SKIPPED: psi/dornier2.c psi/ecbdriv.c psi/el734hp.c psi/libpsi.a psi/make_gen psi/makefile_linux psi/pimotor.c psi/pipiezo.c psi/sinqhttp.c psi/tcpdornier.c psi/velodornier.c
514 lines
12 KiB
C
514 lines
12 KiB
C
/**
|
|
* This is a library for calculating UB matrices for four circle diffraction.
|
|
* The algorithm and settings definition is from:
|
|
*
|
|
* Busing & Levy, Acta Cryst. (1967), 22, 457ff
|
|
*
|
|
* Implemented:
|
|
* - UB from cell cell constants and two reflections.
|
|
* - Brute force index search
|
|
*
|
|
* Mark Koennecke, March 2005
|
|
*/
|
|
#include <math.h>
|
|
#include "ubfour.h"
|
|
#include <assert.h>
|
|
#include "vector.h"
|
|
#include "trigd.h"
|
|
#include "fourlib.h"
|
|
#include "lld.h"
|
|
#define ABS(x) (x < 0 ? -(x) : (x))
|
|
/*--------------------------------------------------------------------------------------*/
|
|
static MATRIX calcUVectorFromAngles(reflection r){
|
|
MATRIX u;
|
|
double om;
|
|
|
|
u = makeVector();
|
|
if(u == NULL){
|
|
return NULL;
|
|
}
|
|
/*
|
|
* the tricky bit is set again: Busing and Levy's omega is 0 in bisecting
|
|
* position. This is why we have to correct for two_theta/2 here in order
|
|
* to arrive at the proper rotation around the omega axis.
|
|
*/
|
|
om = r.om - r.s2t/2.;
|
|
vectorSet(u,0,Cosd(om)*Cosd(r.chi)*Cosd(r.phi) - Sind(om)*Sind(r.phi));
|
|
vectorSet(u,1,Cosd(om)*Cosd(r.chi)*Sind(r.phi) + Sind(om)*Cosd(r.phi));
|
|
vectorSet(u,2,Cosd(om)*Sind(r.chi));
|
|
return u;
|
|
}
|
|
/*--------------------------------------------------------------------------------------*/
|
|
static MATRIX reflectionToHC(reflection r, MATRIX B){
|
|
MATRIX h = NULL, hc = NULL;
|
|
|
|
h = makeVector();
|
|
if(h == NULL){
|
|
return NULL;
|
|
}
|
|
vectorSet(h,0,r.h);
|
|
vectorSet(h,1,r.k);
|
|
vectorSet(h,2,r.l);
|
|
|
|
hc = mat_mul(B,h);
|
|
killVector(h);
|
|
return hc;
|
|
}
|
|
/*---------------------------------------------------------------------------------------*/
|
|
MATRIX calcUBFromCellAndReflections(lattice direct, reflection r1,
|
|
reflection r2, int *errCode){
|
|
MATRIX B, HT, UT, U, UB, HTT ;
|
|
MATRIX u1, u2, h1, h2;
|
|
double ud[3];
|
|
int status;
|
|
reflection r;
|
|
|
|
*errCode = 1;
|
|
|
|
/*
|
|
calculate the B matrix and the HT matrix
|
|
*/
|
|
B = mat_creat(3,3,ZERO_MATRIX);
|
|
status = calculateBMatrix(direct,B);
|
|
if(status < 0){
|
|
*errCode = status;
|
|
return NULL;
|
|
}
|
|
h1 = reflectionToHC(r1,B);
|
|
h2 = reflectionToHC(r2,B);
|
|
if(h1 == NULL || h2 == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
return NULL;
|
|
}
|
|
HT = matFromTwoVectors(h1,h2);
|
|
if(HT == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
calculate U vectors and UT matrix
|
|
*/
|
|
u1 = calcUVectorFromAngles(r1);
|
|
u2 = calcUVectorFromAngles(r2);
|
|
if(u1 == NULL || u2 == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
return NULL;
|
|
}
|
|
UT = matFromTwoVectors(u1,u2);
|
|
if(UT == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
return NULL;
|
|
}
|
|
|
|
/*
|
|
debugging output
|
|
printf("B-matrix\n");
|
|
mat_dump(B);
|
|
printf("HT-matrix\n");
|
|
mat_dump(HT);
|
|
printf("UT-matrix\n");
|
|
mat_dump(UT);
|
|
*/
|
|
|
|
/*
|
|
UT = U * HT
|
|
*/
|
|
HTT = mat_tran(HT);
|
|
if(HTT == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
return NULL;
|
|
}
|
|
U = mat_mul(UT,HTT);
|
|
if(U == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
return NULL;
|
|
}
|
|
UB = mat_mul(U,B);
|
|
if(UB == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
}
|
|
|
|
/*
|
|
clean up
|
|
*/
|
|
killVector(h1);
|
|
killVector(h2);
|
|
mat_free(HT);
|
|
mat_free(HTT);
|
|
|
|
killVector(u1);
|
|
killVector(u2);
|
|
mat_free(UT);
|
|
|
|
mat_free(U);
|
|
mat_free(B);
|
|
|
|
return UB;
|
|
}
|
|
/*-----------------------------------------------------------------------------------*/
|
|
static void storeReflection(reflection r, double two_theta_obs,
|
|
double two_theta_calc, int list){
|
|
refIndex ri, test;
|
|
int count = 0, status, pos = 0;
|
|
|
|
ri.h = r.h;
|
|
ri.k = r.k;
|
|
ri.l = r.l;
|
|
ri.t2obs = two_theta_obs;
|
|
ri.t2calc = two_theta_calc;
|
|
ri.t2diff = ABS(two_theta_obs - two_theta_calc);
|
|
|
|
/*
|
|
locate the last entry bigger then us
|
|
*/
|
|
status = LLDnodePtr2First(list);
|
|
while(status == 1){
|
|
LLDnodeDataTo(list,&test);
|
|
count++;
|
|
if(test.t2diff == ri.t2diff){
|
|
LLDnodeDataFrom(list,&ri);
|
|
return;
|
|
}
|
|
if(test.t2diff > ri.t2diff){
|
|
break;
|
|
}
|
|
status = LLDnodePtr2Next(list);
|
|
}
|
|
/*
|
|
special case: empty list
|
|
*/
|
|
if(count == 0){
|
|
LLDnodeAppendFrom(list,&ri);
|
|
return;
|
|
}
|
|
/*
|
|
special case: append after last
|
|
*/
|
|
LLDnodePtr2Last(list);
|
|
LLDnodeDataTo(list,&test);
|
|
if(ri.t2diff > test.t2diff){
|
|
LLDnodeAppendFrom(list,&ri);
|
|
return;
|
|
}
|
|
|
|
status = LLDnodePtr2First(list);
|
|
pos = 0;
|
|
while(status == 1){
|
|
LLDnodeDataTo(list,&test);
|
|
pos++;
|
|
if(pos == count){
|
|
LLDnodeInsertFrom(list,&ri);
|
|
return;
|
|
}
|
|
status = LLDnodePtr2Next(list);
|
|
}
|
|
}
|
|
/*----------------------------------------------------------------------------
|
|
u_transform(i) = u(i)*(2*sin(theta)/lambda)
|
|
-----------------------------------------------------------------------------*/
|
|
static void uToScatteringVector(MATRIX u, double theta, double lambda){
|
|
double scale;
|
|
int i;
|
|
|
|
scale = (2. * Sind(theta))/lambda;
|
|
for(i = 0; i < 3; i++){
|
|
u[i][0] *= scale;
|
|
}
|
|
}
|
|
/*----------------------------------------------------------------------------*/
|
|
static MATRIX buildHCHIMatrix(MATRIX u1, MATRIX u2, MATRIX u3){
|
|
int i;
|
|
MATRIX HCHI;
|
|
|
|
HCHI = mat_creat(3,3,ZERO_MATRIX);
|
|
if(HCHI == NULL){
|
|
return NULL;
|
|
}
|
|
for(i = 0; i < 3; i++){
|
|
HCHI[i][0] = u1[i][0];
|
|
HCHI[i][1] = u2[i][0];
|
|
HCHI[i][2] = u3[i][0];
|
|
}
|
|
return HCHI;
|
|
}
|
|
/*----------------------------------------------------------------------------*/
|
|
static MATRIX buildIndexMatrix(reflection r1, reflection r2, reflection r3){
|
|
MATRIX HI;
|
|
int i;
|
|
|
|
HI = mat_creat(3,3,ZERO_MATRIX);
|
|
if(HI == NULL){
|
|
return NULL;
|
|
}
|
|
HI[0][0] = r1.h;
|
|
HI[1][0] = r1.k;
|
|
HI[2][0] = r1.l;
|
|
|
|
HI[0][1] = r2.h;
|
|
HI[1][1] = r2.k;
|
|
HI[2][1] = r2.l;
|
|
|
|
HI[0][2] = r3.h;
|
|
HI[1][2] = r3.k;
|
|
HI[2][2] = r3.l;
|
|
|
|
return HI;
|
|
}
|
|
/*-----------------------------------------------------------------------------*/
|
|
MATRIX calcUBFromThreeReflections(reflection r1, reflection r2, reflection r3,
|
|
double lambda, int *errCode){
|
|
MATRIX u1, u2, u3, HCHI, HI, HIINV, UB;
|
|
double det;
|
|
|
|
if(lambda <= .1){
|
|
*errCode = INVALID_LAMBDA;
|
|
return NULL;
|
|
}
|
|
|
|
*errCode = 1;
|
|
|
|
u1 = calcUVectorFromAngles(r1);
|
|
u2 = calcUVectorFromAngles(r2);
|
|
u3 = calcUVectorFromAngles(r3);
|
|
uToScatteringVector(u1,r1.s2t/2.,lambda);
|
|
uToScatteringVector(u2,r2.s2t/2.,lambda);
|
|
uToScatteringVector(u3,r3.s2t/2.,lambda);
|
|
|
|
HCHI = buildHCHIMatrix(u1,u2,u3);
|
|
HI = buildIndexMatrix(r1,r2,r3);
|
|
if(HCHI == NULL || HI == NULL){
|
|
*errCode = UBNOMEMORY;
|
|
killVector(u1);
|
|
killVector(u2);
|
|
killVector(u3);
|
|
return NULL;
|
|
}
|
|
|
|
HIINV = mat_inv(HI);
|
|
if(HIINV == NULL){
|
|
*errCode = NOTRIGHTHANDED;
|
|
killVector(u1);
|
|
killVector(u2);
|
|
killVector(u3);
|
|
mat_free(HI);
|
|
mat_free(HCHI);
|
|
return NULL;
|
|
}
|
|
UB = mat_mul(HCHI,HIINV);
|
|
|
|
det = mat_det(UB);
|
|
if(det < .0){
|
|
mat_free(UB);
|
|
UB = NULL;
|
|
*errCode = NOTRIGHTHANDED;
|
|
}
|
|
|
|
killVector(u1);
|
|
killVector(u2);
|
|
killVector(u3);
|
|
mat_free(HI);
|
|
mat_free(HCHI);
|
|
mat_free(HIINV);
|
|
|
|
return UB;
|
|
}
|
|
/*---------------------------------------------------------------------------------*/
|
|
static int copyReflections(int list, refIndex index[], int maxIndex){
|
|
int count = 0, status;
|
|
refIndex ri;
|
|
|
|
status = LLDnodePtr2First(list);
|
|
while(status == 1 && count < maxIndex){
|
|
LLDnodeDataTo(list,&ri);
|
|
index[count] = ri;
|
|
status = LLDnodePtr2Next(list);
|
|
count++;
|
|
}
|
|
return count;
|
|
}
|
|
/*-----------------------------------------------------------------------------------
|
|
- matching reflections will be entered in to a list in a sorted way. This list
|
|
is copied into the index array.
|
|
- There is some waste here in allocating and deallocating the HC vector in the
|
|
inner loop. I'am to lazy to resolve this.... May be I'am spared.....
|
|
-----------------------------------------------------------------------------------*/
|
|
int searchIndex(lattice direct, double lambda, double two_theta, double max_deviation,
|
|
int limit, refIndex index[], int maxIndex){
|
|
int status, i, j, k, list;
|
|
MATRIX B, HC;
|
|
double theta, d;
|
|
reflection r;
|
|
|
|
B = mat_creat(3,3,UNIT_MATRIX);
|
|
if(B == NULL) {
|
|
return UBNOMEMORY;
|
|
}
|
|
|
|
status = calculateBMatrix(direct,B);
|
|
if(status < 0) {
|
|
return status;
|
|
}
|
|
|
|
list = LLDcreate(sizeof(refIndex));
|
|
if(list <0) {
|
|
return UBNOMEMORY;
|
|
}
|
|
|
|
for(i = -limit; i < limit; i++){
|
|
r.h = (double)i;
|
|
for(j = -limit; j < limit; j++){
|
|
r.k = (double)j;
|
|
for(k = -limit; k < limit; k++){
|
|
r.l = (double)k;
|
|
HC = reflectionToHC(r,B);
|
|
status = calcTheta(lambda, HC, &d, &theta);
|
|
if(status == 1){
|
|
if(ABS(two_theta - 2. * theta) <= max_deviation){
|
|
storeReflection(r,two_theta, theta * 2., list);
|
|
}
|
|
}
|
|
killVector(HC);
|
|
}
|
|
}
|
|
}
|
|
mat_free(B);
|
|
status = copyReflections(list,index,maxIndex);
|
|
LLDdelete(list);
|
|
return status;
|
|
}
|
|
/*-------------------------------------------------------------------------*/
|
|
double angleBetweenReflections(MATRIX B, reflection r1, reflection r2){
|
|
MATRIX chi1, chi2, h1, h2;
|
|
double angle;
|
|
|
|
h1 = makeVector();
|
|
if(h1 == NULL){
|
|
return -9999.99;
|
|
}
|
|
h1[0][0] = r1.h;
|
|
h1[1][0] = r1.k;
|
|
h1[2][0] = r1.l;
|
|
|
|
h2 = makeVector();
|
|
if(h2 == NULL){
|
|
return -999.99;
|
|
}
|
|
h2[0][0] = r2.h;
|
|
h2[1][0] = r2.k;
|
|
h2[2][0] = r2.l;
|
|
|
|
chi1 = mat_mul(B,h1);
|
|
chi2 = mat_mul(B,h2);
|
|
if(chi1 != NULL && chi2 != NULL){
|
|
angle = angleBetween(chi1,chi2);
|
|
killVector(chi1);
|
|
killVector(chi2);
|
|
}
|
|
killVector(h1);
|
|
killVector(h2);
|
|
return angle;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
MATRIX makeInstToConeVectorMatrix(reflection r,double lambda){
|
|
double z1[3], alpha, beta;
|
|
MATRIX mAlpha = NULL, mBeta = NULL, inst2CS = NULL;
|
|
|
|
z1FromAngles(lambda,r.s2t,r.om,r.chi,r.phi,z1);
|
|
alpha = atan2(z1[1],z1[0]);
|
|
beta = -atan2(z1[0],z1[2]);
|
|
/* printf("alpha = %f, beta = %f\n", alpha*57.57, beta*57.57);*/
|
|
|
|
mAlpha = mat_creat(3,3,ZERO_MATRIX);
|
|
mBeta = mat_creat(3,3,ZERO_MATRIX);
|
|
if(mAlpha == NULL || mBeta == NULL){
|
|
return NULL;
|
|
}
|
|
mAlpha[0][0] = cos(alpha);
|
|
mAlpha[0][1] = sin(alpha);
|
|
mAlpha[1][0] = -sin(alpha);
|
|
mAlpha[1][1] = cos(alpha);
|
|
mAlpha[2][2] = 1.;
|
|
|
|
mBeta[0][0] = cos(beta);
|
|
mBeta[0][2] = sin(beta);
|
|
mBeta[1][1] = 1.;
|
|
mBeta[2][0] = -sin(beta);
|
|
mBeta[2][2] = cos(beta);
|
|
|
|
inst2CS = mat_mul(mBeta,mAlpha);
|
|
mat_free(mAlpha);
|
|
mat_free(mBeta);
|
|
|
|
return inst2CS;
|
|
}
|
|
/*--------------------------------------------------------------------------*/
|
|
MATRIX calcConeVector(double openingAngle, double coneAngle,
|
|
double length, MATRIX coneToPsi){
|
|
MATRIX coneRot = NULL, nullVector = NULL, coneVector = NULL;
|
|
MATRIX coneVectorScatter = NULL;
|
|
double testAngle;
|
|
MATRIX z;
|
|
|
|
z = makeVector();
|
|
z[2][0] = 1.;
|
|
|
|
|
|
coneRot = mat_creat(3,3,ZERO_MATRIX);
|
|
if(coneRot == NULL){
|
|
return NULL;
|
|
}
|
|
coneRot[0][0] = Cosd(coneAngle);
|
|
coneRot[0][1] = -Sind(coneAngle);
|
|
coneRot[1][0] = Sind(coneAngle);
|
|
coneRot[1][1] = Cosd(coneAngle);
|
|
coneRot[2][2] = 1.0;
|
|
|
|
nullVector = makeVector();
|
|
if(nullVector == NULL){
|
|
return NULL;
|
|
}
|
|
nullVector[0][0] = Sind(openingAngle);
|
|
nullVector[1][0] = .0;
|
|
nullVector[2][0] = Cosd(openingAngle);
|
|
normalizeVector(nullVector);
|
|
scaleVector(nullVector,length);
|
|
testAngle = angleBetween(z,nullVector);
|
|
|
|
coneVector = mat_mul(coneRot,nullVector);
|
|
if(coneVector == NULL){
|
|
return NULL;
|
|
}
|
|
testAngle = angleBetween(z,coneVector);
|
|
|
|
coneVectorScatter = mat_mul(coneToPsi,coneVector);
|
|
|
|
mat_free(coneRot);
|
|
killVector(nullVector);
|
|
killVector(coneVector);
|
|
|
|
return coneVectorScatter;
|
|
}
|
|
/*---------------------------------------------------------------------------*/
|
|
double scatteringVectorLength(MATRIX B, reflection r){
|
|
MATRIX h = NULL, psi = NULL;
|
|
double length;
|
|
|
|
h = makeVector();
|
|
if(h == NULL){
|
|
return -9999.9;
|
|
}
|
|
h[0][0] = r.h;
|
|
h[1][0] = r.k;
|
|
h[2][0] = r.l;
|
|
|
|
psi = mat_mul(B,h);
|
|
|
|
length = vectorLength(psi);
|
|
killVector(h);
|
|
killVector(psi);
|
|
return length;
|
|
}
|
|
|
|
|