/* * S A F E T Y P L C * * Douglas Clowes, February 2007 * */ #include #include #include #include "network.h" #include "asyncqueue.h" #include "nwatch.h" #include "safetyplc.h" #include "sicsvar.h" extern int DMC2280MotionControl; #define KEY_ENABLED_BIT (1 << 0) #define KEY_DISABLED_BIT (1 << 1) #define SEC_OPENED_BIT (1 << 2) #define SEC_CLOSED_BIT (1 << 3) #define TER_OPENED_BIT (1 << 4) #define TER_CLOSED_BIT (1 << 5) #define MOTOR_ENABLED_BIT (1 << 6) #define MOTOR_DISABLED_BIT (1 << 7) #define ACCESS_LOCKED_BIT (1 << 8) #define ACCESS_UNLOCKED_BIT (1 << 9) #define DC_POWEROK_BIT (1 << 10) #define EXIT_INPROGRESS_BIT (1 << 11) #define SAFETY_TRIPPED_BIT (1 << 12) #define SAFETY_MALFUNCTION_BIT (1 << 13) #define TER_OPERATE_BIT (1 << 14) #define RELAY_ENABLED_BIT (1 << 15) #define INST_READY_BIT (1 << 16) #define LAMP_TEST_BIT (1 << 17) #define KEY_BOTH_BITS (KEY_ENABLED_BIT | KEY_DISABLED_BIT) #define SEC_BOTH_BITS (SEC_OPENED_BIT | SEC_CLOSED_BIT) #define TER_BOTH_BITS (TER_OPENED_BIT | TER_CLOSED_BIT) #define MOTOR_BOTH_BITS (MOTOR_ENABLED_BIT | MOTOR_DISABLED_BIT) #define ACCESS_BOTH_BITS (ACCESS_LOCKED_BIT | ACCESS_UNLOCKED_BIT) static pAsyncProtocol PLC_Protocol = NULL; int PLC_UserPriv = 0; /* Internal */ typedef enum { Unknown_low, Invalid_high, Enabled, Disabled, Opened, Closed, Locked, Unlocked, True, False,}PLC_STATUS; char *plc_states[] = { "UNKNOWN_LOW", "INVALID_HIGH", "ENABLED", "DISABLED", "OPEN", "CLOSED", "LOCKED", "UNLOCKED", "TRUE", "FALSE"}; typedef enum { Key,Secondary,Tertiary,MotionControl,Access, DC,Exit,Trip,Fault,Operate,Relay,Ready,}PLC_PARAM; char *plc_parname[] = { "plc_key","plc_secondary","plc_tertiary","plc_motioncontrol", "plc_access","plc_dc","plc_exit","plc_trip", "plc_fault","plc_operate","plc_relay","plc_ready"}; typedef struct __SafetyPLCController SafetyPLCController, *pSafetyPLCController; struct __SafetyPLCController { pObjectDescriptor pDes; pAsyncUnit unit; /* associated AsyncUnit object */ int iGetOut; int iValue; int oldValue; pNWTimer nw_tmr; /* periodic timer handle */ pNWTimer oneshot; /* oneshot timer handle */ int timeout; }; static int PLC_GetState(void *pData, char *param, PLC_STATUS *retState); static int PLC_Rx(pAsyncProtocol p, pAsyncTxn myCmd, int rxchar) { int iRet = 1; switch (myCmd->txn_state) { case 0: /* first character */ /* normal data */ myCmd->txn_state = 1; /* note fallthrough */ case 1: /* receiving reply */ if (myCmd->inp_idx < myCmd->inp_len) myCmd->inp_buf[myCmd->inp_idx++] = rxchar; if (rxchar == 0x0D) myCmd->txn_state = 2; break; case 2: /* received CR and looking for LF */ if (myCmd->inp_idx < myCmd->inp_len) myCmd->inp_buf[myCmd->inp_idx++] = rxchar; if (rxchar == 0x0A) { myCmd->txn_state = 99; /* end of line */ } else myCmd->txn_state = 1; break; } if (myCmd->txn_state == 99) { myCmd->inp_buf[myCmd->inp_idx] = '\0'; iRet = 0; myCmd->txn_state = 0; myCmd->txn_status = ATX_COMPLETE; } if (iRet == 0) { /* end of command */ return AQU_POP_CMD; } return iRet; } static int PLC_Ev(pAsyncProtocol p, pAsyncTxn myCmd, int event) { if (event == AQU_TIMEOUT) { /* TODO: handle command timeout */ myCmd->txn_status = ATX_TIMEOUT; return AQU_POP_CMD; } return AQU_POP_CMD; } static void PLC_Notify(void* context, int event) { pSafetyPLCController self = (pSafetyPLCController) context; switch (event) { case AQU_RECONNECT: do { mkChannel* sock = AsyncUnitGetSocket(self->unit); int flag = 1; setsockopt(sock->sockid, /* socket affected */ IPPROTO_TCP, /* set option at TCP level */ TCP_NODELAY, /* name of option */ (char *) &flag, /* the cast is historical cruft */ sizeof(int)); /* length of option value */ return; } while (0); } return; } /* * \brief GetCallback is the callback for the read command. */ static int GetCallback(pAsyncTxn txn) { int iRet; unsigned int iRead; char* resp = txn->inp_buf; int resp_len = txn->inp_idx; PLC_STATUS plcState; pSicsVariable plcVar=NULL; pSafetyPLCController self = (pSafetyPLCController) txn->cntx; if (resp_len < 0) { DMC2280MotionControl = -1; } else { iRet = sscanf(resp,"READ %x", &iRead); if(iRet != 1) { // Not a number, probably an error response self->iValue = 0; } else { if ((iRead & LAMP_TEST_BIT) == 0) self->iValue = iRead; } if ((self->iValue & MOTOR_BOTH_BITS) == 0) /* neither */ DMC2280MotionControl = -1; else if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS) /* both */ DMC2280MotionControl = -1; else if ((self->iValue & MOTOR_ENABLED_BIT)) /* enabled */ DMC2280MotionControl = 1; else /* disabled */ DMC2280MotionControl = 0; } if (self->oldValue != self->iValue) { unsigned int i; for (i=0; i < sizeof(plc_parname)/sizeof(plc_parname[0]); i++) { plcVar = (pSicsVariable)FindCommandData(pServ->pSics,plc_parname[i],"SicsVariable"); PLC_GetState(self,plc_parname[i],&plcState); VarSetText(plcVar,plc_states[plcState],PLC_UserPriv); } } self->oldValue = self->iValue; self->iGetOut = 0; return 0; } static int MyTimerCallback(void* context, int mode) { pSafetyPLCController self = (pSafetyPLCController) context; if (self->iGetOut) { /* TODO error handling */ } self->iGetOut = 1; AsyncUnitSendTxn(self->unit, "READ", 4, GetCallback, self, 132); return 1; } static int MyOneShotCallback(void* context, int mode) { pSafetyPLCController self = (pSafetyPLCController) context; self->oneshot = 0; AsyncUnitSendTxn(self->unit, "WRITE 0", 7, NULL, NULL, 132); return 0; } /* * \brief PutCallback is the callback for the write command. */ static int PutCallback(pAsyncTxn txn) { pSafetyPLCController self = (pSafetyPLCController) txn->cntx; if (self->oneshot) NetWatchRemoveTimer(self->oneshot); NetWatchRegisterTimer(&self->oneshot, 500, MyOneShotCallback, self); return 0; } static int PLC_GetState(void *pData, char *param, PLC_STATUS *retState) { pSafetyPLCController self = (pSafetyPLCController) pData; if (strcasecmp(param, plc_parname[Key]) == 0) { *retState = Unknown_low; if ((self->iValue & KEY_BOTH_BITS) == KEY_BOTH_BITS) *retState = Invalid_high; else if (self->iValue & KEY_ENABLED_BIT) *retState = Enabled; else if (self->iValue & KEY_DISABLED_BIT) *retState = Disabled; return OKOK; } if (strcasecmp(param, plc_parname[Secondary]) == 0) { *retState = Unknown_low; if ((self->iValue & SEC_BOTH_BITS) == SEC_BOTH_BITS) *retState = Invalid_high; if (self->iValue & SEC_OPENED_BIT) *retState = Opened; else if (self->iValue & SEC_CLOSED_BIT) *retState = Closed; return OKOK; } if (strcasecmp(param, plc_parname[Tertiary]) == 0) { *retState = Unknown_low; if ((self->iValue & TER_BOTH_BITS) == TER_BOTH_BITS) *retState = Invalid_high; if (self->iValue & TER_OPENED_BIT) *retState = Opened; else if (self->iValue & TER_CLOSED_BIT) *retState = Closed; return OKOK; } if (strcasecmp(param, plc_parname[MotionControl]) == 0) { *retState = Unknown_low; if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS) *retState = Invalid_high; else if (self->iValue & MOTOR_ENABLED_BIT) *retState = Enabled; else if (self->iValue & MOTOR_DISABLED_BIT) *retState = Disabled; return OKOK; } if (strcasecmp(param, plc_parname[Access]) == 0) { *retState = Unknown_low; if ((self->iValue & ACCESS_BOTH_BITS) == ACCESS_BOTH_BITS) *retState = Invalid_high; else if (self->iValue & ACCESS_LOCKED_BIT) *retState = Locked; else if (self->iValue & ACCESS_UNLOCKED_BIT) *retState = Unlocked; return OKOK; } if (strcasecmp(param, plc_parname[DC]) == 0) { *retState = False; if (self->iValue & DC_POWEROK_BIT) *retState = True; return OKOK; } if (strcasecmp(param, plc_parname[Exit]) == 0) { *retState = False; if (self->iValue & EXIT_INPROGRESS_BIT) *retState = True; return OKOK; } if (strcasecmp(param, plc_parname[Trip]) == 0) { *retState = False; if (self->iValue & SAFETY_TRIPPED_BIT) *retState = True; return OKOK; } if (strcasecmp(param, plc_parname[Fault]) == 0) { *retState = False; if (self->iValue & SAFETY_MALFUNCTION_BIT) *retState = True; return OKOK; } if (strcasecmp(param, plc_parname[Operate]) == 0) { *retState = False; if (self->iValue & TER_OPERATE_BIT) *retState = True; return OKOK; } if (strcasecmp(param, plc_parname[Relay]) == 0) { *retState = False; if (self->iValue & RELAY_ENABLED_BIT) *retState = True; return OKOK; } if (strcasecmp(param, plc_parname[Ready]) == 0) { *retState = False; if (self->iValue & INST_READY_BIT) *retState = True; return OKOK; } return 0; } static int PLC_Print(SConnection *pCon, SicsInterp *pSics, void *pData, char *name, char *param) { char line[132]; PLC_STATUS state; if (PLC_GetState(pData, param, &state) != OKOK) { return 0; } else { snprintf(line, 132, "%s.%s = %s", name, param, plc_states[state]); SCWrite(pCon, line, eValue); return OKOK; } } static int PLC_Action(SConnection *pCon, SicsInterp *pSics, void *pData, int argc, char *argv[]) { char line[132]; pSafetyPLCController self = (pSafetyPLCController) pData; if (argc == 1) { snprintf(line, 132, "%s.iValue = %06X", argv[0], self->iValue & 0xffffff); SCWrite(pCon, line, eValue); return OKOK; } else if (argc == 2) { if (strcasecmp(argv[1], "list") == 0) { PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Key]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Secondary]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Tertiary]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[MotionControl]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Access]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[DC]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Exit]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Trip]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Fault]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Operate]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Relay]); PLC_Print(pCon, pSics, pData, argv[0], plc_parname[Ready]); return OKOK; } if (PLC_Print(pCon, pSics, pData, argv[0], argv[1])) return OKOK; } else if (argc == 3) { if (strcasecmp(argv[1], "hattach") == 0) { } else if (strcasecmp(argv[1], "shutter") == 0) { //if (strcasecmp(argv[2], "open") == 0) { if (strcasecmp(argv[2], "on") == 0) { /* open shutter */ //AsyncUnitSendTxn(self->unit, "set shutter=on", 14, PutCallback, self, 132); AsyncUnitSendTxn(self->unit, "READ", 4, PutCallback, self, 132); return OKOK; } //else if (strcasecmp(argv[2], "close") == 0 || else if (strcasecmp(argv[2], "off") == 0) { // strcasecmp(argv[2], "shut") == 0) { /* close shutter */ AsyncUnitSendTxn(self->unit, "set shutter=off", 15, PutCallback, self, 132); return OKOK; } else if (strcasecmp(argv[2], "auto") == 0) { AsyncUnitSendTxn(self->unit, "set shutter=auto", 16, PutCallback, self, 132); return OKOK; } else { snprintf(line, 132, "%s %s does not understand %s", argv[0], argv[1], argv[2]); SCWrite(pCon, line, eError); return 0; } } else if (strcasecmp(argv[1], "focuslight") == 0) { if (strcasecmp(argv[2], "on") == 0) { AsyncUnitSendTxn(self->unit, "set focuslight=on", 17, PutCallback, self, 132); return OKOK; } else if (strcasecmp(argv[2], "off") == 0) { AsyncUnitSendTxn(self->unit, "set focuslight=off", 18, PutCallback, self, 132); return OKOK; } else { snprintf(line, 132, "%s %s does not understand %s", argv[0], argv[1], argv[2]); SCWrite(pCon, line, eError); return 0; } } } else { snprintf(line, 132, "%s does not understand %s", argv[0], argv[1]); SCWrite(pCon, line, eError); return 0; } } static pSafetyPLCController PLC_Create(const char* pName) { pSafetyPLCController self = NULL; self = (pSafetyPLCController) malloc(sizeof(SafetyPLCController)); if (self == NULL) return NULL; memset(self, 0, sizeof(SafetyPLCController)); if (AsyncUnitCreate(pName, &self->unit) == 0) { free(self); return NULL; } AsyncUnitSetNotify(self->unit, self, PLC_Notify); self->pDes = CreateDescriptor("SafetyPLC"); return self; } static int PLC_Init(pSafetyPLCController self) { /* TODO: Init the controller */ if (self->nw_tmr != NULL) NetWatchRemoveTimer(self->nw_tmr); NetWatchRegisterTimerPeriodic(&self->nw_tmr, 1000, 1000, MyTimerCallback, self); self->timeout=120000; /* huge */ return 1; } static void PLC_Kill(void* pData) { pSafetyPLCController self = (pSafetyPLCController) pData; if (self->nw_tmr) NetWatchRemoveTimer(self->nw_tmr); if (self->pDes) { DeleteDescriptor(self->pDes); self->pDes = NULL; } free(self); return; } void SafetyPLCInitProtocol(SicsInterp *pSics) { if (PLC_Protocol == NULL) { PLC_Protocol = AsyncProtocolCreate(pSics, "SafetyPLC", NULL, NULL); PLC_Protocol->sendCommand = NULL; PLC_Protocol->handleInput = PLC_Rx; PLC_Protocol->handleEvent = PLC_Ev; PLC_Protocol->prepareTxn = NULL; PLC_Protocol->killPrivate = NULL; } } int SafetyPLCFactory(SConnection *pCon, SicsInterp *pSics, void *pData, int argc, char *argv[]) { pSafetyPLCController pNew = NULL; int iRet, status; unsigned int i; char pError[256]; pSicsVariable plcVar=NULL; PLC_STATUS plcState; if(argc < 3) { SCWrite(pCon,"ERROR: insufficient no of arguments to SafetyPLCFactory", eError); return 0; } /* create data structure and open port */ pNew = PLC_Create(argv[2]); if(!pNew) { SCWrite(pCon,"ERROR: failed to create SafetyPLC in SafetyPLCFactory",eError); return 0; } status = PLC_Init(pNew); if(status != 1) { sprintf(pError,"ERROR: failed to connect to %s",argv[2]); SCWrite(pCon,pError,eError); } for (i=0; i < sizeof(plc_parname)/sizeof(plc_parname[0]); i++) { plcVar = VarCreate(PLC_UserPriv,veText,plc_parname[i]); PLC_GetState(pNew,plc_parname[i],&plcState); VarSetText(plcVar,plc_states[plcState],PLC_UserPriv); AddCommand(pSics,plc_parname[i],VarWrapper,(KillFunc)VarKill,plcVar); } /* create the command */ iRet = AddCommand(pSics, argv[1], PLC_Action, PLC_Kill, pNew); if(!iRet) { sprintf(pError,"ERROR: duplicate command %s not created", argv[1]); SCWrite(pCon,pError,eError); PLC_Kill(pNew); return 0; } SCSendOK(pCon); return 1; }