t_ih__[1] = 0.f;
t_ih__[2] = 0.f;
}
if (*if2 == 1) {
t_ih__[3] = *f2v;
t_ih__[4] = *akf * *f2h;
} else {
t_ih__[3] = 0.f;
t_ih__[4] = 0.f;
}
/* ----------------------------------------------------------------------- */
/* L999: */
return 0;
} /* flip_case__ */