Files
sics/singlenb.c
koennecke 9eca96b064 - Fixes to make SL6 work
- New NeXus libraries
- Added new raw binary transfer mode for mass data
- Added a check script option to configurable virtual motor


SKIPPED:
	psi/dumprot.c
	psi/make_gen
	psi/psi.c
	psi/rebin.c
	psi/sanslirebin.c
2012-03-29 08:41:05 +00:00

343 lines
8.5 KiB
C

/**
* This is an implementation of the polymorphic single crystal calculation
* system defined in singlediff.h for a diffractometer in normal beam geometry.
* This means the detector tilts out of the instrument plane upwards or
* downwards.
*
* copyright: see file COPYRIGHT
*
* Mark Koennecke, August 2008
*/
#include <stdlib.h>
#include <assert.h>
#include <sics.h>
#include "singlediff.h"
#include "fourlib.h"
#include "ubfour.h"
#include "motor.h"
#include "singlex.h"
#include "motorlist.h"
#include "lld.h"
/*-----------------------------------------------------------------------*/
static int checkTheta(pSingleDiff self, double *stt)
{
char pError[132];
int iTest;
float fHard;
pMotor pTheta;
pTheta = SXGetMotor(TwoTheta);
if (pTheta == NULL) {
return 0;
}
iTest = MotorCheckBoundary(pTheta, (float) *stt, &fHard, pError, 131);
if (!iTest) {
return -1;
}
return iTest;
}
/*-----------------------------------------------------------------------*/
int checkNormalBeam(double om, double *gamma, double nu,
double fSet[4], pSingleDiff self)
{
int iTest;
char pError[132];
float fHard;
pMotor pMot;
fSet[0] = (float) *gamma;
fSet[1] = (float) om;
fSet[2] = (float) nu;
/* check omega, gamma and nu */
pMot = SXGetMotor(Omega);
if (pMot == NULL) {
return 0;
}
iTest = MotorCheckBoundary(pMot, (float) om, &fHard, pError, 131);
iTest += checkTheta(self, gamma);
pMot = SXGetMotor(Nu);
if (pMot == NULL) {
return 0;
}
iTest += MotorCheckBoundary(pMot, (float) nu, &fHard, pError, 131);
if (iTest == 3) {
return 1;
}
return 0;
}
/*-------------------------------------------------------------------*/
static int calculateNBSettings(pSingleDiff self,
double *hkl, double *settings)
{
MATRIX z1;
double gamma, om, nu;
int status;
z1 = calculateScatteringVector(self, hkl);
status = z1mToNormalBeam(self->lambda, z1, &gamma, &om, &nu);
mat_free(z1);
if (status != 1) {
return 0;
}
if(om > 180.){
om -= 360;
} else if (om < -180.){
om += 360.;
}
if (checkNormalBeam(om, &gamma, nu, settings, self)) {
return 1;
} else {
return 0;
}
return 0;
}
/*-------------------------------------------------------------------*/
static int settingsToNBList(struct __SingleDiff *self, double *settings)
{
setNewMotorTarget(self->motList, (char *) SXGetMotorName(TwoTheta),
(float) settings[0]);
setNewMotorTarget(self->motList, (char *) SXGetMotorName(Omega),
(float) settings[1]);
setNewMotorTarget(self->motList, (char *) SXGetMotorName(Nu),
(float) settings[2]);
return 1;
}
/*--------------------------------------------------------------------*/
static int hklFromNBAngles(struct __SingleDiff *self, double *hkl)
{
pIDrivable pDriv;
MATRIX UBinv, z1m, rez;
double z1[3], stt, om, nu;
int i;
pDriv = makeMotListInterface();
pDriv->GetValue(&self->motList, pServ->dummyCon);
UBinv = mat_inv(self->UB);
if (UBinv == NULL) {
return 0;
}
stt = getListMotorPosition(self->motList,
(char *) SXGetMotorName(TwoTheta));
om = getListMotorPosition(self->motList, (char *) SXGetMotorName(Omega));
nu = getListMotorPosition(self->motList, (char *) SXGetMotorName(Nu));
z1FromNormalBeam(self->lambda, om, stt, nu, z1);
z1m = vectorToMatrix(z1);
rez = mat_mul(UBinv, z1m);
for (i = 0; i < 3; i++) {
hkl[i] = rez[i][0];
}
mat_free(UBinv);
mat_free(z1m);
mat_free(rez);
return 1;
}
/*--------------------------------------------------------------------*/
static int hklFromNBAnglesGiven(struct __SingleDiff *self,
double *settings, double *hkl)
{
pIDrivable pDriv;
MATRIX UBinv, z1m, rez;
double z1[3], stt, om, nu;
int i;
UBinv = mat_inv(self->UB);
if (UBinv == NULL) {
return 0;
}
stt = settings[0];
om = settings[1];
nu = settings[2];
z1FromNormalBeam(self->lambda, om, stt, nu, z1);
z1m = vectorToMatrix(z1);
rez = mat_mul(UBinv, z1m);
for (i = 0; i < 3; i++) {
hkl[i] = rez[i][0];
}
mat_free(UBinv);
mat_free(z1m);
mat_free(rez);
return 1;
}
/*-----------------------------------------------------------------------------
* For UB matrix calculations I use a trick. I do now know how to do
* that properly for normal beam geometry. But I know that the UB for
* bisecting and normal beam is the same. Thus I calculate the scattering
* vector z1 from the normal beam angles, then proceed to calculate
* bisecting angles from the scattering vector and use the bisecting
* geometry UB matrix calculation routines.
* -------------------------------------------------------------------------*/
static int getNBReflection(pSingleDiff self, char *id, reflection * r)
{
pSICSOBJ refList;
double hkl[3], angles[4], z1[3];
double omnb, gamma, nu, stt, om, chi, phi;
refList = SXGetReflectionList();
if (!GetRefIndexID(refList, id, hkl)) {
return 0;
} else {
r->h = hkl[0];
r->k = hkl[1];
r->l = hkl[2];
GetRefAnglesID(refList, id, angles);
gamma = angles[0];
omnb = angles[1];
nu = angles[2];
z1FromNormalBeam(self->lambda, omnb, gamma, nu, z1);
if (!z1ToBisecting(self->lambda, z1, &stt, &om, &chi, &phi)) {
return 0;
}
r->s2t = stt;
r->om = om;
r->chi = chi;
r->phi = phi;
}
return 1;
}
/*---------------------------------------------------------------------*/
static int getNBNBReflection(pSingleDiff self, char *id, reflection * r)
{
pSICSOBJ refList;
double hkl[3], angles[4], z1[3];
double omnb, gamma, nu, stt, om, chi, phi;
refList = SXGetReflectionList();
if (!GetRefIndexID(refList, id, hkl)) {
return 0;
} else {
r->h = hkl[0];
r->k = hkl[1];
r->l = hkl[2];
GetRefAnglesID(refList, id, angles);
gamma = angles[0];
omnb = angles[1];
nu = angles[2];
r->gamma = gamma;
r->omnb = omnb;
r->nu = nu;
}
return 1;
}
/*-------------------------------------------------------------------*/
MATRIX calcNBUBFromTwo(pSingleDiff self,
char *refid1, char *refid2, int *err)
{
MATRIX newUB;
reflection r1, r2;
lattice direct;
direct.a = self->cell[0];
direct.b = self->cell[1];
direct.c = self->cell[2];
direct.alpha = self->cell[3];
direct.beta = self->cell[4];
direct.gamma = self->cell[5];
if (!getNBNBReflection(self, refid1, &r1)) {
*err = REFERR;
return NULL;
}
if (!getNBNBReflection(self, refid2, &r2)) {
*err = REFERR;
return NULL;
}
newUB = calcNBUBFromCellAndReflections(direct, r1, r2, err);
return newUB;
}
/*-------------------------------------------------------------------*/
MATRIX calcNBFromThree(pSingleDiff self,
char *refid1, char *refid2, char *refid3, int *err)
{
MATRIX newUB;
reflection r1, r2, r3;
if (!getNBNBReflection(self, refid1, &r1)) {
*err = REFERR;
return NULL;
}
if (!getNBNBReflection(self, refid2, &r2)) {
*err = REFERR;
return NULL;
}
if (!getNBNBReflection(self, refid3, &r3)) {
*err = REFERR;
return NULL;
}
newUB = calcNBUBFromThreeReflections(r1, r2, r3, self->lambda, err);
return newUB;
}
/*--------------------------------------------------------------------*/
static int calcNBZ1(pSingleDiff self, char *refid, double z1[3])
{
reflection r1;
pSICSOBJ refList;
double angles[4];
double omnb, gamma, nu;
refList = SXGetReflectionList();
if (!GetRefAnglesID(refList, refid, angles)) {
return 0;
} else {
gamma = angles[0];
omnb = angles[1];
nu = angles[2];
z1FromNormalBeam(self->lambda, omnb, gamma, nu, z1);
return 1;
}
/*
if (!getNBReflection(self, refid, &r1)) {
return 0;
}
z1FromAngles(self->lambda, r1.s2t, r1.om, r1.chi, r1.chi, z1);
return 1;
*/
}
/*--------------------------------------------------------------------*/
void initializeNormalBeam(pSingleDiff diff)
{
if (diff->motList != 0) {
LLDdelete(diff->motList);
}
diff->motList = LLDcreate(sizeof(MotControl));
addMotorToList(diff->motList, (char *) SXGetMotorName(TwoTheta), .0);
addMotorToList(diff->motList, (char *) SXGetMotorName(Omega), .0);
addMotorToList(diff->motList, (char *) SXGetMotorName(Nu), .0);
diff->calculateSettings = calculateNBSettings;
diff->settingsToList = settingsToNBList;
diff->hklFromAngles = hklFromNBAngles;
diff->hklFromAnglesGiven = hklFromNBAnglesGiven;
diff->calcUBFromTwo = calcNBUBFromTwo;
diff->calcUBFromThree = calcNBFromThree;
diff->calcZ1 = calcNBZ1;
}