- First commit of the new UB based TAS calculation. A milestone has been

reached: it handles one test case correctly back and forth
- Fixed oscillation code
- Added a feature for switching off automatic updates in nxupdate
  Autoamtic updates cause problems when scanning...
This commit is contained in:
koennecke
2005-04-22 14:07:06 +00:00
parent 288c65e0bb
commit 6387994017
17 changed files with 1897 additions and 34 deletions

491
tasublib.c Normal file
View File

@ -0,0 +1,491 @@
/**
* This is a library of functions and data structures for performing
* triple axis spectrometer angle calculations using the UB-matrix
* formalism as described by Mark Lumsden.
*
* copyright: see file COPYRIGHT
*
* Mark Koennecke, April 2005
*/
#include <math.h>
#include "trigd.h"
#include "vector.h"
#include "tasublib.h"
#define ABS(x) (x < 0 ? -(x) : (x))
#define PI 3.141592653589793
#define ECONST 2.072
#define DEGREE_RAD (PI/180.0) /* Radians per degree */
/*============== monochromator/analyzer stuff =========================*/
double energyToK(double energy){
double K;
K = sqrt(energy/ECONST);
return K;
}
/*---------------------------------------------------------------------*/
double KtoEnergy(double k){
double energy;
energy = ECONST*k*k;
return energy;
}
/*--------------------------------------------------------------------*/
int maCalcAngles(maCrystal data, pmaAngles angles, double k){
double fd;
/* fd = k/(2.*data.dd); */
fd = PI/(data.dd*k);
if(fd > 1.0) {
return ENERGYTOBIG;
}
angles->theta = Asind(fd)*data.ss;
angles->two_theta = 2.*angles->theta;
angles->horizontal_curvature = data.HB1 + data.HB2/Sind(angles->theta);
angles->vertical_curvature = data.VB1 + data.VB2/Sind(angles->theta);
return 1;
}
/*--------------------------------------------------------------------*/
int maCalcK(maCrystal data, maAngles angles, double *k){
*k = ABS(data.dd * Sind(angles.two_theta/2));
*k = PI / *k;
if(ABS(angles.two_theta/2. - angles.theta) > .1) {
return BADSYNC;
}
return 1;
}
/*==================== reciprocal space ==============================*/
static MATRIX tasReflectionToHC(tasReflection r, MATRIX B){
MATRIX h = NULL, hc = NULL;
h = makeVector();
if(h == NULL){
return NULL;
}
vectorSet(h,0,r.h);
vectorSet(h,1,r.k);
vectorSet(h,2,r.l);
hc = mat_mul(B,h);
killVector(h);
return hc;
}
/*------------------------------------------------------------------
a quadrant dependent tangens
------------------------------------------------------------------*/
static double rtan(double y, double x){
double val;
if( (x == 0.) && (y == 0.) ) {
return .0;
}
if( x == 0.) {
if(y < 0.){
return -PI/2.;
} else {
return PI/2.;
}
}
if(ABS(y) < ABS(x)) {
val = atan(ABS(y/x));
if(x < 0.) {
val = PI - val;
}
if(y < 0.){
val = -val;
}
return val;
} else {
val = PI/2. - atan(ABS(x/y));
if(x < 0.) {
val = PI - val;
}
if( y < 0.) {
val = - val;
}
}
return val;
}
/*---------------------------------------------------------------*/
static double calcTheta(double ki, double kf, double two_theta){
/**
* |ki| - |kf|cos(two_theta)
* tan(theta) = --------------------------
* |kf|sin(two_theta)
*/
return rtan(ABS(ki) - ABS(kf)*Cosd(two_theta),
ABS(kf)*Sind(two_theta))/DEGREE_RAD;
}
/*--------------------------------------------------------------------*/
static MATRIX uFromAngles(double om, double sgu, double sgl){
MATRIX u;
u = makeVector();
if(u == NULL){
return NULL;
}
vectorSet(u,0,-Cosd(sgl)*Cosd(om));
vectorSet(u,1,Cosd(sgu)*Sind(om) - Sind(sgu)*Sind(sgl)*Cosd(om));
vectorSet(u,2,-Sind(sgu)*Sind(om) - Cosd(sgu)*Sind(sgl)*Cosd(om));
return u;
}
/*---------------------------------------------------------------*/
static MATRIX calcTasUVectorFromAngles(tasReflection r){
double theta, om;
theta = calcTheta(r.ki,r.kf,r.two_theta);
om = r.a3 - theta;
return uFromAngles(om,r.sgu, r.sgl);
}
/*-------------------------------------------------------------------*/
MATRIX calcPlaneNormal(tasReflection r1, tasReflection r2){
MATRIX u1 = NULL, u2 = NULL, planeNormal = NULL;
u1 = calcTasUVectorFromAngles(r1);
u2 = calcTasUVectorFromAngles(r2);
if(u1 != NULL && u2 != NULL){
return vectorCrossProduct(u1,u2);
} else {
return NULL;
}
}
/*--------------------------------------------------------------------*/
MATRIX calcTasUBFromTwoReflections(lattice cell, tasReflection r1,
tasReflection r2, int *errorCode){
MATRIX B, HT, UT, U, UB, HTT ;
MATRIX u1, u2, h1, h2, planeNormal;
double ud[3];
int status;
*errorCode = 1;
/*
calculate the B matrix and the HT matrix
*/
B = mat_creat(3,3,ZERO_MATRIX);
status = calculateBMatrix(cell,B);
if(status < 0){
*errorCode = status;
return NULL;
}
h1 = tasReflectionToHC(r1,B);
h2 = tasReflectionToHC(r2,B);
if(h1 == NULL || h2 == NULL){
*errorCode = UBNOMEMORY;
return NULL;
}
HT = matFromTwoVectors(h1,h2);
if(HT == NULL){
*errorCode = UBNOMEMORY;
return NULL;
}
/*
calculate U vectors and UT matrix
*/
u1 = calcTasUVectorFromAngles(r1);
u2 = calcTasUVectorFromAngles(r2);
if(u1 == NULL || u2 == NULL){
*errorCode = UBNOMEMORY;
return NULL;
}
UT = matFromTwoVectors(u1,u2);
if(UT == NULL){
*errorCode = UBNOMEMORY;
return NULL;
}
/*
debugging output
printf("B-matrix\n");
mat_dump(B);
printf("HT-matrix\n");
mat_dump(HT);
printf("UT-matrix\n");
mat_dump(UT);
*/
/*
UT = U * HT
*/
HTT = mat_tran(HT);
if(HTT == NULL){
*errorCode = UBNOMEMORY;
return NULL;
}
U = mat_mul(UT,HTT);
if(U == NULL){
*errorCode = UBNOMEMORY;
return NULL;
}
UB = mat_mul(U,B);
if(UB == NULL){
*errorCode = UBNOMEMORY;
}
/*
clean up
*/
killVector(h1);
killVector(h2);
mat_free(HT);
mat_free(HTT);
killVector(u1);
killVector(u2);
mat_free(UT);
mat_free(U);
mat_free(B);
return UB;
}
/*-----------------------------------------------------------------------------*/
static MATRIX buildTVMatrix(MATRIX U1V, MATRIX U2V){
MATRIX T, T3V;
int i;
T3V = vectorCrossProduct(U1V,U2V);
if(T3V == NULL){
return NULL;
}
T = mat_creat(3,3,ZERO_MATRIX);
if(T == NULL){
killVector(T3V);
return NULL;
}
for(i = 0; i < 3; i++){
T[i][0] = U1V[i][0];
T[i][1] = U2V[i][0];
T[i][2] = T3V[i][0];
}
killVector(T3V);
return T;
}
/*-----------------------------------------------------------------------------*/
static MATRIX tasReflectionToQC(ptasReflection r, MATRIX UB){
MATRIX Q, QC;
Q = makeVector();
if(Q == NULL){
return NULL;
}
vectorSet(Q,0,r->h);
vectorSet(Q,1,r->k);
vectorSet(Q,2,r->l);
QC = mat_mul(UB,Q);
killVector(Q);
return QC;
}
/*----------------------------------------------------------------------------*/
static MATRIX buildRMatrix(MATRIX UB, MATRIX planeNormal,
ptasReflection r){
MATRIX U3V, U1V, U2V, TV, TVINV;
U3V = planeNormal;
U1V = tasReflectionToQC(r,UB);
if(U1V == NULL){
return NULL;
}
normalizeVector(U1V);
U2V = vectorCrossProduct(U3V,U1V);
if(U2V == NULL){
killVector(U1V);
return NULL;
}
TV = buildTVMatrix(U1V,U2V);
if(TV == NULL){
killVector(U1V);
killVector(U2V);
return NULL;
}
TVINV = mat_inv(TV);
if(TVINV == NULL){
killVector(U1V);
killVector(U2V);
mat_free(TV);
return NULL;
}
killVector(U1V);
killVector(U2V);
mat_free(TVINV);
return TVINV;
}
/*-------------------------------------------------------------------------------*/
int calcTasQAngles(MATRIX UB, MATRIX planeNormal, int ss, ptasReflection r){
MATRIX R, QC;
double om, q, theta, cos2t, tmp;
R = buildRMatrix(UB, planeNormal, r);
if(R == NULL){
return UBNOMEMORY;
}
om = Acosd(R[0][0]/sqrt(R[0][0]*R[0][0] + R[1][0]*R[1][0]));
r->sgl = Acosd(sqrt(R[0][0]*R[0][0] + R[1][0]*R[1][0]));
r->sgu = Asind(R[2][1]/sqrt(R[0][0]*R[0][0] + R[1][0]*R[1][0]));
/*
r->sgl = Asind(-R[2][0]);
tmp = sqrt(R[0][0]*R[0][0] + R[1][0]*R[1][0]);
if(tmp > .001){
r->sgu = Acosd(R[2][2]/tmp);
} else {
return BADRMATRIX;
}
*/
QC = tasReflectionToQC(r,UB);
if(QC == NULL){
return UBNOMEMORY;
}
q = vectorLength(QC);
q = 2.*PI*vectorLength(QC);
cos2t = (r->ki*r->ki + r->kf*r->kf - q*q)/(2. * ABS(r->ki) * ABS(r->kf));
if(cos2t > 1.){
return TRIANGLENOTCLOSED;
}
r->two_theta = ss*Acosd(cos2t);
theta = calcTheta(r->ki, r->kf,r->two_theta);
r->a3 = om + theta;
killVector(QC);
return 1;
}
/*------------------------------------------------------------------------*/
int calcTasQH(MATRIX UB, ptasReflection r){
MATRIX UBINV = NULL, QV = NULL, Q = NULL;
double q;
int i;
UBINV = mat_inv(UB);
QV = calcTasUVectorFromAngles(*r);
if(UBINV == NULL || QV == NULL){
return UBNOMEMORY;
}
/*
normalize the QV vector to be the length of the Q vector
Thereby take into account the physicists magic fudge
2PI factor
*/
q = sqrt(r->ki*r->ki + r->kf*r->kf - 2.*r->ki*r->kf*Cosd(r->two_theta));
q /= 2. * PI;
for(i = 0; i < 3; i++){
QV[i][0] *= q;
}
/*
mat_dump(UB);
mat_dump(UBINV);
mat_dump(QV);
*/
Q = mat_mul(UBINV,QV);
if(Q == NULL){
mat_free(UBINV);
killVector(QV);
return UBNOMEMORY;
}
r->h = Q[0][0];
r->k = Q[1][0];
r->l = Q[2][0];
killVector(QV);
killVector(Q);
mat_free(UBINV);
return 1;
}
/*---------------------------------------------------------------------*/
int calcAllTasAngles(ptasMachine machine, tasQEPosition qe,
ptasAngles angles){
int status;
tasReflection r;
status = maCalcAngles(machine->monochromator,&angles->monochromator,
qe.ki);
if(status != 1){
return status;
}
r.h = qe.qh;
r.k = qe.qk;
r.l = qe.ql;
r.ki = qe.ki;
r.kf = qe.kf;
status = calcTasQAngles(machine->UB, machine->planeNormal,
machine->ss_sample, &r);
if(status != 1){
return status;
}
angles->a3 = r.a3;
angles->sample_two_theta = r.two_theta;
angles->sgu = r.sgu;
angles->sgl = r.sgl;
status = maCalcAngles(machine->analyzer,&angles->analyzer,
qe.kf);
if(status != 1){
return status;
}
return 1;
}
/*----------------------------------------------------------------------*/
int calcTasQEPosition(ptasMachine machine, tasAngles angles,
ptasQEPosition qe){
int status, retVal = 1;
tasReflection r;
double k;
status = maCalcK(machine->monochromator,angles.monochromator,&k);
if(status != 1){
if(status != BADSYNC){
retVal = BADSYNC;
} else {
return status;
}
}
qe->ki = k;
status = maCalcK(machine->analyzer,angles.analyzer,&k);
if(status != 1){
if(status != BADSYNC){
retVal = BADSYNC;
} else {
return status;
}
}
qe->kf = k;
r.sgu = angles.sgu;
r.sgl = angles.sgl;
r.a3 = angles.a3;
r.two_theta = angles.sample_two_theta;
r.ki = qe->ki;
r.kf = qe->kf;
status = calcTasQH(machine->UB,&r);
if(status != 1){
return status;
}
qe->qh = r.h;
qe->qk = r.k;
qe->ql = r.l;
return retVal;
}