Add the FOPDT and PID modules

The First Order Plus Delay Time module is a model of a
controlled system that is useful in modelling and
simulating process control systems.

The Proportional Integral Differential module is a control
system that is useful in controlling process control
systems.

This is not fully functional yet.
This commit is contained in:
Douglas Clowes
2014-08-05 11:44:27 +10:00
parent 17315b15c7
commit d330d7874a
2 changed files with 242 additions and 0 deletions

View File

@@ -0,0 +1,119 @@
#!/usr/bin/env python
# vim: ft=python ts=8 sts=4 sw=4 expandtab autoindent smartindent nocindent
#
# Class for device simulation using: Proportional-Integral-Derivative (PID)
#
# This recipe gives simple implementation of a Discrete
# Proportional-Integral-Derivative (PID) controller.
#
# PID controller gives output value for error between desired reference input and
# measurement feedback to minimize error value.
#
# More information: http://en.wikipedia.org/wiki/PID_controller
#
# cnr437@gmail.com
#
####### Example #########
#
# p=PID(3.0,0.4,1.2)
# p.setPoint(5.0)
# while True:
# pid = p.update(measurement_value)
#
#
"""
TODO:
* Look into making the update time based because the logic seems to assume constant (1 second) time
- Derivator should be dE/dT but is just dE
- Integrator should be sigma(dT*E) but is just sigma(E)
* Look into making the Derivator based on changes in the PV instead of the Error
"""
class PID:
"""
Discrete PID control
"""
def __init__(self, P=2.0, I=0.0, D=1.0, Derivator=0, Integrator=0, Integrator_max=500, Integrator_min=-500):
self.Kp=P
self.Ki=I
self.Kd=D
self.Derivator=Derivator
self.Integrator=Integrator
self.Integrator_max=Integrator_max
self.Integrator_min=Integrator_min
self.set_point=0.0
self.error=0.0
def update(self,current_value):
"""
Calculate PID output value for given reference input and feedback
"""
self.error = self.set_point - current_value
self.P_value = self.Kp * self.error
# TODO: check the sign is correct
self.D_value = self.Kd * (current_value - self.Derivator)
self.Derivator = current_value
self.Integrator = self.Integrator + self.error
if self.Integrator > self.Integrator_max:
self.Integrator = self.Integrator_max
elif self.Integrator < self.Integrator_min:
self.Integrator = self.Integrator_min
self.I_value = self.Integrator * self.Ki
PID = self.P_value + self.I_value + self.D_value
return PID
def setPoint(self,set_point):
"""
Initilize the setpoint of PID
"""
self.set_point = set_point
self.Integrator=0
self.Derivator=0
def setIntegrator(self, Integrator):
self.Integrator = Integrator
def setDerivator(self, Derivator):
self.Derivator = Derivator
def setKp(self,P):
self.Kp=P
def setKi(self,I):
self.Ki=I
def setKd(self,D):
self.Kd=D
def getPoint(self):
return self.set_point
def getError(self):
return self.error
def getIntegrator(self):
return self.Integrator
def getDerivator(self):
return self.Derivator
if __name__ == "__main__":
#p=PID(3.0,0.4,1.2)
#p.setPoint(5.0)
#while True:
# pid = p.update(measurement_value)
p = PID(3.0, 0.4, 1.2)
p.setPoint(20.0)
pv = 20
for i in range(0,61):
print p.update(pv)