Files
sics/asyncqueue.c
Koennecke Mark 18816067db Added hex logging back again.
Added it back in in AsyncQueue
2016-03-14 09:43:27 +01:00

1477 lines
40 KiB
C

/*
* A S Y N C Q U E U E
*
* This module manages AsyncQueue communications.
*
* The AsyncQueue is an asynchronous queue between drivers and the device. It
* supports multiple logical units on a single device controller that share a
* single command channel.
*
* Douglas Clowes, February 2007
*
*/
#include <sys/time.h>
#include <arpa/inet.h>
#include <netinet/tcp.h>
#include <netdb.h>
#include <ctype.h>
#include <stdarg.h>
#include <sics.h>
#include "network.h"
#include "asyncqueue.h"
#include "nwatch.h"
#include <stdbool.h>
#include <hexString.h>
typedef struct __async_command AQ_Cmd, *pAQ_Cmd;
struct __async_command {
pAQ_Cmd next;
pAsyncTxn tran;
pAsyncUnit unit;
int timeout;
int retries;
int active;
};
struct __AsyncUnit {
pAsyncUnit next;
pAsyncQueue queue;
AQU_Notify notify_func;
void *notify_cntx;
};
typedef enum { eAsyncIdle, eAsyncWaiting, eAsyncConnecting,
eAsyncConnected } AsyncState;
struct __AsyncQueue {
pObjectDescriptor pDes;
char *queue_name;
char *pHost;
int iPort;
int iDelay; /* intercommand delay in milliseconds */
int timeout;
int retries;
int retryTimer; /* mSec delay before next retry */
bool translate; /* translate binary output with escaped chars */
bool trace;
struct timeval tvLastCmd; /* time of completion of last command */
int unit_count; /* number of units connected */
pAsyncUnit units; /* head of unit chain */
pAQ_Cmd command_head; /* first/next command in queue */
pAQ_Cmd command_tail; /* last command in queue */
pNWContext nw_ctx; /* NetWait context handle */
pNWTimer nw_tmr; /* NetWait timer handle */
mkChannel *pSock; /* socket address */
AsyncState state; /* Queue Connection State */
pAsyncProtocol protocol;
char *noreply_text;
int noreply_len;
void *context; /**< opaque caller queue context */
};
static pAsyncQueue queue_array[FD_SETSIZE];
static int queue_index = 0;
static const char *state_name(AsyncState the_state)
{
switch (the_state) {
case eAsyncIdle:
return "eAsyncIdle";
case eAsyncWaiting:
return "eAsyncWaiting";
case eAsyncConnecting:
return "eAsyncConnecting";
case eAsyncConnected:
return "eAsyncConnected";
}
return "<unknown>";
}
/*
* Free the transaction and buffers
*/
static void free_transaction(pAsyncTxn myTxn)
{
if (myTxn) {
if (--myTxn->ref_counter > 0)
return;
/*
* Allow kill_private to clean it all if it wants
*/
if (myTxn->kill_private)
myTxn->kill_private(myTxn);
if (myTxn->out_buf)
free(myTxn->out_buf);
if (myTxn->inp_buf)
free(myTxn->inp_buf);
if (myTxn->proto_private)
free(myTxn->proto_private);
free(myTxn);
}
}
/*
* Free the command and transaction structures and their contents
*/
static void free_command(pAQ_Cmd myCmd)
{
if (myCmd) {
free_transaction(myCmd->tran);
free(myCmd);
}
}
/* ---------------------------- Local ------------------------------------
CreateSocketAdress stolen from Tcl. Thanks to John Ousterhout
*/
static int CreateSocketAdress(struct sockaddr_in *sockaddrPtr, /* Socket address */
char *host, /* Host. NULL implies INADDR_ANY */
int port)
{ /* Port number */
struct hostent *hostent; /* Host database entry */
struct in_addr addr; /* For 64/32 bit madness */
(void) memset((char *) sockaddrPtr, '\0', sizeof(struct sockaddr_in));
sockaddrPtr->sin_family = AF_INET;
sockaddrPtr->sin_port = htons((unsigned short) (port & 0xFFFF));
if (host == NULL) {
addr.s_addr = INADDR_ANY;
} else {
hostent = gethostbyname(host);
if (hostent != NULL) {
memcpy((char *) &addr,
(char *) hostent->h_addr_list[0], (size_t) hostent->h_length);
} else {
addr.s_addr = inet_addr(host);
if (addr.s_addr == (unsigned int) -1) {
return 0; /* error */
}
}
}
/*
* There is a rumor that this assignment may require care on
* some 64 bit machines.
*/
sockaddrPtr->sin_addr.s_addr = addr.s_addr;
return 1;
}
static int AQ_ClearTimer(pAsyncQueue self) {
if (self->nw_tmr) {
NetWatchRemoveTimer(self->nw_tmr);
self->nw_tmr = 0;
return 1;
}
return 0;
}
static int AQ_SetTimer(pAsyncQueue self, int msecs, pNWCallback callback, void *context) {
int ret = 1;
if (self->nw_tmr) {
ret = AQ_ClearTimer(self);
}
NetWatchRegisterTimer(&self->nw_tmr, msecs, callback, context);
return ret;
}
static void AQ_Purge(pAsyncQueue self)
{
pAQ_Cmd myCmd = self->command_head;
if (self->nw_tmr)
AQ_ClearTimer(self);
gettimeofday(&self->tvLastCmd, NULL);
while (myCmd) {
/* Process any callback */
if (myCmd->tran->handleResponse) {
myCmd->tran->txn_status = ATX_TIMEOUT; /* TODO should be ATX_DISCO */
myCmd->tran->handleResponse(myCmd->tran);
}
/*
* Remove this transaction from the queue
*/
if (myCmd->next) {
self->command_head = myCmd->next;
} else
self->command_head = self->command_tail = NULL;
free_command(myCmd);
myCmd = self->command_head;
}
}
static void AQ_Notify(pAsyncQueue self, int event)
{
pAsyncUnit unit;
if (self->state != eAsyncConnected)
Log(DEBUG,"asquio", "Function:%s:%s", self->queue_name,
__func__);
for (unit = self->units; unit; unit = unit->next)
if (unit->notify_func != NULL)
unit->notify_func(unit->notify_cntx, event);
}
static int TimedReconnect(void *cntx, int mode)
{
int iRet;
char line[132];
pAsyncQueue self = (pAsyncQueue) cntx;
self->nw_tmr = 0;
if (self->state != eAsyncConnected)
Log(DEBUG,"asquio", "Function: %s:%s\n", self->queue_name,
__func__);
AQ_Purge(self);
/* TODO: if self->pSock is NULL we haven't connected yet */
iRet = NETReconnect(self->pSock);
/*
* iRet can take the following values:
* -1: The request failed
* 0: The request is still in progress
* +1: The request succeeded
*/
if (iRet <= 0) {
if (iRet < 0) {
snprintf(line, 132, "Failed reconnect on AsyncQueue '%s'",
self->queue_name);
Log(DEBUG,"asquio","%s",line);
/* Timer for retry */
NetWatchSetMode(self->nw_ctx, 0);
/* implement an exponential backoff within limits */
self->retryTimer = 2 * self->retryTimer;
if (self->retryTimer < 125)
self->retryTimer = 125;
if (self->retryTimer > 16000)
self->retryTimer = 16000;
AQ_SetTimer(self, self->retryTimer,
TimedReconnect, self);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncWaiting",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncWaiting;
} else {
NetWatchSetMode(self->nw_ctx, nwatch_write);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncConnecting\n",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncConnecting;
/* await reconnect result in MyCallback */
}
return 1;
}
NetWatchSetMode(self->nw_ctx, nwatch_read);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncConnected\n",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncConnected;
snprintf(line, 132, "Reconnect on AsyncQueue '%s'", self->queue_name);
Log(DEBUG,"asquio","%s",line);
AQ_Purge(self);
AQ_Notify(self, AQU_RECONNECT);
return 1;
}
static int AQ_Reconnect(pAsyncQueue self)
{
int iRet;
char line[132];
if (self->state != eAsyncConnected)
Log(DEBUG,"asquio", "Function: %s:%s\n", self->queue_name,
__func__);
/*
* Remove any old timer
*/
if (self->nw_tmr)
AQ_ClearTimer(self);
if (self->state == eAsyncConnected) {
self->state = eAsyncIdle;
Log(DEBUG,"asquio", "Disconnect on AsyncQueue '%s'", self->queue_name);
AQ_Notify(self, AQU_DISCONNECT);
AQ_Purge(self);
}
iRet = NETReconnect(self->pSock);
/*
* iRet can take the following values:
* -1: The request failed
* 0: The request is still in progress
* +1: The request succeeded
*/
if (iRet <= 0) {
if (iRet < 0) {
/* Timer for retry */
NetWatchSetMode(self->nw_ctx, 0);
/* implement an exponential backoff within limits */
self->retryTimer = 125; /* initial delay */
AQ_SetTimer(self, self->retryTimer,
TimedReconnect, self);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncWaiting\n",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncWaiting;
} else {
NetWatchSetMode(self->nw_ctx, nwatch_write);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncConnecting\n",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncConnecting;
/* await reconnect result in MyCallback */
}
return iRet;
}
NetWatchSetMode(self->nw_ctx, nwatch_read);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncConnected\n",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncConnected;
snprintf(line, 132, "Reconnect on AsyncQueue '%s'", self->queue_name);
Log(DEBUG,"asquio",line);
AQ_Purge(self);
AQ_Notify(self, AQU_RECONNECT);
return 1;
}
static int CommandTimeout(void *cntx, int mode);
static int DelayedStart(void *cntx, int mode);
static int PopCommand(pAsyncQueue self);
static int StartCommand(pAsyncQueue self)
{
pAQ_Cmd myCmd = self->command_head;
mkChannel *sock = self->pSock;
int iRet = 0;
if (self->state != eAsyncConnected)
Log(DEBUG,"asquio", "Function: %s:%s\n", self->queue_name,
__func__);
if (myCmd == NULL)
return OKOK;
/*
* Remove any old command timeout timer
*/
if (self->nw_tmr)
AQ_ClearTimer(self);
/*
* Implement the inter-command delay
*/
if (self->iDelay) {
struct timeval now, when;
gettimeofday(&now, NULL);
if (self->tvLastCmd.tv_sec == 0)
self->tvLastCmd = now;
when.tv_sec = self->tvLastCmd.tv_sec;
when.tv_usec = self->tvLastCmd.tv_usec + 1000 * self->iDelay;
if (when.tv_usec >= 1000000) {
when.tv_sec += when.tv_usec / 1000000;
when.tv_usec %= 1000000;
}
if (when.tv_sec > now.tv_sec ||
(when.tv_sec == now.tv_sec && when.tv_usec > now.tv_usec)) {
int delay = when.tv_sec - now.tv_sec;
delay *= 1000;
delay += (when.tv_usec - now.tv_usec + (1000 - 1)) / 1000;
AQ_SetTimer(self, delay, DelayedStart, self);
return OKOK;
}
}
/*
* Discard any input before sending command
*/
if (NETAvailable(sock, 0)) {
while (NETAvailable(sock, 0)) {
/* TODO: handle unsolicited input */
char reply[128];
iRet = NETRead(sock, reply, 128, 0);
if (iRet < 0) { /* EOF */
iRet = AQ_Reconnect(self);
return 0;
} else if (iRet > 0) {
struct timeval tv;
gettimeofday(&tv, NULL);
Log(ERROR, "asquio","%d unsolicited chars in AsyncQueue %s",iRet, self->queue_name);
LogHex(&tv,ERROR,SASQIO,reply,iRet);
}
}
}
myCmd->tran->txn_status = ATX_ACTIVE;
if (self->protocol->sendCommand) {
iRet = self->protocol->sendCommand(self->protocol, myCmd->tran);
} else {
pAsyncTxn txn = myCmd->tran;
iRet = AsyncUnitWrite(txn->unit, txn->out_buf, txn->out_len);
if (iRet < 0)
iRet = 0;
else
iRet = 1;
}
/*
* Handle case of no response expected
*/
if (myCmd->tran->inp_len == 0 || myCmd->tran->inp_buf == NULL) {
myCmd->tran->txn_status = ATX_COMPLETE;
return PopCommand(self);
}
if (iRet > 0)
if (myCmd->tran->txn_status == ATX_COMPLETE)
return PopCommand(self);
/*
* Add a new command timeout timer
*/
if (myCmd->timeout > 0)
AQ_SetTimer(self, myCmd->timeout,
CommandTimeout, self);
else
AQ_SetTimer(self, 30000, CommandTimeout, self);
myCmd->active = 1;
return iRet;
}
static int QueCommandHead(pAsyncQueue self, pAQ_Cmd cmd)
{
cmd->next = NULL;
/*
* If the command queue is empty, start transmission
*/
if (self->command_head == NULL) {
self->command_head = self->command_tail = cmd;
StartCommand(self);
return 1;
}
if (self->command_head->active) {
cmd->next = self->command_head->next;
self->command_head->next = cmd;
} else {
cmd->next = self->command_head;
self->command_head = cmd;
}
if (cmd->next == NULL)
self->command_tail = cmd;
return 1;
}
static int QueCommand(pAsyncQueue self, pAQ_Cmd cmd)
{
cmd->next = NULL;
/*
* If the command queue is empty, start transmission
*/
if (self->command_head == NULL) {
self->command_head = self->command_tail = cmd;
StartCommand(self);
return 1;
}
self->command_tail->next = cmd;
self->command_tail = cmd;
return 1;
}
static int PopCommand(pAsyncQueue self)
{
pAQ_Cmd myCmd = self->command_head;
if (self->nw_tmr)
AQ_ClearTimer(self);
gettimeofday(&self->tvLastCmd, NULL);
/* Process any callback */
if (myCmd->tran->handleResponse)
myCmd->tran->handleResponse(myCmd->tran);
/*
* If this is not the last in queue, start transmission
*/
if (myCmd->next) {
pAQ_Cmd pNew = myCmd->next;
self->command_head = pNew;
StartCommand(self);
} else
self->command_head = self->command_tail = NULL;
free_command(myCmd);
return 1;
}
static int CommandTimeout(void *cntx, int mode)
{
pAsyncQueue self = (pAsyncQueue) cntx;
pAQ_Cmd myCmd = self->command_head;
self->nw_tmr = 0;
if (self->trace) {
struct timeval tv;
gettimeofday(&tv, NULL);
Log(DEBUG,"asquio", "Timeout Trace on AsyncQueue %s", self->queue_name);
LogHex(&tv,DEBUG,SASQIO,myCmd->tran->inp_buf,myCmd->tran->inp_idx);
}
if (myCmd->retries > 0) {
--myCmd->retries;
StartCommand(self);
} else {
int iRet;
iRet =
self->protocol->handleEvent(self->protocol, myCmd->tran,
AQU_TIMEOUT);
if (iRet == AQU_POP_CMD) {
PopCommand(self); /* remove command */
} else if (iRet == AQU_RETRY_CMD)
StartCommand(self); /* restart command */
else if (iRet == AQU_RECONNECT)
AQ_Reconnect(self);
}
return 1;
}
static int DelayedStart(void *cntx, int mode)
{
pAsyncQueue self = (pAsyncQueue) cntx;
if (self->state != eAsyncConnected)
Log(DEBUG,"asquio", "Function: %s:%s\n", self->queue_name,
__func__);
self->nw_tmr = 0;
StartCommand(self);
return 1;
}
static void LogHexPrefix(struct timeval *tv, unsigned int severity, char *prefix, char *buffer, int bufferLength)
{
char *hexData = NULL;
hexData = bytesToHexString((uint8_t *)buffer,(size_t)bufferLength);
if(hexData != NULL){
LogTS(tv,severity,SASQIO,"%s:%s", prefix,hexData);
free(hexData);
}
}
static int MyCallback(void *context, int mode)
{
pAsyncQueue self = (pAsyncQueue) context;
if (self->state != eAsyncConnected)
Log(DEBUG,"asquio", "Function: %s:%s\n", self->queue_name,
__func__);
if (mode & nwatch_read) {
int iRet;
char reply[100];
iRet = NETRead(self->pSock, reply, 100, 0);
if (iRet < 0) { /* EOF */
iRet = AQ_Reconnect(self);
if (iRet <= 0)
return iRet;
/* restart the command */
StartCommand(self);
return 1;
}
if (iRet == 0) { /* TODO: timeout or error */
return 0;
} else {
int nchars = iRet;
int i = 0;
pAQ_Cmd myCmd = self->command_head;
if (myCmd) {
for (i = 0; i < nchars; ++i) {
iRet =
self->protocol->handleInput(self->protocol, myCmd->tran,
reply[i] & 0xFF);
if (iRet == 0 || iRet == AQU_POP_CMD) { /* end of command */
if (self->trace) {
struct timeval tv;
gettimeofday(&tv, NULL);
Log(INFO, "asquio","Input Trace on AsyncQueue %s", self->queue_name);
LogHex(&tv,INFO,SASQIO,myCmd->tran->inp_buf, myCmd->tran->inp_idx);
}
PopCommand(self);
break;
} else if (iRet < 0) {
int excess = nchars - 1 - i;
struct timeval tv;
gettimeofday(&tv, NULL);
Log(ERROR,"asquio",
"Protocol error %d in AsyncQueue %s",
iRet, self->queue_name);
LogHexPrefix(&tv,ERROR,"Sent", myCmd->tran->out_buf,myCmd->tran->out_len);
LogHexPrefix(&tv,ERROR,"Received", myCmd->tran->inp_buf,myCmd->tran->inp_len);
LogHexPrefix(&tv,ERROR,"Processed", &reply[0],i);
LogHexPrefix(&tv,ERROR,"Unprocessed", &reply[i],excess);
break;
}
}
if (i < nchars - 1) {
int excess = nchars - 1 - i;
struct timeval tv;
gettimeofday(&tv, NULL);
Log(ERROR, "asquio", "%d excess chars in AsyncQueue %s",
excess, self->queue_name);
/* TODO: handle unsolicited */
}
} else {
int excess = nchars - 1 - i;
struct timeval tv;
gettimeofday(&tv, NULL);
Log(ERROR, "asquio", "%d unsolicited chars in AsyncQueue %s",
excess, self->queue_name);
/* TODO: handle unsolicited input */
}
}
}
if (mode & nwatch_write) {
char line[132];
Log(DEBUG,"asquio", "Writeable socket callback on AsyncQueue %s",
self->queue_name);
NetWatchSetMode(self->nw_ctx, nwatch_read);
Log(DEBUG,"asquio", "In %s:%s: state %s => eAsyncConnected\n",
self->queue_name, __func__, state_name(self->state));
self->state = eAsyncConnected;
}
return 1;
}
int AsyncUnitEnqueueHead(pAsyncUnit unit, pAsyncTxn context)
{
pAQ_Cmd myCmd = NULL;
assert(unit && unit->queue && unit->queue->protocol);
myCmd = (pAQ_Cmd) malloc(sizeof(AQ_Cmd));
if (myCmd == NULL) {
Log(ERROR,"asquio","Out of memory in AsyncUnitEnqueHead", eError);
return 0;
}
memset(myCmd, 0, sizeof(AQ_Cmd));
myCmd->tran = context;
myCmd->unit = unit;
myCmd->timeout = unit->queue->timeout;
myCmd->retries = unit->queue->retries;
myCmd->active = 0;
return QueCommandHead(unit->queue, myCmd);
}
int AsyncUnitEnqueueTxn(pAsyncUnit unit, pAsyncTxn pTxn)
{
pAQ_Cmd myCmd = NULL;
assert(unit && unit->queue && unit->queue->protocol);
myCmd = (pAQ_Cmd) malloc(sizeof(AQ_Cmd));
if (myCmd == NULL) {
Log(ERROR,"asquio","%s","Out of memory in AsyncUnitEnqueueTxn");
return 0;
}
memset(myCmd, 0, sizeof(AQ_Cmd));
myCmd->tran = pTxn;
myCmd->unit = unit;
myCmd->timeout = unit->queue->timeout;
myCmd->retries = unit->queue->retries;
myCmd->active = 0;
return QueCommand(unit->queue, myCmd);
}
pAsyncTxn AsyncUnitPrepareTxn(pAsyncUnit unit,
const char *command, int cmd_len,
AsyncTxnHandler callback, void *context,
int rsp_len)
{
pAsyncTxn myTxn = NULL;
assert(unit);
myTxn = (pAsyncTxn) malloc(sizeof(AsyncTxn));
if (myTxn == NULL) {
Log(ERROR,"asquio","%s","Out of memory in AsyncUnitPrepareTxn", eError);
return NULL;
}
memset(myTxn, 0, sizeof(AsyncTxn));
if (unit->queue->noreply_text) {
if (cmd_len > unit->queue->noreply_len
&& strncasecmp(&command[cmd_len - unit->queue->noreply_len],
unit->queue->noreply_text, unit->queue->noreply_len) == 0) {
rsp_len = 0;
cmd_len -= unit->queue->noreply_len;
}
} else {
if (cmd_len > 3 && strncmp(&command[cmd_len - 3], "{0}", 3) == 0) {
rsp_len = 0;
cmd_len -= 3;
}
else if (cmd_len > 11 && strncasecmp(&command[cmd_len - 11], "@@NOREPLY@@", 11) == 0) {
rsp_len = 0;
cmd_len -= 11;
}
}
if (unit->queue->protocol->prepareTxn) {
int iRet;
myTxn->inp_len = rsp_len; /* allowing protocol to change it */
iRet =
unit->queue->protocol->prepareTxn(unit->queue->protocol, myTxn,
command, cmd_len, rsp_len);
if (iRet == 0) {
free(myTxn);
return NULL;
}
rsp_len = myTxn->inp_len; /* allowed protocol to change it */
} else {
myTxn->out_buf = (char *) malloc(cmd_len + 5);
if (myTxn->out_buf == NULL) {
Log(ERROR,"asquio","%s","Out of memory in AsyncUnitPrepareTxn");
free(myTxn);
return NULL;
}
memcpy(myTxn->out_buf, command, cmd_len);
myTxn->out_len = cmd_len;
if (myTxn->out_len < 2 ||
myTxn->out_buf[myTxn->out_len - 1] != 0x0A ||
myTxn->out_buf[myTxn->out_len - 2] != 0x0D) {
myTxn->out_buf[myTxn->out_len++] = 0x0D;
myTxn->out_buf[myTxn->out_len++] = 0x0A;
}
myTxn->out_buf[myTxn->out_len] = '\0';
}
if (rsp_len == 0)
myTxn->inp_buf = NULL;
else {
myTxn->inp_buf = malloc(rsp_len + 1);
if (myTxn->inp_buf == NULL) {
Log(ERROR,"asquio","%s","Out of memory in AsyncUnitPrepareTxn", eError);
free(myTxn->out_buf);
free(myTxn);
return NULL;
}
memset(myTxn->inp_buf, 0, rsp_len + 1);
}
myTxn->inp_len = rsp_len;
myTxn->unit = unit;
myTxn->handleResponse = callback;
myTxn->cntx = context;
myTxn->ref_counter = 1;
return myTxn;
}
pAsyncTxn AsyncUnitHoldTxn(pAsyncTxn txn)
{
if (txn)
txn->ref_counter++;
return txn;
}
void AsyncUnitFreeTxn(pAsyncTxn txn)
{
if (txn)
free_transaction(txn);
}
int AsyncUnitSendTxn(pAsyncUnit unit,
const char *command, int cmd_len,
AsyncTxnHandler callback, void *context, int rsp_len)
{
pAsyncTxn myTxn = NULL;
myTxn = AsyncUnitPrepareTxn(unit, command, cmd_len,
callback, context, rsp_len);
if (myTxn == NULL)
return -1;
return AsyncUnitEnqueueTxn(unit, myTxn);
}
typedef struct txn_s {
char *transReply;
int transWait;
int respLen;
} TXN, *pTXN;
/**
* \brief TransCallback is the callback for the general command transaction.
*/
static int TransCallback(pAsyncTxn pCmd)
{
char *resp = pCmd->inp_buf;
int resp_len = pCmd->inp_idx;
pTXN self = (pTXN) pCmd->cntx;
self->respLen = resp_len;
if (resp_len > 0) {
memcpy(self->transReply, resp, resp_len);
self->transReply[resp_len] = '\0';
} else
self->transReply[0] = '\0';
if (pCmd->txn_status == ATX_TIMEOUT)
self->transWait = -1;
else
self->transWait = 0;
return 0;
}
int AsyncUnitTransact(pAsyncUnit unit,
const char *command, int cmd_len,
char *response, int *rsp_len)
{
TXN txn;
assert(unit);
txn.transReply = response;
txn.respLen = *rsp_len;
txn.transWait = 1;
AsyncUnitSendTxn(unit, command, cmd_len, TransCallback, &txn, *rsp_len);
while (txn.transWait == 1)
TaskYield(pServ->pTasker);
*rsp_len = txn.respLen;
if (txn.transWait < 0)
return txn.transWait;
return 1;
}
int AsyncUnitWrite(pAsyncUnit unit, void *buffer, int buflen)
{
int iRet;
mkChannel *sock;
assert(unit);
assert(unit->queue);
if (buflen > 0) {
if (unit->queue->trace) {
struct timeval tv;
gettimeofday(&tv, NULL);
LogHexPrefix(&tv,DEBUG,"Output Trace on AsyncQueue", buffer, buflen);
}
sock = AsyncUnitGetSocket(unit);
iRet = NETWrite(sock, buffer, buflen);
/* TODO handle errors */
if (iRet < 0) { /* EOF */
iRet = AQ_Reconnect(unit->queue);
if (iRet == 0)
return 0;
}
}
return 1;
}
void AsyncUnitSetNotify(pAsyncUnit unit, void *context, AQU_Notify notify)
{
assert(unit);
unit->notify_func = notify;
unit->notify_cntx = context;
}
int AsyncUnitGetDelay(pAsyncUnit unit)
{
assert(unit);
return unit->queue->iDelay;
}
void AsyncUnitSetDelay(pAsyncUnit unit, int iDelay)
{
assert(unit);
unit->queue->iDelay = iDelay;
}
int AsyncUnitGetTimeout(pAsyncUnit unit)
{
assert(unit);
return unit->queue->timeout;
}
void AsyncUnitSetTimeout(pAsyncUnit unit, int timeout)
{
assert(unit);
unit->queue->timeout = timeout;
}
int AsyncUnitGetRetries(pAsyncUnit unit)
{
assert(unit);
return unit->queue->retries;
}
void AsyncUnitSetRetries(pAsyncUnit unit, int retries)
{
assert(unit);
unit->queue->retries = retries;
}
pAsyncProtocol AsyncUnitGetProtocol(pAsyncUnit unit)
{
return unit->queue->protocol;
}
void AsyncUnitSetProtocol(pAsyncUnit unit, pAsyncProtocol protocol)
{
unit->queue->protocol = protocol;
}
mkChannel *AsyncUnitGetSocket(pAsyncUnit unit)
{
assert(unit);
assert(unit->queue);
return unit->queue->pSock;
}
int AsyncUnitReconnect(pAsyncUnit unit)
{
int iRet;
assert(unit);
assert(unit->queue);
iRet = AQ_Reconnect(unit->queue);
/* TODO: handle in-progress */
return iRet;
}
int AsyncQueueAction(SConnection * pCon, SicsInterp * pSics,
void *pData, int argc, char *argv[])
{
char line[132];
pAsyncQueue self = (pAsyncQueue) pData;
if (argc > 1) {
if (strcasecmp("send", argv[1]) == 0 || strcasecmp("transact", argv[1]) == 0) {
AsyncUnit myUnit;
char cmd[10240];
char rsp[10240];
int idx = 0;
int i, j, len;
cmd[0] = '\0';
/* Managers only */
if (!SCMatchRights(pCon, usMugger))
return 0;
for (i = 2; i < argc; ++i) {
if (idx >= 10240)
break;
if (i > 2)
cmd[idx++] = ' ';
len = strlen(argv[i]);
for (j = 0; j < len; ++j) {
if (idx >= 10240)
break;
if (argv[i][j] == '\\') {
++j;
if (argv[i][j] == '\\')
cmd[idx++] = '\\';
else if (argv[i][j] == 'r')
cmd[idx++] = '\r';
else if (argv[i][j] == 'n')
cmd[idx++] = '\n';
else if (isdigit(argv[i][j])) {
char *nptr = &argv[i][j];
char *endptr;
long k = strtol(nptr, &endptr, 0);
cmd[idx++] = k;
j += (endptr - nptr);
--j; /* prepare for loop increment */
} else
cmd[idx++] = argv[i][j];
} else
cmd[idx++] = argv[i][j];
}
}
cmd[idx] = '\0';
memset(&myUnit, 0, sizeof(AsyncUnit));
myUnit.queue = self;
len = 10240;
(void) AsyncUnitTransact(&myUnit, cmd, idx, rsp, &len);
/* escape control characters in response */
j = 0;
for (i = 0; i < len; ++i) {
if (j >= 10230)
break;
if (self->translate) {
if (rsp[i] < 32 || rsp[i] >= 127) {
if (rsp[i] == '\r') {
cmd[j++] = '\r';
} else if (rsp[i] == '\n') {
cmd[j++] = '\n';
} else {
j += snprintf(&cmd[j], 6, "\\0x%02x", rsp[i]);
}
} else if (rsp[i] == '\\') {
cmd[j++] = '\\';
cmd[j++] = '\\';
} else
cmd[j++] = rsp[i];
} else
cmd[j++] = rsp[i];
}
cmd[j++] = '\0';
SCWrite(pCon, cmd, eValue);
return 1;
}
if (strcasecmp(argv[1], "reconnect") == 0) {
AQ_Reconnect(self);
return OKOK;
}
if (strcasecmp(argv[1], "delay") == 0) {
if (argc > 2) {
int delay;
int iRet;
iRet = sscanf(argv[2], "%d", &delay);
if (iRet != 1) {
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
} else {
if (delay < 0 || delay > 300000) {
snprintf(line, 132, "Value out of range: %d", delay);
SCWrite(pCon, line, eError);
return 0;
}
self->iDelay = delay;
return OKOK;
}
} else {
snprintf(line, 132, "%s.delay = %d", argv[0], self->iDelay);
SCWrite(pCon, line, eValue);
return OKOK;
}
return OKOK;
}
if (strcasecmp(argv[1], "timeout") == 0) {
if (argc > 2) {
int timeout;
int iRet;
iRet = sscanf(argv[2], "%d", &timeout);
if (iRet != 1) {
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
} else {
if (timeout < 0 || timeout > 30000) {
snprintf(line, 132, "Value out of range: %d", timeout);
SCWrite(pCon, line, eError);
return 0;
}
self->timeout = timeout;
return OKOK;
}
} else {
snprintf(line, 132, "%s.timeout = %d", argv[0], self->timeout);
SCWrite(pCon, line, eValue);
return OKOK;
}
return OKOK;
}
if (strcasecmp(argv[1], "retries") == 0) {
if (argc > 2) {
int retries;
int iRet;
iRet = sscanf(argv[2], "%d", &retries);
if (iRet != 1) {
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
} else {
if (retries < 0 || retries > 30000) {
snprintf(line, 132, "Value out of range: %d", retries);
SCWrite(pCon, line, eError);
return 0;
}
self->retries = retries;
return OKOK;
}
} else {
snprintf(line, 132, "%s.retries = %d", argv[0], self->retries);
SCWrite(pCon, line, eValue);
return OKOK;
}
return OKOK;
}
if (strcasecmp(argv[1], "translate") == 0) {
if (argc > 2) {
int value;
int iRet;
iRet = sscanf(argv[2], "%d", &value);
if (iRet != 1) {
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
} else {
if (value == 0) {
self->translate = false;
return OKOK;
} else if (value == 1) {
self->translate = true;
return OKOK;
}
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
}
} else {
snprintf(line, 132, "%s.translate = %d", argv[0], self->translate);
SCWrite(pCon, line, eStatus);
return OKOK;
}
return OKOK;
}
if (strcasecmp(argv[1], "trace") == 0) {
if (argc > 2) {
int value;
int iRet;
iRet = sscanf(argv[2], "%d", &value);
if (iRet != 1) {
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
} else {
if (value == 0) {
self->trace = false;
return OKOK;
} else if (value == 1) {
self->trace = true;
return OKOK;
}
snprintf(line, 132, "Invalid argument: %s", argv[2]);
SCWrite(pCon, line, eError);
return 0;
}
} else {
snprintf(line, 132, "%s.trace = %d", argv[0], self->trace);
SCWrite(pCon, line, eStatus);
return OKOK;
}
return OKOK;
}
if (strcasecmp(argv[1], "noreply") == 0) {
if (argc > 2) {
if (self->noreply_text)
free(self->noreply_text);
self->noreply_text = strdup(argv[2]);
self->noreply_len = strlen(argv[2]);
} else {
SCPrintf(pCon, eValue, "%s.noreply = %s", argv[0], self->noreply_text);
}
return OKOK;
}
if (strcasecmp(argv[1], "list") == 0) {
SCPrintf(pCon, eValue, "%s.delay = %d", argv[0], self->iDelay);
SCPrintf(pCon, eValue, "%s.timeout = %d", argv[0], self->timeout);
SCPrintf(pCon, eValue, "%s.retries = %d", argv[0], self->retries);
SCPrintf(pCon, eValue, "%s.translate = %d", argv[0], self->translate);
SCPrintf(pCon, eValue, "%s.trace = %d", argv[0], self->trace);
if (self->noreply_text)
SCPrintf(pCon, eValue, "%s.noreply = %s", argv[0], self->noreply_text);
if (self->protocol && self->protocol->protocolName)
SCPrintf(pCon, eValue, "%s.protocol = %s", argv[0], self->protocol->protocolName);
return OKOK;
}
}
snprintf(line, 132, "%s does not understand %s", argv[0], argv[1]);
SCWrite(pCon, line, eError);
return 0;
}
static pAsyncQueue AQ_Create(const char *host, const char *port)
{
int i;
pAsyncQueue self = NULL;
mkChannel *channel = NULL;
if (host == NULL)
return NULL;
/* try the AsyncQueue with this name */
self =
(pAsyncQueue) FindCommandData(pServ->pSics, (char *) host,
"AsyncQueue");
/* try host and port */
if (self == NULL && port) {
int port_no = atoi(port);
if (port_no == 0) {
struct servent *sp = NULL;
sp = getservbyname(port, NULL);
if (sp)
port_no = ntohs(sp->s_port);
}
if (port_no > 0) {
struct sockaddr_in sa;
if (CreateSocketAdress(&sa, (char *) host, port_no)) {
/* look for queue with same address */
for (i = 0; i < queue_index; ++i)
if (queue_array[i]->pSock->adresse.sin_port == sa.sin_port
&& queue_array[i]->pSock->adresse.sin_addr.s_addr ==
sa.sin_addr.s_addr) {
self = queue_array[i];
break;
}
}
if (self == NULL) {
channel = NETConnectWithFlags((char *) host, port_no, 0);
/* TODO handle asynchronous connection */
}
}
}
if (self == NULL) {
/* TODO: if channel (self->pSock) is NULL we haven't connected yet, do it later */
if (channel == NULL)
return NULL;
self = (pAsyncQueue) malloc(sizeof(AsyncQueue));
if (self == NULL)
return NULL;
memset(self, 0, sizeof(AsyncQueue));
self->pSock = channel;
self->pDes = CreateDescriptor("AsyncQueue");
queue_array[queue_index++] = self;
}
for (i = 0; i < queue_index; ++i)
if (queue_array[i] == self) {
break;
}
if (i == queue_index)
queue_array[queue_index++] = self;
/* TODO: if self->pSock is NULL we haven't connected yet */
#if 0
if (channel == NULL) {
/* TODO: all the rest */
AQ_SetTimer(self, self->retryTimer, TimedReconnect,
self);
}
#endif
return self;
}
static int AQ_Init(pAsyncQueue self)
{
/* Init the controller */
if (self->nw_ctx == NULL)
NetWatchRegisterCallback(&self->nw_ctx,
self->pSock->sockid, MyCallback, self);
NetWatchSetMode(self->nw_ctx, nwatch_write | nwatch_read);
return 1;
}
static void AQ_Kill(void *pData)
{
int i;
pAsyncQueue self = (pAsyncQueue) pData;
for (i = 0; i < queue_index; ++i)
if (queue_array[i] == self) {
--queue_index;
if (queue_index > 0)
queue_array[i] = queue_array[queue_index];
if (self->nw_ctx)
NetWatchRemoveCallback(self->nw_ctx);
if (self->nw_tmr)
AQ_ClearTimer(self);
if (self->queue_name)
free(self->queue_name);
NETClosePort(self->pSock);
free(self->pSock);
DeleteDescriptor(self->pDes);
free(self);
return;
}
}
/*
* \brief make a AsyncQueue from the command line
*
* MakeAsyncQueue queueName protocolName hostName portname
*/
int AsyncQueueFactory(SConnection * pCon, SicsInterp * pSics,
void *pData, int argc, char *argv[])
{
pAsyncQueue pNew = NULL;
mkChannel *channel = NULL;
pAsyncProtocol pPro = NULL;
int port_no;
int iRet = 0;
if (argc < 5) {
SCWrite(pCon, "ERROR: insufficient arguments to AsyncQueueFactory",
eError);
return 0;
}
/* try to find an existing queue with this name */
pNew =
(pAsyncQueue) FindCommandData(pServ->pSics, argv[1], "AsyncQueue");
if (pNew != NULL) {
char line[132];
snprintf(line, 132, "WARNING: AsyncQueue '%s' already exists",
argv[1]);
SCWrite(pCon, line, eError);
SCSendOK(pCon);
return 1;
}
/* try to find an existing protocol with this name */
pPro =
(pAsyncProtocol) FindCommandData(pServ->pSics, argv[2],
"AsyncProtocol");
if (pPro == NULL) {
char line[132];
snprintf(line, 132, "WARNING: AsyncQueue protocol '%s' not found",
argv[2]);
SCWrite(pCon, line, eError);
return 0;
}
port_no = atoi(argv[4]);
if (port_no == 0) {
struct servent *sp = NULL;
sp = getservbyname(argv[4], NULL);
if (sp)
port_no = ntohs(sp->s_port);
}
if (port_no > 0) {
struct sockaddr_in sa;
if (CreateSocketAdress(&sa, argv[3], port_no)) {
int i;
/* look for queue with same address */
for (i = 0; i < queue_index; ++i)
if (queue_array[i]->pSock->adresse.sin_port == sa.sin_port
&& queue_array[i]->pSock->adresse.sin_addr.s_addr ==
sa.sin_addr.s_addr) {
char line[132];
snprintf(line, 132,
"WARNING: AsyncQueue '%s' has same address as %s",
argv[1], queue_array[i]->queue_name);
SCWrite(pCon, line, eError);
}
}
/* TODO: implement asynchronous connection */
channel = NETConnectWithFlags(argv[3], port_no, 0);
}
if (channel == NULL) {
char line[132];
snprintf(line, 132, "ERROR: AsyncQueue '%s' cannot connect", argv[1]);
SCWrite(pCon, line, eError);
return 0;
}
pNew = (pAsyncQueue) malloc(sizeof(AsyncQueue));
if (pNew == NULL) {
char line[132];
snprintf(line, 132, "ERROR: AsyncQueue '%s' memory failure", argv[1]);
SCWrite(pCon, line, eError);
return 0;
}
memset(pNew, 0, sizeof(AsyncQueue));
pNew->pDes = CreateDescriptor("AsyncQueue");
pNew->queue_name = strdup(argv[1]);
pNew->protocol = pPro;
pNew->pSock = channel;
queue_array[queue_index++] = pNew;
AQ_Init(pNew);
/*
create the command
*/
iRet = AddCommand(pSics, argv[1], AsyncQueueAction, AQ_Kill, pNew);
if (!iRet) {
char line[132];
snprintf(line, 123, "ERROR: add command %s failed", argv[1]);
SCWrite(pCon, line, eError);
AQ_Kill(pNew);
return 0;
}
SCSendOK(pCon);
return 1;
}
/*
* \brief make a AsyncQueue from a named rs232 controller
*
* \param name the name of the SICS "RS232 Controller" object
* \param handle the handle to the AsyncQueue object
* \return 0 for FAILURE, 1 for SUCCESS
*/
int AsyncUnitCreateHost(const char *host, const char *port,
pAsyncUnit * handle)
{
int status;
pAsyncQueue self = NULL;
pAsyncUnit unit = NULL;
*handle = NULL;
self = AQ_Create(host, port);
if (self == NULL)
return 0;
status = AQ_Init(self);
unit = (pAsyncUnit) malloc(sizeof(AsyncUnit));
if (unit == NULL) {
Log(ERROR,"asquio","%s","Out of memory in AsyncUnitCreateHost", eError);
*handle = NULL;
return 0;
}
memset(unit, 0, sizeof(AsyncUnit));
++self->unit_count;
unit->queue = self;
unit->next = self->units;
self->units = unit;
*handle = unit;
return 1;
}
int AsyncUnitCreate(const char *host, pAsyncUnit * handle)
{
return AsyncUnitCreateHost(host, NULL, handle);
}
int AsyncUnitDestroy(pAsyncUnit unit)
{
assert(unit);
assert(unit->queue);
pAsyncQueue self = unit->queue;
pAsyncUnit *pNxt = &self->units;
while (*pNxt) {
if (*pNxt == unit) {
*pNxt = (*pNxt)->next;
break;
}
pNxt = &(*pNxt)->next;
}
--self->unit_count;
if (self->unit_count <= 0) {
AQ_Kill(self);
}
free(unit);
return 1;
}
pAsyncUnit AsyncUnitFromQueue(pAsyncQueue queue)
{
pAsyncUnit result = NULL;
result = malloc(sizeof(AsyncUnit));
if (result == NULL) {
return NULL;
}
memset(result, 0, sizeof(AsyncUnit));
result->queue = queue;
return result;
}
void *AsyncUnitSetQueueContext(pAsyncUnit unit, void *cntx)
{
void *hold;
assert(unit);
assert(unit->queue);
hold = unit->queue->context;
unit->queue->context = cntx;
return hold;
}
void *AsyncUnitGetQueueContext(pAsyncUnit unit)
{
assert(unit);
assert(unit->queue);
return unit->queue->context;
}
int AsyncUnitIsQueueConnected(pAsyncUnit unit)
{
assert(unit);
assert(unit->queue);
if (unit && unit->queue)
if (unit->queue->state == eAsyncConnected)
return 1;
return 0;
}