Files
sics/tasub.c
Ferdi Franceschini 10d29d597c Cleaned up ANSTO code to merge with sinqdev.sics
This is our new RELEASE-4_0 branch which was taken from ansto/93d9a7c
Conflicts:
	.gitignore
	SICSmain.c
	asynnet.c
	confvirtualmot.c
	counter.c
	devexec.c
	drive.c
	event.h
	exebuf.c
	exeman.c
	histmem.c
	interface.h
	motor.c
	motorlist.c
	motorsec.c
	multicounter.c
	napi.c
	napi.h
	napi4.c
	network.c
	nwatch.c
	nxscript.c
	nxxml.c
	nxxml.h
	ofac.c
	reflist.c
	scan.c
	sicshipadaba.c
	sicsobj.c
	site_ansto/docs/Copyright.txt
	site_ansto/instrument/lyrebird/config/tasmad/sicscommon/nxsupport.tcl
	site_ansto/instrument/lyrebird/config/tasmad/taspub_sics/tasscript.tcl
	statusfile.c
	tasdrive.c
	tasub.c
	tasub.h
	tasublib.c
	tasublib.h
2015-04-23 20:49:26 +10:00

2173 lines
64 KiB
C

/*----------------------------------------------------------------------
SICS interface to the triple axis spectrometer calculation
module.
copyright: see file COPYRIGHT
Mark Koennecke, April-May 2005
Reworked to support an updater script for Integration into Hipadaba
Mark Koennecke, July 2009
Modified to use drivables rather then motors
Mark Koennecke, September 2011
----------------------------------------------------------------------*/
#include <assert.h>
#include <math.h>
#include "sics.h"
#include "lld.h"
#include "SCinter.h"
#include "trigd.h"
#include "tasub.h"
#include "tasdrive.h"
#include "vector.h"
#include "tasmono.h"
/*------------------- motor indexes in motor data structure ---------*/
#define A1 0
#define A2 1
#define MCV 2
#define MCH 3
#define A3 4
#define A4 5
#define SGU 6
#define SGL 7
#define A5 8
#define A6 9
#define ACV 10
#define ACH 11
/*----------------- data structure management code -------------------*/
static void invokeUpdate(ptasUB self, SConnection *pCon, char *key)
{
char buffer[1024];
if(self->updater != NULL){
snprintf(buffer,1024,"%s %s", self->updater, key);
InterpExecute(pServ->pSics,pCon,buffer);
}
}
/*--------------------------------------------------------------------*/
static void saveCrystal(char *objName, char *name, pmaCrystal crystal,
FILE * fd)
{
fprintf(fd, "%s %s dd %f\n", objName, name, crystal->dd);
fprintf(fd, "%s %s hb1 %f\n", objName, name, crystal->HB1);
fprintf(fd, "%s %s hb2 %f\n", objName, name, crystal->HB2);
fprintf(fd, "%s %s vb1 %f\n", objName, name, crystal->VB1);
fprintf(fd, "%s %s vb2 %f\n", objName, name, crystal->VB2);
fprintf(fd, "%s %s ss %d\n", objName, name, crystal->ss);
}
/*------------------------------------------------------------------*/
static void saveReflections(ptasUB self, char *name, FILE * fd)
{
tasReflection r;
int status;
status = LLDnodePtr2First(self->reflectionList);
fprintf(fd, "%s clear\n", name);
while (status == 1) {
LLDnodeDataTo(self->reflectionList, &r);
fprintf(fd,
"%s addref %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f\n",
name, r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
status = LLDnodePtr2Next(self->reflectionList);
}
}
/*-------------------------------------------------------------------*/
static int tasUBSave(void *pData, char *name, FILE * fd)
{
ptasUB self = (ptasUB) pData;
tasReflection r;
if (self == NULL) {
return 0;
}
fprintf(fd, "#---- tasUB module %s\n", name);
saveCrystal(name, "mono", &self->machine.monochromator, fd);
saveCrystal(name, "ana", &self->machine.analyzer, fd);
fprintf(fd, "%s cell %f %f %f %f %f %f\n", name, self->cell.a,
self->cell.b, self->cell.c, self->cell.alpha,
self->cell.beta, self->cell.gamma);
saveReflections(self, name, fd);
fprintf(fd, "%s outofplane %d\n", name, self->outOfPlaneAllowed);
if (self->tasMode == KICONST) {
fprintf(fd, "%s const ki\n", name);
} else if (self->tasMode == ELASTIC) {
fprintf(fd, "%s const elastic\n", name);
} else {
fprintf(fd, "%s const kf\n", name);
}
fprintf(fd, "%s ss %d\n", name, self->machine.ss_sample);
fprintf(fd, " %s setub %f %f %f %f %f %f %f %f %f\n",
name,
self->machine.UB[0][0], self->machine.UB[0][1],
self->machine.UB[0][2], self->machine.UB[1][0],
self->machine.UB[1][1], self->machine.UB[1][2],
self->machine.UB[2][0], self->machine.UB[2][1],
self->machine.UB[2][2]);
fprintf(fd, " %s setnormal %f %f %f\n", name,
self->machine.planeNormal[0][0], self->machine.planeNormal[1][0],
self->machine.planeNormal[2][0]);
fprintf(fd, "%s settarget %f %f %f %f %f %f\n", name, self->target.qh,
self->target.qk, self->target.ql, self->target.qm,
self->target.ki, self->target.kf);
r = self->r1;
fprintf(fd,
"%s r1 %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f\n",
name, r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
r = self->r2;
fprintf(fd,
"%s r2 %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f %6.2f\n",
name, r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
fprintf(fd, "%s update\n", name);
return 1;
}
/*------------------------------------------------------------------*/
static void defaultMonochromator(pmaCrystal mono)
{
mono->dd = 3.35;
mono->ss = 1;
mono->HB1 = 1.;
mono->HB2 = 1.;
mono->VB1 = 1.;
mono->VB2 = 1.;
}
/*--------------------------------------------------------------------*/
static ptasUB MakeTasUB()
{
ptasUB pNew = NULL;
pNew = (ptasUB) malloc(sizeof(tasUB));
if (pNew == NULL) {
return NULL;
}
memset(pNew, 0, sizeof(tasUB));
pNew->pDes = CreateDescriptor("TAS-UB");
pNew->machine.UB = mat_creat(3, 3, UNIT_MATRIX);
pNew->machine.planeNormal = mat_creat(3, 1, ZERO_MATRIX);
pNew->machine.planeNormal[2][0] = 1.;
pNew->reflectionList = LLDcreate(sizeof(tasReflection));
if (!pNew->pDes || !pNew->machine.UB || pNew->reflectionList < 0 ||
pNew->machine.planeNormal == NULL) {
free(pNew);
return NULL;
}
pNew->pDes->SaveStatus = tasUBSave;
pNew->machine.ss_sample = 1;
defaultMonochromator(&pNew->machine.monochromator);
defaultMonochromator(&pNew->machine.analyzer);
defaultCell(&pNew->cell);
pNew->tasMode = KICONST;
pNew->targetEn = .0;
pNew->actualEn = .0;
pNew->outOfPlaneAllowed = 1;
pNew->mustRecalculate = 1;
pNew->mono = MakeTasMono();
pNew->monoData = pNew;
return pNew;
}
/*-------------------------------------------------------------------*/
static void KillTasUB(void *pData)
{
ptasUB self = (ptasUB) pData;
if (self == NULL) {
return;
}
LLDdelete(self->reflectionList);
if (self->pDes != NULL) {
DeleteDescriptor(self->pDes);
}
if (self->machine.UB != NULL) {
mat_free(self->machine.UB);
}
if (self->machine.planeNormal != NULL) {
mat_free(self->machine.planeNormal);
}
if(self->updater != NULL){
free(self->updater);
}
if(self->mono != NULL){
free(self->mono);
}
free(self);
}
/*==================== interpreter interface section =================*/
static int testMotor(ptasUB pNew, SConnection * pCon, char *name, int idx)
{
char pBueffel[132];
if (pNew->motors[idx] == NULL) {
snprintf(pBueffel, 131, "ERROR: required motor %s NOT found", name);
SCWrite(pCon, pBueffel, eError);
return 0;
} else {
return 1;
}
}
/*-------------------------------------------------------------------*/
static void updateTargets(ptasUB pNew, SConnection * pCon)
{
tasAngles ang;
readTASMotAngles(pNew, pCon, &ang);
calcTasQEPosition(&pNew->machine, ang, &pNew->target);
}
/*--------------------------------------------------------------------*/
static pMotor TasFindMotor(SicsInterp *pSics, char *name)
{
pMotor mot = NULL;
CommandList *pCom = NULL;
mot = FindMotor(pSics,name);
if(mot == NULL){
pCom = FindCommand(pSics,name);
if(pCom != NULL && GetDrivableInterface(pCom->pData) != NULL){
mot = (pMotor)pCom->pData;
}
}
return mot;
}
/*--------------------------------------------------------------------*/
int TasUBFactory(SConnection * pCon, SicsInterp * pSics, void *pData,
int argc, char *argv[])
{
ptasUB pNew = NULL;
int status = 0, i;
char pBueffel[132];
char names[][3] = { "ei", "ki",
"qh", "qk", "ql",
"ef", "kf",
"en"
};
char *defltMot[] = {"a1", "a2", "mcv", "mch", "a3", "a4", "sgu", "sgl", "a5", "a6", "acv", "ach"};
if (argc < 2) {
SCWrite(pCon, "ERROR: need name to install tasUB", eError);
return 0;
}
if (argc > 2 && argc < 14) {
SCWrite(pCon, "ERROR: not enough motor names specified for MakeTasUB",
eError);
return 0;
}
pNew = MakeTasUB();
if (pNew == NULL) {
SCWrite(pCon, "ERROR: out of memory creating tasUB", eError);
return 0;
}
/*
assign motors
*/
if (argc < 14) {
/*
* default names and assignement
*/
pNew->motors[0] = TasFindMotor(pSics, "a1");
pNew->motors[1] = TasFindMotor(pSics, "a2");
pNew->motors[2] = TasFindMotor(pSics, "mcv");
pNew->motors[3] = TasFindMotor(pSics, "mch");
pNew->motors[4] = TasFindMotor(pSics, "a3");
pNew->motors[5] = TasFindMotor(pSics, "a4");
pNew->motors[6] = TasFindMotor(pSics, "sgu");
pNew->motors[7] = TasFindMotor(pSics, "sgl");
pNew->motors[8] = TasFindMotor(pSics, "a5");
pNew->motors[9] = TasFindMotor(pSics, "a6");
pNew->motors[10] = TasFindMotor(pSics, "acv");
pNew->motors[11] = TasFindMotor(pSics, "ach");
for (i=0; i < 12; i++) {
strcpy(pNew->motname[i], defltMot[i]);
}
} else {
/*
* user defined names
*/
pNew->motors[0] = TasFindMotor(pSics, argv[2]);
pNew->motors[1] = TasFindMotor(pSics, argv[3]);
pNew->motors[2] = TasFindMotor(pSics, argv[4]);
pNew->motors[3] = TasFindMotor(pSics, argv[5]);
pNew->motors[4] = TasFindMotor(pSics, argv[6]);
pNew->motors[5] = TasFindMotor(pSics, argv[7]);
pNew->motors[6] = TasFindMotor(pSics, argv[8]);
pNew->motors[7] = TasFindMotor(pSics, argv[9]);
pNew->motors[8] = TasFindMotor(pSics, argv[10]);
pNew->motors[9] = TasFindMotor(pSics, argv[11]);
pNew->motors[10] = TasFindMotor(pSics, argv[12]);
pNew->motors[11] = TasFindMotor(pSics, argv[13]);
for (i=0; i < 12; i++) {
strcpy(pNew->motname[i], argv[i+2]);
}
}
/*
curvature motors may be missing, anything else is a serious problem
*/
status += testMotor(pNew, pCon, pNew->motname[A1], A1);
status += testMotor(pNew, pCon, pNew->motname[A2], A2);
status += testMotor(pNew, pCon, pNew->motname[A3], A3);
status += testMotor(pNew, pCon, pNew->motname[A4], A4);
status += testMotor(pNew, pCon, pNew->motname[SGU], SGU);
status += testMotor(pNew, pCon, pNew->motname[SGL], SGL);
status += testMotor(pNew, pCon, pNew->motname[A5], A5);
status += testMotor(pNew, pCon, pNew->motname[A6], A6);
if (status != 8) {
SCWrite(pCon, "ERROR: a required motor is missing, tasub NOT installed",
eError);
return 0;
}
status = AddCommand(pSics, argv[1], TasUBWrapper, KillTasUB, pNew);
if (status != 1) {
SCWrite(pCon, "ERROR: duplicate tasUB command not created", eError);
return 0;
}
/*
install virtual motors
*/
for (i = 0; i < 8; i++) {
status = InstallTasMotor(pSics, pNew, i + 1, names[i]);
if (status != 1) {
snprintf(pBueffel, 131, "ERROR: failed to create TAS motor %s",
names[i]);
SCWrite(pCon, pBueffel, eError);
}
}
status = InstallTasQMMotor(pSics, pNew);
if (status != 1) {
snprintf(pBueffel, 131, "ERROR: failed to create TAS motor qm");
SCWrite(pCon, pBueffel, eError);
}
return 1;
}
/*-----------------------------------------------------------------*/
static int setCrystalParameters(pmaCrystal crystal, SConnection * pCon,
int argc, char *argv[])
{
int status;
double d;
char pBueffel[132];
status = Tcl_GetDouble(InterpGetTcl(pServ->pSics), argv[3], &d);
if (status != TCL_OK) {
snprintf(pBueffel, 131, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 1;
}
if (!SCMatchRights(pCon, usMugger)) {
return 0;
}
strtolower(argv[2]);
if (strcmp(argv[2], "dd") == 0) {
crystal->dd = d;
SCSendOK(pCon);
SCparChange(pCon);
return 1;
} else if (strcmp(argv[2], "ss") == 0) {
status = (int)d;
if (status == 1) {
crystal->ss = 1;
} else if(status == -1) {
crystal->ss = -1;
} else {
SCPrintf(pCon,eError,
"ERROR: %f not allowed for scattering sense, only 1,-1", d);
return 0;
}
SCSendOK(pCon);
SCparChange(pCon);
return 1;
} else if (strcmp(argv[2], "hb1") == 0) {
crystal->HB1 = d;
SCSendOK(pCon);
SCparChange(pCon);
return 1;
} else if (strcmp(argv[2], "hb2") == 0) {
crystal->HB2 = d;
SCSendOK(pCon);
SCparChange(pCon);
return 1;
} else if (strcmp(argv[2], "vb1") == 0) {
crystal->VB1 = d;
SCSendOK(pCon);
SCparChange(pCon);
return 1;
} else if (strcmp(argv[2], "vb2") == 0) {
crystal->VB2 = d;
SCSendOK(pCon);
SCparChange(pCon);
return 1;
} else {
snprintf(pBueffel, 131, "ERROR: crystal parameter %s not known",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
}
/*-----------------------------------------------------------------*/
static int getCrystalParameters(pmaCrystal crystal, SConnection * pCon,
int argc, char *argv[])
{
char pBueffel[132];
strtolower(argv[2]);
if (strcmp(argv[2], "dd") == 0) {
snprintf(pBueffel, 131, "%s.%s.dd = %f", argv[0], argv[1],
crystal->dd);
SCWrite(pCon, pBueffel, eValue);
return 1;
} else if (strcmp(argv[2], "hb1") == 0) {
snprintf(pBueffel, 131, "%s.%s.hb1 = %f", argv[0], argv[1],
crystal->HB1);
SCWrite(pCon, pBueffel, eValue);
return 1;
} else if (strcmp(argv[2], "hb2") == 0) {
snprintf(pBueffel, 131, "%s.%s.hb2 = %f", argv[0], argv[1],
crystal->HB2);
SCWrite(pCon, pBueffel, eValue);
return 1;
} else if (strcmp(argv[2], "vb1") == 0) {
snprintf(pBueffel, 131, "%s.%s.vb1 = %f", argv[0], argv[1],
crystal->VB1);
SCWrite(pCon, pBueffel, eValue);
return 1;
} else if (strcmp(argv[2], "vb2") == 0) {
snprintf(pBueffel, 131, "%s.%s.vb2 = %f", argv[0], argv[1],
crystal->VB2);
SCWrite(pCon, pBueffel, eValue);
return 1;
} else if (strcmp(argv[2], "ss") == 0) {
snprintf(pBueffel, 131, "%s.%s.ss = %d", argv[0], argv[1],
crystal->ss);
SCWrite(pCon, pBueffel, eValue);
return 1;
} else {
snprintf(pBueffel, 131, "ERROR: crystal parameter %s not known",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
}
/*------------------------------------------------------------------*/
static int handleCrystalCommands(pmaCrystal crystal, SConnection * pCon,
int argc, char *argv[])
{
char pBueffel[132];
if (argc < 3) {
snprintf(pBueffel, 131,
"ERROR: insufficent number of arguments to %s %s", argv[0],
argv[1]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
if (argc > 3) {
return setCrystalParameters(crystal, pCon, argc, argv);
} else {
return getCrystalParameters(crystal, pCon, argc, argv);
}
}
/*---------------------------------------------------------------------*/
static int tasReadCell(SConnection * pCon, ptasUB self, int argc,
char *argv[])
{
int status;
Tcl_Interp *pTcl = InterpGetTcl(pServ->pSics);
char pBueffel[256];
if (argc < 8) {
SCWrite(pCon, "ERROR: insufficient number of arguments to tasub cell",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(pTcl, argv[2], &self->cell.a);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(pTcl, argv[3], &self->cell.b);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(pTcl, argv[4], &self->cell.c);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(pTcl, argv[5], &self->cell.alpha);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(pTcl, argv[6], &self->cell.beta);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(pTcl, argv[7], &self->cell.gamma);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[7]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->ubValid = 0;
SCWrite(pCon, "WARNING: UB is now invalid", eWarning);
SCparChange(pCon);
SCSendOK(pCon);
return 1;
}
/*---------------------------------------------------------------------*/
static void tasListCell(SConnection * pCon, char *name, lattice direct)
{
char pBueffel[255];
snprintf(pBueffel, 255, "%s.cell = %f %f %f %f %f %f",
name, direct.a, direct.b, direct.c,
direct.alpha, direct.beta, direct.gamma);
SCWrite(pCon, pBueffel, eValue);
}
/*--------------------------------------------------------------------*/
static void clearReflections(ptasUB self)
{
LLDdelete(self->reflectionList);
self->reflectionList = LLDcreate(sizeof(tasReflection));
self->ubValid = 0;
}
/*------------------------------------------------------------------*/
static void listReflections(ptasUB self, SConnection * pCon)
{
tasReflection r;
int status;
int count = 0;
char line[256];
Tcl_DString list;
Tcl_DStringInit(&list);
snprintf(line, 255,
" NO QH QK QL %s %s %s %s EI EF\n",
self->motname[A3], self->motname[A4], self->motname[SGU],
self->motname[SGL]);
Tcl_DStringAppend(&list, line, -1);
status = LLDnodePtr2First(self->reflectionList);
while (status == 1) {
count++;
LLDnodeDataTo(self->reflectionList, &r);
snprintf(line, 255,
"%3d %6.2f %6.2f %6.2f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
count, r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
Tcl_DStringAppend(&list, line, -1);
status = LLDnodePtr2Next(self->reflectionList);
}
if (count == 0) {
SCWrite(pCon, "Reflection list is empty", eValue);
} else {
SCWrite(pCon, Tcl_DStringValue(&list), eValue);
}
Tcl_DStringFree(&list);
}
/*-------------------------------------------------------------------*/
#define ABS(x) (x < 0 ? -(x) : (x))
/*-------------------------------------------------------------------*/
static int addReflection(ptasUB self, SicsInterp * pSics,
SConnection * pCon, int argc, char *argv[])
{
tasReflection r;
int status, count = 11;
char pBueffel[256];
tasAngles angles;
Tcl_DString list;
if (argc < 5) {
SCWrite(pCon, "ERROR: need at least miller indices to add reflection",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &r.qe.qh);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &r.qe.qk);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &r.qe.ql);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
if (self->tasMode == ELASTIC) {
count = 10;
}
if (argc >= count) {
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[5], &r.angles.a3);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status =
Tcl_GetDouble(InterpGetTcl(pSics), argv[6],
&r.angles.sample_two_theta);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[7], &r.angles.sgu);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[7]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[8], &r.angles.sgl);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[8]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[9], &r.qe.ki);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[9]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
r.qe.ki = energyToK(r.qe.ki);
if (self->tasMode != ELASTIC) {
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[10], &r.qe.kf);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[10]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
r.qe.kf = energyToK(r.qe.kf);
} else {
r.qe.kf = r.qe.ki;
}
} else {
if (argc > 5) {
SCWrite(pCon,
"WARNING: not all angles given on command line, using positions instead",
eWarning);
}
status = readTASMotAngles(self, pCon, &r.angles);
if (status != 1) {
return status;
}
r.qe.ki =
maCalcK(self->machine.monochromator,
r.angles.monochromator_two_theta);
r.qe.kf = maCalcK(self->machine.analyzer, r.angles.analyzer_two_theta);
}
if (self->tasMode == ELASTIC) {
r.qe.kf = r.qe.ki;
}
if (ABS(r.qe.ki - r.qe.kf) > .01) {
SCWrite(pCon, "WARNING: KI != KF!", eWarning);
}
LLDnodeAppend(self->reflectionList, &r);
Tcl_DStringInit(&list);
snprintf(pBueffel, 255,
" QH QK QL %s %s %s %s EI EF\n",
self->motname[A3], self->motname[A4], self->motname[SGU],
self->motname[SGL]);
Tcl_DStringAppend(&list, pBueffel, -1);
snprintf(pBueffel, 255,
" %6.2f %6.2f %6.2f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
Tcl_DStringAppend(&list, pBueffel, -1);
SCWrite(pCon, Tcl_DStringValue(&list), eValue);
Tcl_DStringFree(&list);
SCparChange(pCon);
return 1;
}
/*------------------------------------------------------------------------------*/
static int readReflection(SConnection * pCon, SicsInterp * pSics,
ptasReflection res, int argc, char *argv[])
{
tasReflection r;
int status;
char pBueffel[256];
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
if (argc < 11) {
SCWrite(pCon, "ERROR: not enough parameters to read reflection",
eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &r.qe.qh);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &r.qe.qk);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &r.qe.ql);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[5], &r.angles.a3);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status =
Tcl_GetDouble(InterpGetTcl(pSics), argv[6],
&r.angles.sample_two_theta);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[7], &r.angles.sgu);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[7]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[8], &r.angles.sgl);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[8]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[9], &r.qe.ki);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[9]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
r.qe.ki = energyToK(r.qe.ki);
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[10], &r.qe.kf);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[10]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
r.qe.kf = energyToK(r.qe.kf);
if (ABS(r.qe.ki - r.qe.kf) > .01) {
SCWrite(pCon, "WARNING: KI != KF!", eWarning);
}
*res = r;
return 1;
}
/*-----------------------------------------------------------------*/
int findReflection(int list, int idx, ptasReflection r)
{
int count = 0;
int status;
status = LLDnodePtr2First(list);
while (status == 1) {
if (count == idx) {
LLDnodeDataTo(list, r);
return 1;
}
status = LLDnodePtr2Next(list);
count++;
}
return 0;
}
/*-----------------------------------------------------------------*/
void setStopFixed(ptasUB self, int val)
{
if(val == 0 || val ==1) {
self->stopFixed = val;
}
}
/*------------------------------------------------------------------*/
static void listUB(ptasUB self, SConnection * pCon)
{
Tcl_DString list;
char pBueffel[255];
int i;
tasReflection r;
Tcl_DStringInit(&list);
if (self->machine.UB == NULL) {
Tcl_DStringAppend(&list, "NO UB", -1);
} else {
Tcl_DStringAppend(&list, "UB = ", -1);
snprintf(pBueffel, 255, "%f %f %f\n", self->machine.UB[0][0],
self->machine.UB[0][1], self->machine.UB[0][2]);
Tcl_DStringAppend(&list, pBueffel, -1);
for (i = 1; i < 3; i++) {
snprintf(pBueffel, 255, " %f %f %f\n", self->machine.UB[i][0],
self->machine.UB[i][1], self->machine.UB[i][2]);
Tcl_DStringAppend(&list, pBueffel, -1);
}
}
snprintf(pBueffel, 255, "UB generated from reflections:\n");
Tcl_DStringAppend(&list, pBueffel, -1);
snprintf(pBueffel, 255,
" QH QK QL %s %s %s %s EI EF\n",
self->motname[A3], self->motname[A4], self->motname[SGU],
self->motname[SGL]);
Tcl_DStringAppend(&list, pBueffel, -1);
r = self->r1;
snprintf(pBueffel, 255,
" %8.4f %8.4f %8.4f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
Tcl_DStringAppend(&list, pBueffel, -1);
r = self->r2;
snprintf(pBueffel, 255,
" %8.4f %8.4f %8.4f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
Tcl_DStringAppend(&list, pBueffel, -1);
snprintf(pBueffel, 255, "Plane Normal: %8.4f %8.4f %8.4f\n",
self->machine.planeNormal[0][0],
self->machine.planeNormal[1][0],
self->machine.planeNormal[2][0]);
Tcl_DStringAppend(&list, pBueffel, -1);
if (self->ubValid == 0) {
Tcl_DStringAppend(&list, "WARNING: UB matrix is invalid\n", -1);
}
SCWrite(pCon, Tcl_DStringValue(&list), eValue);
Tcl_DStringFree(&list);
}
/*-----------------------------------------------------------------*/
static void printReflectionDiagnostik(ptasUB self, SConnection * pCon,
tasReflection r)
{
tasReflection r2;
Tcl_DString list;
char line[256];
tasQEPosition qe;
tasAngles angles;
Tcl_DStringInit(&list);
snprintf(line, 255,
"METHOD QH QK QL %s %s %s %s EI EF\n",
self->motname[A3], self->motname[A4], self->motname[SGU],
self->motname[SGL]);
Tcl_DStringAppend(&list, line, -1);
snprintf(line, 255,
"INPUT %8.4f %8.4f %8.4f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
r.qe.qh, r.qe.qk, r.qe.ql, r.angles.a3,
r.angles.sample_two_theta, r.angles.sgu, r.angles.sgl,
KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
Tcl_DStringAppend(&list, line, -1);
qe.ki = r.qe.ki;
qe.kf = r.qe.kf;
qe.qh = r.qe.qh;
qe.qk = r.qe.qk;
qe.ql = r.qe.ql;
calcAllTasAngles(&self->machine, qe, &angles);
snprintf(line, 255,
"QE->ANG %8.4f %8.4f %8.4f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
r.qe.qh, r.qe.qk, r.qe.ql,
angles.a3, angles.sample_two_theta,
angles.sgu, angles.sgl, KtoEnergy(r.qe.ki), KtoEnergy(r.qe.kf));
Tcl_DStringAppend(&list, line, -1);
angles.a3 = r.angles.a3;
angles.sample_two_theta = r.angles.sample_two_theta;
angles.sgu = r.angles.sgu;
angles.sgl = r.angles.sgl;
calcTasQEPosition(&self->machine, angles, &qe);
snprintf(line, 255,
"ANG->QE %8.4f %8.4f %8.4f %7.2f %7.2f %6.2f %6.2f %6.2f %6.2f\n",
qe.qh, qe.qk, qe.ql, angles.a3, angles.sample_two_theta,
angles.sgu, angles.sgl, KtoEnergy(qe.ki), KtoEnergy(qe.kf));
Tcl_DStringAppend(&list, line, -1);
SCWrite(pCon, Tcl_DStringValue(&list), eWarning);
Tcl_DStringFree(&list);
}
/*------------------------------------------------------------------*/
static void listDiagnostik(ptasUB self, SConnection * pCon)
{
tasReflection r;
int status;
status = LLDnodePtr2First(self->reflectionList);
while (status == 1) {
LLDnodeDataTo(self->reflectionList, &r);
printReflectionDiagnostik(self, pCon, r);
status = LLDnodePtr2Next(self->reflectionList);
}
}
/*-----------------------------------------------------------------*/
static int addAuxReflection(ptasUB self, SConnection * pCon,
SicsInterp * pSics, int argc, char *argv[])
{
int status, ss;
tasReflection r1, r2;
float value = -999.99;
char pBueffel[256];
MATRIX UB = NULL, B = NULL;
if (argc < 5) {
SCWrite(pCon,
"ERROR: not enough arguments auxiliary reflection, need HKL",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &r2.qe.qh);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &r2.qe.qk);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &r2.qe.ql);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
B = mat_creat(3, 3, ZERO_MATRIX);
if (B == NULL) {
SCWrite(pCon, "ERROR: out of memory creating B matrix", eError);
return 0;
}
status = calculateBMatrix(self->cell, B);
if (status < 0) {
SCWrite(pCon, "ERROR: bad cell constants, no volume", eError);
mat_free(B);
return 0;
}
status = findReflection(self->reflectionList, 0, &r1);
if (status != 1) {
r2.qe.kf = self->current.kf;
r2.qe.ki = self->current.ki;
GetDrivablePosition(self->motors[A3], pCon, &value);
ss = self->machine.ss_sample;
r2.angles.a3 = fmod(value + ss*180.,360.) - ss*180.;
r2.angles.sgu = .0;
r2.angles.sgl = .0;
calcTwoTheta(B, r2.qe, self->machine.ss_sample,
&r2.angles.sample_two_theta);
r1 = r2;
}
status = makeAuxReflection(B, r1, &r2, self->machine.ss_sample);
mat_free(B);
if (status < 0) {
SCWrite(pCon,
"ERROR: out of memory in makeAuxUB or scattering angle not closed",
eError);
return 0;
}
LLDnodeAppend(self->reflectionList, &r2);
SCSendOK(pCon);
invokeUpdate(self,pCon,"ref");
return 1;
}
/*------------------------------------------------------------------*/
static int calcAuxUB(ptasUB self, SConnection * pCon, SicsInterp * pSics,
int argc, char *argv[])
{
int status;
tasReflection r1, r2;
char pBueffel[256];
MATRIX UB = NULL, B = NULL;
if (argc < 5) {
SCWrite(pCon,
"ERROR: not enough arguments for UB calculation, need HKL of second plane vector",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &r2.qe.qh);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &r2.qe.qk);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &r2.qe.ql);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = findReflection(self->reflectionList, 0, &r1);
if (status != 1) {
snprintf(pBueffel, 255, "ERROR: cannot find first reflection");
SCWrite(pCon, pBueffel, eError);
return 0;
}
B = mat_creat(3, 3, ZERO_MATRIX);
if (B == NULL) {
SCWrite(pCon, "ERROR: out of memory creating B matrix", eError);
return 0;
}
status = calculateBMatrix(self->cell, B);
if (status < 0) {
SCWrite(pCon, "ERROR: bad cell constants, no volume", eError);
mat_free(B);
return 0;
}
status = makeAuxReflection(B, r1, &r2, self->machine.ss_sample);
mat_free(B);
if (status < 0) {
SCWrite(pCon, "ERROR: out of memory in makeAuxUB", eError);
return 0;
}
UB = calcTasUBFromTwoReflections(self->cell, r1, r2, &status);
if (UB == NULL) {
switch (status) {
case UBNOMEMORY:
SCWrite(pCon, "ERROR: out of memory calculating UB matrix", eError);
break;
case REC_NO_VOLUME:
SCWrite(pCon, "ERROR: bad cell constants, no volume", eError);
break;
}
return 0;
}
if (mat_det(UB) < .000001) {
SCWrite(pCon, "ERROR: invalid UB matrix, check reflections", eError);
return 0;
}
if (self->machine.UB != NULL) {
mat_free(self->machine.UB);
}
if (self->machine.planeNormal != NULL) {
mat_free(self->machine.planeNormal);
}
self->machine.UB = UB;
self->machine.planeNormal = makeVector();
self->machine.planeNormal[2][0] = 1.;
/* self->machine.planeNormal = calcPlaneNormal(r1, r2); */
self->ubValid = 1;
SCparChange(pCon);
SCSendOK(pCon);
return 1;
}
/*------------------------------------------------------------------*/
static int calcUB(ptasUB self, SConnection * pCon, SicsInterp * pSics,
int argc, char *argv[])
{
int idx1, idx2, status;
tasReflection r1, r2;
char pBueffel[256];
MATRIX UB = NULL;
if (argc < 4) {
SCWrite(pCon,
"ERROR: not enough arguments for UB calculation, need index of two reflections",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[2], &idx1);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
idx1--;
status = findReflection(self->reflectionList, idx1, &r1);
if (status != 1) {
snprintf(pBueffel, 255, "ERROR: cannot find reflection with index %d",
idx1 + 1);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[3], &idx2);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
idx2--;
status = findReflection(self->reflectionList, idx2, &r2);
if (status != 1) {
snprintf(pBueffel, 255, "ERROR: cannot find reflection with index %d",
idx2 + 1);
SCWrite(pCon, pBueffel, eError);
return 0;
}
if(!self->outOfPlaneAllowed){
r1.angles.sgu = .0;
r1.angles.sgl = .0;
r2.angles.sgu = .0;
r2.angles.sgl = .0;
}
UB = calcTasUBFromTwoReflections(self->cell, r1, r2, &status);
if (UB == NULL) {
switch (status) {
case UBNOMEMORY:
SCWrite(pCon, "ERROR: out of memory calculating UB matrix", eError);
break;
case REC_NO_VOLUME:
SCWrite(pCon, "ERROR: bad cell constants, no volume", eError);
break;
}
return 0;
}
if (mat_det(UB) < .000001) {
SCWrite(pCon, "ERROR: invalid UB matrix, check reflections", eError);
return 0;
}
if (self->machine.UB != NULL) {
mat_free(self->machine.UB);
}
if (self->machine.planeNormal != NULL) {
mat_free(self->machine.planeNormal);
}
self->machine.UB = UB;
/* self->machine.planeNormal = calcPlaneNormalQ(UB,r1, r2);*/
self->machine.planeNormal = makeVector();
self->machine.planeNormal[2][0] = 1.;
self->r1 = r1;
self->r2 = r2;
self->ubValid = 1;
listUB(self, pCon);
listDiagnostik(self, pCon);
invokeUpdate(self,pCon,"main");
SCparChange(pCon);
return 1;
}
/*-----------------------------------------------------------------*/
static int calcUBFromCell(ptasUB self, SConnection * pCon)
{
MATRIX B, U, UB;
tasReflection r1;
int status;
B = mat_creat(3, 3, UNIT_MATRIX);
U = mat_creat(3, 3, UNIT_MATRIX);
status = findReflection(self->reflectionList, 0, &r1);
if (status == 1) {
/*
U[0][0] = Cosd(r1.angles.a3);
U[0][1] = -Sind(r1.angles.a3);
U[1][0] = Sind(r1.angles.a3);
U[1][1] = Cosd(r1.angles.a3);
*/
}
if (B == NULL || U == NULL) {
SCWrite(pCon, "ERROR: out of memory in calcUBFromCell", eError);
return 0;
}
status = calculateBMatrix(self->cell, B);
if (status == REC_NO_VOLUME) {
SCWrite(pCon, "ERROR: cell has no volume", eError);
return 0;
}
UB = mat_mul(U, B);
if (UB == NULL) {
SCWrite(pCon, "ERROR: matrix multiplication failed", eError);
return 0;
}
if (mat_det(UB) < .000001) {
SCWrite(pCon, "ERROR: invalid UB matrix, check cell", eError);
return 0;
}
if (self->machine.UB != NULL) {
mat_free(self->machine.UB);
}
self->machine.UB = UB;
self->machine.planeNormal[0][0] = .0;
self->machine.planeNormal[1][0] = .0;
self->machine.planeNormal[2][0] = 1.;
self->ubValid = 1;
SCparChange(pCon);
invokeUpdate(self,pCon,"main");
mat_free(U);
mat_free(B);
return 1;
}
/*-----------------------------------------------------------------*/
static int calcTestUBWrap(ptasUB self, SConnection *pCon,
int argc, char *argv[])
{
MATRIX UB;
double om, sgu, sgl;
tasReflection r1, r2;
if(argc < 5) {
SCWrite(pCon,"ERROR: not enough arguments to test UB", eError);
return 0;
}
om = atof(argv[2]);
sgu = atof(argv[3]);
sgl = atof(argv[4]);
UB = calcTestUB(self->cell, om, sgu, sgl);
if(UB == NULL){
SCWrite(pCon,"ERROR: out of memory or invalid cell in test UB", eError);
return 0;
}
mat_free(self->machine.UB);
self->machine.UB = UB;
/*
r1.qe.qh = 1.0;
r1.qe.qk = .0;
r1.qe.ql = .0;
r2.qe.qh = .0;
r2.qe.qk = 1.0;
r2.qe.ql = .0;
self->machine.planeNormal = calcPlaneNormalQ(UB,r1,r2);
self->machine.planeNormal[0][0] = -Sind(sgl);
self->machine.planeNormal[1][0] = Cosd(sgl)*Sind(sgu);
self->machine.planeNormal[2][0] = Cosd(sgl)*Cosd(sgu);
SCPrintf(pCon,eValue,"Normal = %f,%f,%f\n", self->machine.planeNormal[0][0],
self->machine.planeNormal[1][0],
self->machine.planeNormal[2][0]);
self->machine.planeNormal = calcTestNormal(sgu,sgl);
SCPrintf(pCon,eValue,"Alternative normal = %f,%f,%f\n", self->machine.planeNormal[0][0],
self->machine.planeNormal[1][0],
self->machine.planeNormal[2][0]);
*/
self->machine.planeNormal[0][0] = .0;
self->machine.planeNormal[1][0] = .0;
self->machine.planeNormal[2][0] = 1.0;
SCSendOK(pCon);
return 1;
}
/*------------------------------------------------------------------*/
static int calcRefAngles(ptasUB self, SConnection * pCon,
SicsInterp * pSics, int argc, char *argv[])
{
tasQEPosition q;
tasAngles angles;
char pBueffel[256];
int status;
if (self->tasMode == ELASTIC) {
if (argc < 6) {
SCWrite(pCon, "ERROR: need Qh, Qk, Ql, EI for calculation", eError);
return 0;
}
} else {
if (argc < 7) {
SCWrite(pCon, "ERROR: need Qh, Qk, Ql, EI, EF for calculation",
eError);
return 0;
}
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &q.qh);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &q.qk);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &q.ql);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[5], &q.ki);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
if (self->tasMode != ELASTIC) {
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[6], &q.kf);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
} else {
q.kf = q.ki;
}
q.ki = energyToK(q.ki);
q.kf = energyToK(q.kf);
status = calcAllTasAngles(&self->machine, q, &angles);
switch (status) {
case ENERGYTOBIG:
SCWrite(pCon, "ERROR: energy to big", eError);
return 0;
break;
case UBNOMEMORY:
SCWrite(pCon, "ERROR: Out of memory calculating angles", eError);
return 0;
break;
case BADRMATRIX:
SCWrite(pCon, "ERROR: bad crystallographic parameters or bad UB",
eError);
return 0;
break;
case TRIANGLENOTCLOSED:
SCWrite(pCon, "ERROR: scattering triangle not closed", eError);
return 0;
break;
}
if (self->tasMode != ELASTIC) {
snprintf(pBueffel, 255, " %8.2f %8.2f %8.2f %8.2f %8.2f %8.2f",
angles.monochromator_two_theta,
angles.a3, angles.sample_two_theta,
angles.sgu, angles.sgl, angles.analyzer_two_theta);
} else {
snprintf(pBueffel, 255, " %8.2f %8.2f %8.2f %8.2f %8.2f",
angles.monochromator_two_theta,
angles.a3, angles.sample_two_theta, angles.sgl, angles.sgu);
}
SCWrite(pCon, pBueffel, eValue);
return 1;
}
/*------------------------------------------------------------------*/
static int calcQFromAngles(ptasUB self, SConnection * pCon,
SicsInterp * pSics, int argc, char *argv[])
{
tasQEPosition q;
tasAngles angles;
char pBueffel[256];
int status;
if (self->tasMode != ELASTIC) {
if (argc < 8) {
SCWrite(pCon, "ERROR: need a2, a3, a4, sgu, sgl, a6 for calculation",
eError);
return 0;
}
} else {
if (argc < 7) {
SCWrite(pCon, "ERROR: need a2, a3, a4, sgu, sgl for calculation",
eError);
return 0;
}
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2],
&angles.monochromator_two_theta);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &angles.a3);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status =
Tcl_GetDouble(InterpGetTcl(pSics), argv[4],
&angles.sample_two_theta);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[5], &angles.sgu);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[6], &angles.sgl);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
if (self->tasMode != ELASTIC) {
status =
Tcl_GetDouble(InterpGetTcl(pSics), argv[7],
&angles.analyzer_two_theta);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[7]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
} else {
angles.analyzer_two_theta = angles.monochromator_two_theta;
}
status = calcTasQEPosition(&self->machine, angles, &q);
switch (status) {
case UBNOMEMORY:
SCWrite(pCon, "ERROR: Out of memory calculating angles", eError);
return 0;
break;
}
if (self->tasMode == ELASTIC) {
q.kf = q.ki;
}
snprintf(pBueffel, 255, "%8.4f %8.4f %8.4f %8.4f %8.4f",
q.qh, q.qk, q.ql, KtoEnergy(q.ki), KtoEnergy(q.kf));
SCWrite(pCon, pBueffel, eValue);
return 1;
}
/*------------------------------------------------------------------*/
static int setUB(SConnection * pCon, SicsInterp * pSics, ptasUB self,
int argc, char *argv[])
{
double value;
char pBueffel[256];
int status;
if (argc < 11) {
SCWrite(pCon, "ERROR: not enough arguments for setting UB", eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[0][0] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[0][1] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[0][2] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[5], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[1][0] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[6], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[1][1] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[7], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[7]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[1][2] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[8], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[8]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[2][0] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[9], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[9]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[2][1] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[10], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[10]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.UB[2][2] = value;
self->ubValid = 1;
SCSendOK(pCon);
SCparChange(pCon);
invokeUpdate(self,pCon,"main");
return 1;
}
/*------------------------------------------------------------------*/
static int getUB(SConnection * pCon, SicsInterp * pSics, ptasUB self,
int argc, char *argv[])
{
double value;
char pBueffel[512];
int status;
snprintf(pBueffel, 511, "tasub.ub = %f %f %f %f %f %f %f %f %f",
self->machine.UB[0][0], self->machine.UB[0][1],
self->machine.UB[0][2], self->machine.UB[1][0],
self->machine.UB[1][1], self->machine.UB[1][2],
self->machine.UB[2][0], self->machine.UB[2][1],
self->machine.UB[2][2]);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
/*------------------------------------------------------------------*/
static int setNormal(SConnection * pCon, SicsInterp * pSics, ptasUB self,
int argc, char *argv[])
{
double value;
char pBueffel[256];
int status;
if (argc < 5) {
SCWrite(pCon, "ERROR: not enough arguments for setting plane normal",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.planeNormal[0][0] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.planeNormal[1][0] = value;
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &value);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
self->machine.planeNormal[2][0] = value;
SCSendOK(pCon);
SCparChange(pCon);
return 1;
}
/*------------------------------------------------------------------*/
static int getNormal(SConnection * pCon, SicsInterp * pSics, ptasUB self,
int argc, char *argv[])
{
double value;
char pBueffel[512];
int status;
snprintf(pBueffel, 511, "tasub.normal = %f %f %f",
self->machine.planeNormal[0][0], self->machine.planeNormal[1][0],
self->machine.planeNormal[2][0]);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
/*------------------------------------------------------------------*/
static int setTarget(SConnection * pCon, SicsInterp * pSics, ptasUB self,
int argc, char *argv[])
{
double value;
char pBueffel[256];
int status;
if (argc < 8) {
SCWrite(pCon, "ERROR: not enough arguments for setting qe target",
eError);
return 0;
}
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &self->target.qh);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[3], &self->target.qk);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[3]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[4], &self->target.ql);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[4]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[5], &self->target.qm);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[5]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[6], &self->target.ki);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[6]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[7], &self->target.kf);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[7]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
SCSendOK(pCon);
return 1;
}
/*------------------------------------------------------------------*/
int tasUpdate(SConnection * pCon, ptasUB self)
{
int status;
tasAngles angles;
status = readTASMotAngles(self, pCon, &angles);
if (status != 1) {
return status;
}
status = calcTasQEPosition(&self->machine, angles, &self->current);
if (status < 0) {
SCWrite(pCon, "ERROR: out of memory calculating Q-E variables",
eError);
return 0;
}
if (self->tasMode == ELASTIC) {
self->current.kf = self->current.ki;
}
self->mustRecalculate = 0;
SCSendOK(pCon);
return 1;
}
/*------------------------------------------------------------------*/
static int deleteReflection(SConnection * pCon, SicsInterp * pSics,
ptasUB self, int argc, char *argv[])
{
int idx, count = 0, status;
char pBueffel[256];
if (argc < 3) {
SCWrite(pCon, "ERROR: need number of reflection to delete", eError);
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[2], &idx);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
idx--;
status = LLDnodePtr2First(self->reflectionList);
while (status == 1) {
if (count == idx) {
LLDnodeDelete(self->reflectionList);
break;
}
status = LLDnodePtr2Next(self->reflectionList);
count++;
}
SCSendOK(pCon);
invokeUpdate(self,pCon,"ref");
return 1;
}
/*------------------------------------------------------------------*/
static int replaceReflection(SConnection * pCon, SicsInterp * pSics,
ptasUB self, int argc, char *argv[])
{
int idx, count = 0, status;
char pBueffel[256];
tasReflection r;
if (argc < 12) {
SCWrite(pCon, "ERROR: need id and new values to replace", eError);
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[2], &idx);
if (status != TCL_OK) {
snprintf(pBueffel, 255, "ERROR: failed to convert %s to number",
argv[2]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
idx--;
status = LLDnodePtr2First(self->reflectionList);
while (status == 1) {
if (count == idx) {
LLDnodeDataTo(self->reflectionList,&r);
r.qe.qh = atof(argv[3]);
r.qe.qk = atof(argv[4]);
r.qe.ql = atof(argv[5]);
r.angles.a3 = atof(argv[6]);
r.angles.sample_two_theta = atof(argv[7]);
r.angles.sgu = atof(argv[8]);
r.angles.sgl = atof(argv[9]);
r.qe.ki = energyToK(atof(argv[10]));
r.qe.kf = energyToK(atof(argv[11]));
LLDnodeDataFrom(self->reflectionList,&r);
break;
}
status = LLDnodePtr2Next(self->reflectionList);
count++;
}
SCSendOK(pCon);
invokeUpdate(self,pCon,"ref");
return 1;
}
/*-------------------------------------------------------------------*/
int TasUBWrapper(SConnection * pCon, SicsInterp * pSics, void *pData,
int argc, char *argv[])
{
ptasUB self = NULL;
char pBueffel[131];
int status, newSS;
double misalign = .0, a3offset;
self = (ptasUB) pData;
assert(self != NULL);
if (argc < 2) {
SCWrite(pCon, "ERROR: insufficient arguments to tasUB", eError);
return 0;
}
strtolower(argv[1]);
if (strcmp(argv[1], "mono") == 0) {
status =
handleCrystalCommands(&self->machine.monochromator, pCon, argc,
argv);
if(argc > 3){
invokeUpdate(self,pCon,"mono");
}
self->mustRecalculate = 1;
return status;
} else if (strcmp(argv[1], "ana") == 0) {
status =
handleCrystalCommands(&self->machine.analyzer, pCon, argc, argv);
self->mustRecalculate = 1;
if(argc > 3){
invokeUpdate(self,pCon,"ana");
}
return status;
} else if (strcmp(argv[1], "cell") == 0) {
if (argc > 2) {
status = tasReadCell(pCon, self, argc, argv);
invokeUpdate(self,pCon,"main");
return status;
} else {
tasListCell(pCon, argv[0], self->cell);
return 1;
}
} else if (strcmp(argv[1], "clear") == 0) {
clearReflections(self);
clearReflections(self);
SCWrite(pCon, "WARNING: UB is now invalid", eWarning);
invokeUpdate(self,pCon,"ref");
SCSendOK(pCon);
return 1;
} else if (strcmp(argv[1], "listref") == 0) {
listReflections(self, pCon);
return 1;
} else if (strcmp(argv[1], "addref") == 0) {
status = addReflection(self, pSics, pCon, argc, argv);
invokeUpdate(self, pCon,"ref");
return status;
} else if (strcmp(argv[1], "repref") == 0) {
status = replaceReflection(pCon, pSics, self, argc, argv);
return status;
} else if (strcmp(argv[1], "listub") == 0) {
listUB(self, pCon);
return 1;
} else if (strcmp(argv[1], "makeub") == 0) {
return calcUB(self, pCon, pSics, argc, argv);
} else if (strcmp(argv[1], "makeauxub") == 0) {
return calcAuxUB(self, pCon, pSics, argc, argv);
} else if (strcmp(argv[1], "addauxref") == 0) {
return addAuxReflection(self, pCon, pSics, argc, argv);
} else if (strcmp(argv[1], "makeubfromcell") == 0) {
return calcUBFromCell(self, pCon);
} else if (strcmp(argv[1], "maketestub") == 0) {
return calcTestUBWrap(self, pCon, argc, argv);
} else if (strcmp(argv[1], "calcang") == 0) {
return calcRefAngles(self, pCon, pSics, argc, argv);
} else if (strcmp(argv[1], "calcqe") == 0) {
return calcQFromAngles(self, pCon, pSics, argc, argv);
} else if (strcmp(argv[1], "setub") == 0) {
return setUB(pCon, pSics, self, argc, argv);
} else if (strcmp(argv[1], "getub") == 0) {
return getUB(pCon, pSics, self, argc, argv);
} else if (strcmp(argv[1], "setnormal") == 0) {
return setNormal(pCon, pSics, self, argc, argv);
} else if (strcmp(argv[1], "getnormal") == 0) {
return getNormal(pCon, pSics, self, argc, argv);
} else if (strcmp(argv[1], "settarget") == 0) {
return setTarget(pCon, pSics, self, argc, argv);
} else if (strcmp(argv[1], "update") == 0) {
return tasUpdate(pCon, self);
} else if (strcmp(argv[1], "del") == 0) {
return deleteReflection(pCon, pSics, self, argc, argv);
} else if (strcmp(argv[1], "r1") == 0) {
return readReflection(pCon, pSics, &self->r1, argc, argv);
} else if (strcmp(argv[1], "r2") == 0) {
return readReflection(pCon, pSics, &self->r2, argc, argv);
} else if (strcmp(argv[1], "updatetargets") == 0) {
updateTargets(self, pCon);
SCSendOK(pCon);
return 1;
} else if (strcmp(argv[1], "const") == 0) {
if (argc > 2) {
strtolower(argv[2]);
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
if (strcmp(argv[2], "ki") == 0) {
self->tasMode = KICONST;
} else if (strcmp(argv[2], "kf") == 0) {
self->tasMode = KFCONST;
} else if (strcmp(argv[2], "elastic") == 0) {
self->tasMode = ELASTIC;
} else {
SCWrite(pCon,
"ERROR: unknown triple axis mode, accepted are ki, kf, elastic",
eError);
return 0;
}
invokeUpdate(self,pCon,"main");
SCSendOK(pCon);
return 1;
} else {
if (self->tasMode == KICONST) {
snprintf(pBueffel, 131, "%s.const = ki", argv[0]);
} else if (self->tasMode == ELASTIC) {
snprintf(pBueffel, 131, "%s.const = elastic", argv[0]);
} else {
snprintf(pBueffel, 131, "%s.const = kf", argv[0]);
}
SCWrite(pCon, pBueffel, eValue);
return 1;
}
} else if (strcmp(argv[1], "ss") == 0) {
if (argc > 2) {
strtolower(argv[2]);
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[2], &newSS);
if (status != TCL_OK) {
SCWrite(pCon, "ERROR: failed to convert argument to number",
eError);
return 0;
}
if (newSS != 1 && newSS != -1) {
SCWrite(pCon,
"ERROR: invalid value for scattering sense, only 1, -1 allowed",
eError);
return 0;
}
self->machine.ss_sample = newSS;
tasUpdate(pCon, self);
invokeUpdate(self,pCon,"main");
SCSendOK(pCon);
return 1;
} else {
snprintf(pBueffel, 131, "%s.ss = %d", argv[0],
self->machine.ss_sample);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
} else if(strcmp(argv[1],"misalign") == 0){
status = calcTasMisalignment(&self->machine, self->current,&misalign);
if(status != 1){
SCWrite(pCon,"ERROR: failed to calculate misalignment, fix UB", eError);
return 0;
}
SCPrintf(pCon,eValue,"tasub.misalign = %f", misalign );
return 1;
} else if (strcmp(argv[1], "outofplane") == 0) {
if (argc > 2) {
strtolower(argv[2]);
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[2], &newSS);
if (status != TCL_OK) {
SCWrite(pCon, "ERROR: failed to convert argument to number",
eError);
return 0;
}
self->outOfPlaneAllowed = newSS;
invokeUpdate(self,pCon,"main");
SCWrite(pCon,"WARNING: You have to recalculate the UB matrix after swapping outofplane mode",
eWarning);
SCSendOK(pCon);
return 1;
} else {
snprintf(pBueffel, 131, "%s.outofplane = %d", argv[0],
self->outOfPlaneAllowed);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
} else if (strcmp(argv[1], "a3offset") == 0) {
if (argc > 2) {
strtolower(argv[2]);
if (!SCMatchRights(pCon, usMugger)) {
return 0;
}
status = Tcl_GetDouble(InterpGetTcl(pSics), argv[2], &a3offset);
if (status != TCL_OK) {
SCWrite(pCon, "ERROR: failed to convert argument to number",
eError);
return 0;
}
self->machine.a3offset = a3offset;
invokeUpdate(self,pCon,"main");
SCSendOK(pCon);
return 1;
} else {
snprintf(pBueffel, 131, "%s.a3offset = %lf", argv[0],
self->machine.a3offset);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
} else if (strcmp(argv[1], "silent") == 0) {
if (argc > 2) {
strtolower(argv[2]);
if (!SCMatchRights(pCon, usUser)) {
return 0;
}
status = Tcl_GetInt(InterpGetTcl(pSics), argv[2], &newSS);
if (status != TCL_OK) {
SCWrite(pCon, "ERROR: failed to convert argument to number",
eError);
return 0;
}
self->silent = newSS;
SCSendOK(pCon);
return 1;
} else {
snprintf(pBueffel, 131, "%s.silent = %d", argv[0], self->silent);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
} else if (strcmp(argv[1], "updater") == 0) {
if (argc > 2) {
if (!SCMatchRights(pCon, usMugger)) {
return 0;
}
self->updater = strdup(argv[2]);
SCSendOK(pCon);
return 1;
} else {
snprintf(pBueffel, 131, "%s.updater = %s", argv[0], self->updater);
SCWrite(pCon, pBueffel, eValue);
return 1;
}
} else {
snprintf(pBueffel, 131, "ERROR: subcommand %s to %s not defined",
argv[1], argv[0]);
SCWrite(pCon, pBueffel, eError);
return 0;
}
return 1;
}