Rename files and make more consistent with Beam Monitor code

dio.* => device.*
hdio.* => hware.*
Digital.* => Monitor.*

r1265 | dcl | 2006-11-09 12:25:16 +1100 (Thu, 09 Nov 2006) | 5 lines
This commit is contained in:
Douglas Clowes
2006-11-09 12:25:16 +11:00
parent 9e9a165510
commit 2df0200228
11 changed files with 1030 additions and 1103 deletions

View File

@@ -1,143 +0,0 @@
/*********************************************************************
*
* ANSI C program:
* Digital.c
*
* Description:
* This program reads digital lines on a NI-6509 Digital I/O card.
* Direction, and are all configurable.
*
*********************************************************************/
#define CNTR_CHK(func) if (cntr_fatal(error=(func))) goto Error; else
#include "Digital.h"
#include "utility.h"
#include "params.h"
#include "sock.h"
#include "dio.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <libiberty.h>
#include <sys/time.h>
#include <sys/types.h>
int usage(int argc, char* argv[])
{
fprintf(stderr, "usage: %s <DEVn/CTRn> <PORT>\n",
argv[0]);
return EXIT_FAILURE;
}
int main(int argc, char* argv[])
{
int error=0;
char errBuff[2048]={'\0'};
struct timeval now;
uint64 last_poll;
char* device;
int port;
int idx = 1;
if (idx >= argc)
return usage(argc, argv);
if (argv[idx][0] == '-')
{
if (tolower(argv[idx][1]) == 'd')
{
if (isdigit(argv[idx][2]))
set_debug_level(argv[idx][2] - '0');
else
set_debug_level(0);
}
++idx;
}
if (idx >= argc)
return usage(argc, argv);
if (tolower(argv[idx][0]) == 'd' &&
tolower(argv[idx][1]) == 'e' &&
tolower(argv[idx][2]) == 'v' &&
isdigit(argv[idx][3]))
{
device = argv[idx];
++idx;
}
else
return usage(argc, argv);
if (idx >= argc)
return usage(argc, argv);
if (isdigit(argv[idx][0]))
{
port = atoi(argv[idx]);
++idx;
}
else
return usage(argc, argv);
memset(&counter, 0, sizeof(counter));
CNTR_CHK(cntr_init(&counter, device));
// CNTR_CHK(cntr_start(&counter));
sock_init(port);
printf("Continuously polling. Press Ctrl+C to interrupt\n");
gettimeofday(&now, NULL);
last_poll = 1000 * (uint64) now.tv_sec + now.tv_usec / 1000;
while (1)
{
COUNTER* cp = &counter;
PARAMETERS* pp = &cp->params;
uint64 timeofday;
int timeout = 0;
do {
sock_check(timeout);
gettimeofday(&now, NULL);
timeofday = 1000 * (uint64) now.tv_sec + now.tv_usec / 1000;
if (timeofday / pp->poll_period > last_poll / pp->poll_period)
timeout = 0;
else
{
timeout = pp->poll_period - timeofday % pp->poll_period;
if (timeout < 0)
{
if (timeout < 0)
dprintf(0, "Poll timeout < 0 at %d\n", timeout);
timeout = 0;
}
}
//dprintf(0, "Poll timeout = %d\n", timeout);
} while (timeout > 0);
cp->current_time = now;
#if 1
dprintf(0, "-%s %s %.3f %s %.3f %4d\n",
make_timestamp(&cp->current_time),
make_timestamp(&cp->sample_timer),
cntr_time_to_next_sample(cp),
make_timestamp(&cp->report_timer),
cntr_time_to_next_report(cp),
cp->sample_index);
#endif
CNTR_CHK(cntr_poll(cp));
last_poll = timeofday;
}
Error:
puts("");
if (cntr_fatal(error))
{
cntr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
}
cntr_term(&counter);
printf("End of program\n");
return 0;
}

View File

@@ -0,0 +1,164 @@
/*********************************************************************
*
* ANSI C program:
* Monitor.c
*
*********************************************************************/
#define DEVICE_CHK(func) if (device_fatal(error=(func))) goto Error; else
#include "Monitor.h"
#include "utility.h"
#include "params.h"
#include "sock.h"
#include "device.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <fcntl.h>
#include <time.h>
#include <errno.h>
#include <libiberty.h>
#include <sys/time.h>
#include <sys/types.h>
int usage(int argc, char* argv[], const char* reason)
{
int i;
fprintf(stderr, "%s", argv[0]);
for (i = 1; i < argc; ++i)
fprintf(stderr, " %s", argv[i]);
fprintf(stderr, "\n%s\n", reason);
fprintf(stderr, "usage: %s <DEVn/CTRn> <PORT>\n",
argv[0]);
return EXIT_FAILURE;
}
int main(int argc, char* argv[])
{
int error=0;
char errBuff[2048]={'\0'};
struct timeval now;
uint64 last_poll;
char* device = DEFAULT_DEVICE;
uint dev_no;
int port = DEFAULT_LISTEN_PORT;
int idx = 1;
DEVICE* devices[MAX_DEVICES];
if (idx >= argc)
return usage(argc, argv, "no args");
if (argv[idx][0] == '-')
{
if (tolower(argv[idx][1]) == 'd')
{
if (isdigit(argv[idx][2]))
set_debug_level(argv[idx][2] - '0');
else
set_debug_level(0);
}
++idx;
}
if (idx >= argc)
return usage(argc, argv, "no device");
if (tolower(argv[idx][0]) == 'd' &&
tolower(argv[idx][1]) == 'e' &&
tolower(argv[idx][2]) == 'v' &&
isdigit(argv[idx][3]))
{
device = argv[idx];
++idx;
}
else if (tolower(argv[idx][0]) == 'p' &&
tolower(argv[idx][1]) == 'x' &&
tolower(argv[idx][2]) == 'i' &&
isdigit(argv[idx][3]))
{
device = argv[idx];
++idx;
}
else
return usage(argc, argv, "bad device");
if (idx >= argc)
return usage(argc, argv, "no port");
if (isdigit(argv[idx][0]))
{
port = atoi(argv[idx]);
++idx;
}
else
return usage(argc, argv, "bad port");
dev_no = atoi(&device[3]);
sock_init();
gettimeofday(&now, NULL);
for (idx = 0; idx < MAX_DEVICES; ++idx)
{
sprintf(device, "dev%d/port%d", dev_no, idx);
DEVICE_CHK(device_init(&devices[idx], device));
sock_listen(port + idx, device_command, devices[idx]);
devices[idx]->current_time = now;
}
printf("Continuously polling. Press Ctrl+C to interrupt\n");
last_poll = 1000 * (uint64) now.tv_sec + now.tv_usec / 1000;
while (1)
{
uint64 timeofday;
int timeout = 0;
int next_timeout = 0;
do {
next_timeout = 1000;
sock_check(timeout);
gettimeofday(&now, NULL);
timeofday = 1000 * (uint64) now.tv_sec + now.tv_usec / 1000;
for (idx = 0; idx < MAX_DEVICES; ++idx)
{
DEVICE* device = devices[idx];
PARAMETERS* pp = &device->params;
last_poll = 1000 * (uint64) device->current_time.tv_sec
+ device->current_time.tv_usec / 1000;
if (timeofday / pp->poll_period > last_poll / pp->poll_period)
timeout = 0;
else
{
timeout = pp->poll_period - timeofday % pp->poll_period;
if (timeout < 0)
{
if (timeout < 0)
dbg_printf(0, "Poll timeout < 0 at %d\n", timeout);
timeout = 0;
}
}
if (timeout < next_timeout)
next_timeout = timeout;
if (timeout == 0)
{
device->current_time = now;
DEVICE_CHK(device_poll(device));
}
}
if (next_timeout > 999)
next_timeout = 1;
timeout = next_timeout;
//dbg_printf(0, "Poll timeout = %d\n", timeout);
} while (timeout > 0);
}
Error:
puts("");
if (device_fatal(error))
{
device_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
}
for (idx = 0; idx < MAX_DEVICES; ++idx)
device_term(devices[idx]);
printf("End of program\n");
return 0;
}

View File

@@ -5,7 +5,7 @@
#ifndef _MONITOR_H_ #ifndef _MONITOR_H_
#define _MONITOR_H_ #define _MONITOR_H_
#define DEFAULT_COUNTER_DEVICE "DEV1/CTR0" #define DEFAULT_DEVICE "DEV1"
#define DEFAULT_LISTEN_PORT 3000 #define DEFAULT_LISTEN_PORT 3000
#endif #endif

View File

@@ -0,0 +1,215 @@
/*
* Abstraction of the counter device.
*
*/
#include "device.h"
#include "params.h"
#include "sock.h"
#include "hware.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#define HWARE_TEST(functionCall) \
if( hware_failed(error=(functionCall)) ) \
goto Error; \
else
void device_send(DEVICE* device, int n)
{
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"Time: %s, Value: 0x%06X\r\n",
make_timestamp(NULL),
device->value);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void device_read(DEVICE* device, int n)
{
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"READ 0x%06X\r\n",
device->value);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void device_write(DEVICE *device, int n, const char* tp)
{
unsigned long value;
value = strtol(tp, NULL, 16);
hware_write(device->private_data, value);
return;
}
void device_print(DEVICE* device, FILE* fd)
{
fprintf(fd, "Time: %s, Value: 0x%06X\r\n",
make_timestamp(NULL),
device->value);
fflush(fd);
}
void device_report(DEVICE* device)
{
dbg_printf(0, "device_report\n");
/*
* Set the time for this report
*/
device->report_timer = device->current_time;
BUFFER buffer;
char* str = make_timestamp(&device->current_time);
snprintf(buffer.body, sizeof(buffer.body),
"%s 0x%06X\r\n",
str,
device->value);
buffer.length = strlen(buffer.body);
sock_report(&buffer, 1, device);
snprintf(buffer.body, sizeof(buffer.body),
"REPORT %s 0x%06X\r\n",
str,
device->value);
buffer.length = strlen(buffer.body);
sock_report(&buffer, 2, device);
}
/**
* Initialise the counter
*
* Initialise all of the control data associated with the logical counter.
*
* Create a 64-bit physical counter and start it.
*/
int device_init(DEVICE** cpp, char* name)
{
int error = 0;
char errBuff[2048]={'\0'};
DEVICE* device = (DEVICE*) malloc(sizeof(DEVICE));
*cpp = device;
memset(device, 0, sizeof(DEVICE));
strncpy(device->name, name, sizeof(device->name));
device->params.poll_period = 1000; /* milliseconds between polls */
device->params.sample_period = 10; /* polls between sample calcs */
device->params.report_period = 3; /* samples between reports */
device->state = device_stopped;
struct timeval now;
gettimeofday(&now, NULL);
device->current_time = now;
device->previous_time = now;
device->report_timer = now;
HWARE_TEST(hware_ctor(name, &device->private_data));
return 0;
Error:
hware_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
return 0;
}
int device_command(void* dev, const char* command)
{
// TODO
// DEVICE* device = (DEVICE*)(dev);
return 0;
}
static void device_event(DEVICE *device, char* event)
{
BUFFER buffer;
sprintf(buffer.body, "EVENT %s %s\r\n",
make_timestamp(&device->current_time),
event);
buffer.length = strlen(buffer.body);
dbg_printf(0, "%s", buffer.body);
sock_report(&buffer, 1, device);
sock_report(&buffer, 2, device);
}
/*
* poll the physical counter
*/
int device_poll(DEVICE* device)
{
char errBuff[2048]={'\0'};
HWARE_VALUE current_local_value;
int error=0;
#if 0
dbg_printf(0, "%s:-%s %s %4d\n",
device->name,
make_timestamp(&device->current_time),
make_timestamp(&device->report_timer),
device_time_to_next_report(device));
#endif
/* read the value from the hardware to a temp */
++device->poll_counter;
HWARE_TEST(hware_read(device->private_data, &current_local_value));
dbg_printf(0, "device_poll = 0x%06X @ %s\n",
current_local_value,
make_timestamp(&device->current_time));
if (current_local_value != device->value)
{
char str[100];
snprintf(str, sizeof(str), "changed 0x%06X 0x%06X",
current_local_value,
device->value);
device_event(device, str);
}
device->value = current_local_value;
/* check if it is time to roll the report */
if (device_time_to_next_report(device) <= 0)
{
device_report(device);
}
return error;
Error:
device_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
void device_term(DEVICE* device)
{
if (device->private_data)
{
hware_dtor(&device->private_data);
device->private_data = NULL;
}
device->state = device_idle;
}
bool device_fatal(int error)
{
return hware_failed(error);
}
void device_errmsg(char* buff, int len)
{
hware_errmsg(buff, len);
}
double device_time_to_next_report(DEVICE* device)
{
uint64 last_report;
uint64 timeofday;
int timeout;
struct timeval now;
now = device->current_time;
last_report = 1000 * (uint64) device->report_timer.tv_sec;
last_report += (uint64) device->report_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = device->params.poll_period *
device->params.sample_period *
device->params.report_period;
if ((last_report / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}

View File

@@ -0,0 +1,62 @@
#ifndef _DEVICE_H_
#define _DEVICE_H_
#define MAX_DEVICES 3
#define SAMPLE_ARRAY_SZ 1000
#include "utility.h"
#include "params.h"
typedef enum device_state_t
{
/** The counter has not yet been created or has been destroyed */
device_idle = 0,
/** The counter has not yet been started or has been stopped */
device_stopped,
/** The counter is counting */
device_running,
/** the counter has been paused */
device_paused
} DEVICE_STATE;
typedef struct device_t
{
char name[64];
DEVICE_STATE state;
/** time of this read */
struct timeval current_time;
/** time of last read */
struct timeval previous_time;
/** time of next report generation */
struct timeval report_timer;
/** number of polls */
int poll_counter;
/** physical device value */
unsigned int value;
/** Control parameters */
PARAMETERS params;
struct device_private_t* private_data;
} DEVICE, *pDEVICE;
void make_report(DEVICE* device);
void device_sample(DEVICE* device);
void device_send(DEVICE* device, int n);
void device_read(DEVICE* device, int n);
void device_write(DEVICE* device, int n, const char *tp);
void device_print(DEVICE* device, FILE* fd);
void device_report(DEVICE* device);
int device_init(DEVICE** cpp, char* name);
int device_start(DEVICE* device);
int device_stop(DEVICE* device);
int device_pause(DEVICE* device);
int device_resume(DEVICE* device);
int device_command(void* device, const char* cmd);
int device_poll(DEVICE* device);
void device_term(DEVICE* device);
bool device_fatal(int error);
void device_errmsg(char* buff, int len);
double device_time_to_next_sample(DEVICE* device);
double device_time_to_next_report(DEVICE* device);
#endif

View File

@@ -1,586 +0,0 @@
/*
* Abstraction of the counter device.
*
*/
#include "dio.h"
#include "params.h"
#include "sock.h"
#include "hdio.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#define HCTR_TEST(functionCall) \
if( hdio_failed(error=(functionCall)) ) \
goto Error; \
else
COUNTER counter;
/*
* get a pointer to the current sample
*/
static SAMPLE* cur_sample(COUNTER* cp)
{
return &cp->sample_array[cp->sample_index];
}
/*
* get a pointer to the num'th previous sample
*/
static SAMPLE* prv_sample(COUNTER* cp, int num)
{
int idx = (cp->sample_index + SAMPLE_ARRAY_SZ - num) % SAMPLE_ARRAY_SZ;
return &cp->sample_array[idx];
}
void make_report(COUNTER* cp)
{
dprintf(0, "make_report\n");
int i;
SAMPLE* sp = cur_sample(cp);
cp->report = *sp;
cp->report.average_rate = cp->report.counter_rate;
cp->report.minimum_rate = cp->report.counter_rate;
cp->report.maximum_rate = cp->report.counter_rate;
for (i = 1; i <= cp->params.report_period; ++i)
{
SAMPLE* psp;
psp = prv_sample(cp, i);
if (psp->valid)
{
cp->report.time_delta = time_diff(&sp->timestamp, &psp->timestamp);
cp->report.count_delta = sp->count64 - psp->count64;
if (cp->report.time_delta > 0.0)
cp->report.average_rate = cp->report.count_delta
/ cp->report.time_delta;
if (i < cp->params.report_period)
{
cp->report.num_polls += psp->num_polls;
if (psp->counter_rate < cp->report.minimum_rate)
cp->report.minimum_rate = psp->counter_rate;
if (psp->counter_rate > cp->report.maximum_rate)
cp->report.maximum_rate = psp->counter_rate;
}
}
}
sp = &cp->report;
}
#if 0
/*
* given two samples, compute the count-rate
*/
static double compute_rate(COUNTER* cp, SAMPLE* cur, SAMPLE* prv)
{
double result = 0.0;
uInt32 delta_counter;
if (cp->params.direction == COUNT_DOWN)
delta_counter = prv->counter_value - cur->counter_value;
else
delta_counter = cur->counter_value - prv->counter_value;
double delta_timer = time_diff(&cur->timestamp, &prv->timestamp);
result = 1.0 * delta_counter / delta_timer;
return result;
}
/*
* given two samples, compute the average rate
*/
static double compute_average(COUNTER* cp, SAMPLE* cur, SAMPLE* prv)
{
double result = 0.0;
if (cur == prv)
result = cur->counter_rate;
else
result = compute_rate(cp, cur, prv);
return result;
}
#endif
void cntr_send(COUNTER* cp, int n)
{
SAMPLE* sp = cur_sample(cp);
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"Time: %s, Count: %10llu, Delta: %6d, Time: %8.6f, Rate: %8.2f, Ave: %8.2f\r\n",
make_timestamp(&sp->timestamp),
sp->counter_value,
sp->count_delta,
sp->time_delta,
sp->counter_rate,
sp->average_rate);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void cntr_read(COUNTER* cp, int n)
{
SAMPLE* sp = cur_sample(cp);
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"READ %c%c%c%c %s %.6f %10llu %8.2f\r\n",
cp->state == counter_idle ? 'I' :
cp->state == counter_stopped ? 'S' :
cp->state == counter_running ? 'R' :
cp->state == counter_paused ? 'P' : '?',
cp->terminal_due ? 'T' : ' ',
cp->range_error == 0 ? ' ' : 'R',
cp->range_gated ? 'G' : ' ',
make_timestamp(&sp->timestamp),
cp->accumulated.tv_sec + .000001 * cp->accumulated.tv_usec,
sp->counter_value,
sp->counter_rate);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void cntr_print(COUNTER* cp, FILE* fd)
{
SAMPLE* sp = cur_sample(cp);
fprintf(fd, "Time: %s, Count: %10llu, Delta: %6d, Time: %8.6f, Rate: %8.2f, Ave: %8.2f\r\n",
make_timestamp(&sp->timestamp),
sp->counter_value,
sp->count_delta,
sp->time_delta,
sp->counter_rate,
sp->average_rate);
fflush(fd);
}
/*
* Finalise the current sample and move on to the next
*/
void cntr_sample(COUNTER* cp)
{
SAMPLE* psp = cur_sample(cp);
dprintf(0, "cntr_sample: %4d\r\n"
" polls: %4d\r\n"
" time: %4s\r\n"
" counter: %10llu\r\n"
" count64: %10llu\r\n"
" c_delta: %d\r\n"
" t_delta: %6.3f\r\n"
" rate: %10g\n",
cp->sample_index,
psp->num_polls,
make_timestamp(&psp->timestamp),
psp->counter_value,
psp->count64,
psp->count_delta,
psp->time_delta,
psp->counter_rate);
cp->sample_timer = cp->current_time;
++cp->sample_counter;
if (++cp->sample_index >= SAMPLE_ARRAY_SZ)
cp->sample_index = 0;
SAMPLE* sp = cur_sample(cp);
*sp = *psp;
sp->valid = true;
sp->num_polls = 0;
sp->sample_counter = cp->sample_counter;
sp->poll_counter = cp->poll_counter;
}
void cntr_report(COUNTER* cp)
{
dprintf(0, "cntr_report\n");
/*
* Set the time for this report
*/
cp->report_timer = cp->current_time;
BUFFER buffer;
SAMPLE* sp;
sp = &cp->report;
char* str = make_timestamp(&sp->timestamp);
snprintf(buffer.body, sizeof(buffer.body),
"%s (%6.3f), %10llu (%8d), %8.2f (%8.2f,%8.2f,%8.2f)\r\n",
str,
sp->time_delta,
sp->counter_value,
sp->count_delta,
sp->counter_rate,
sp->minimum_rate,
sp->average_rate,
sp->maximum_rate);
buffer.length = strlen(buffer.body);
//fputs(buffer.body, stdout);
sock_report(&buffer, 1);
snprintf(buffer.body, sizeof(buffer.body),
"REPORT %s %10llu %8.2f (%8.2f,%8.2f,%8.2f)\r\n",
str,
sp->counter_value,
sp->counter_rate,
sp->minimum_rate,
sp->average_rate,
sp->maximum_rate);
buffer.length = strlen(buffer.body);
//fputs(buffer.body, stdout);
sock_report(&buffer, 2);
}
/**
* Initialise the counter
*
* Initialise all of the control data associated with the logical counter.
*
* Create a 64-bit physical counter and start it.
*/
int cntr_init(COUNTER* cp, char* name)
{
int error = 0;
char errBuff[2048]={'\0'};
memset(cp, 0, sizeof(COUNTER));
strncpy(cp->name, name, sizeof(cp->name));
cp->params.poll_period = 1000; /* milliseconds between polls */
cp->params.sample_period = 10; /* polls between sample calcs */
cp->params.report_period = 3; /* samples between reports */
cp->state = counter_stopped;
struct timeval now;
gettimeofday(&now, NULL);
cp->current_time = now;
cp->previous_time = now;
cp->sample_timer = now;
cp->report_timer = now;
HCTR_TEST(hdio_ctor(name, &cp->private_data));
SAMPLE* sp = cur_sample(cp);
sp->timestamp = now;
sp->counter_value = cp->current_count;
sp->valid = true;
cntr_sample(cp);
return 0;
Error:
hdio_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
return 0;
}
/**
* Start the logical counter
*
* Read the value of the physical counter and set the state to running
*/
int cntr_start(COUNTER *cp)
{
int error = 0;
char errBuff[2048]={'\0'};
struct timeval now;
/* start the counter object */
gettimeofday(&now, NULL);
cp->current_time = now;
cp->start_time = cp->current_time;
cp->current_count = cp->params.initial_count;
cp->accumulated.tv_sec = 0;
cp->accumulated.tv_usec = 0;
cp->poll_counter = 0;
cp->sample_counter = 0;
cp->terminal_due = false;
cp->state = counter_running;
cp->previous_time = cp->current_time;
HCTR_TEST(hdio_read(cp->private_data, &cp->count64));
make_report(cp);
return error;
Error:
cntr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
int cntr_stop(COUNTER *cp)
{
int error = 0;
cp->stop_time = cp->current_time;
cp->state = counter_stopped;
return error;
}
int cntr_pause(COUNTER *cp)
{
if (cp->state == counter_running)
cp->state = counter_paused;
return 0;
}
int cntr_resume(COUNTER *cp)
{
if (cp->state == counter_paused)
cp->state = counter_running;
return 0;
}
static void cntr_event(COUNTER *cp, char* event)
{
BUFFER buffer;
sprintf(buffer.body, "EVENT %s %s\r\n",
event,
make_timestamp(&cp->current_time));
buffer.length = strlen(buffer.body);
dprintf(0, "%s", buffer.body);
//sock_report(&buffer, 0);
sock_report(&buffer, 1);
sock_report(&buffer, 2);
}
static void cntr_range_check(COUNTER* cp, int mode)
{
PARAMETERS* pp = &cp->params;
if (pp->range_check_enable)
{
if (pp->range_mode == mode)
{
double test;
SAMPLE* sp = cur_sample(cp);
if (mode == 1)
test = sp->counter_rate;
else if (mode == 2)
test = sp->counter_rate;
else
test = cp->report.average_rate;
if (pp->range_low > 0 && pp->range_low > test)
{
if (cp->range_error != 1)
cntr_event(cp, "RANGE OUT LOW");
cp->range_error = 1;
if (pp->range_gate_enable)
cp->range_gated = true;
else
cp->range_gated = false;
}
else if (pp->range_high > 0 && pp->range_high < test)
{
if (cp->range_error != 2)
cntr_event(cp, "RANGE OUT HIGH");
cp->range_error = 2;
if (pp->range_gate_enable)
cp->range_gated = true;
else
cp->range_gated = false;
}
else
{
if (cp->range_error != 0)
cntr_event(cp, "RANGE IN");
cp->range_error = 0;
cp->range_gated = false;
}
}
}
else
{
/* If range check has been disabled while in error - reset */
if (cp->range_error != 0)
cntr_event(cp, "RANGE IN");
cp->range_error = 0;
cp->range_gated = false;
}
}
static void cntr_test_term(COUNTER* cp)
{
PARAMETERS* pp = &cp->params;
SAMPLE* sp = cur_sample(cp);
SAMPLE* psp = prv_sample(cp, 1);
if (!cp->terminal_due)
{
if (pp->terminal_check_type == 1)
{
if (pp->direction == COUNT_DOWN)
{
/*
* decremented to or through terminal
*/
if ((sp->counter_value <= pp->terminal_count &&
psp->counter_value > pp->terminal_count) ||
(sp->counter_value > psp->counter_value &&
psp->counter_value > pp->terminal_count))
{
cp->terminal_due = true;
}
}
else
{
/*
* incremented to or through terminal
*/
if ((sp->counter_value >= pp->terminal_count &&
psp->counter_value < pp->terminal_count) ||
(sp->counter_value < psp->counter_value &&
psp->counter_value > pp->terminal_count))
{
cp->terminal_due = true;
}
}
}
else if (pp->terminal_check_type == 2)
{
if (cp->accumulated.tv_sec >= pp->terminal_count)
cp->terminal_due = true;
}
if (cp->terminal_due)
{
cntr_event(cp, "TERMINAL");
make_report(cp);
cntr_stop(cp);
}
}
}
/*
* poll the physical counter
*/
int cntr_poll(COUNTER* cp)
{
char errBuff[2048]={'\0'};
unsigned long long current_count_local;
int count_delta_local;
int error=0;
/* read the value from the hardware counter to a temp */
++cp->poll_counter;
HCTR_TEST(hdio_read(cp->private_data, &current_count_local));
dprintf(0, "cntr_poll = %llu @ %s\n",
current_count_local,
make_timestamp(&cp->current_time));
SAMPLE* sp = cur_sample(cp);
SAMPLE* psp = prv_sample(cp, 1);
/* calculate the number since last time and save new value */
count_delta_local = current_count_local - cp->count64;
cp->count64 = current_count_local;
sp->num_polls += 1;
/*
* If the counter is running and not gated increment the count and runtime
*/
if (cp->state == counter_running &&
!(cp->params.range_gate_enable && cp->range_gated))
{
if (cp->params.direction == COUNT_DOWN)
{
cp->current_count -= count_delta_local;
}
else
{
cp->current_count += count_delta_local;
}
/*
* Add the time difference to the accumulated time
*/
cp->accumulated.tv_sec += cp->current_time.tv_sec - sp->timestamp.tv_sec;
/* prevent negative tv_usec by borrowing one second in microseconds */
cp->accumulated.tv_usec += 1000000;
cp->accumulated.tv_usec += cp->current_time.tv_usec;
cp->accumulated.tv_usec -= sp->timestamp.tv_usec;
if (cp->accumulated.tv_usec >= 1000000)
{
/* carry the seconds */
cp->accumulated.tv_sec += cp->accumulated.tv_usec / 1000000;
cp->accumulated.tv_usec %= 1000000;
}
/* pay back the borrowed second */
cp->accumulated.tv_sec -= 1;
}
/* calculate and check the count-rate between polls */
sp->count_delta = cp->count64 - sp->count64;
sp->time_delta = time_diff(&cp->current_time, &sp->timestamp);
sp->counter_rate = (double) sp->count_delta / sp->time_delta;
cntr_range_check(cp, 2); /* poll range check */
cp->previous_time = cp->current_time;
/* save counter values in the sample */
sp->counter_value = cp->current_count;
sp->count64 = cp->count64;
sp->timestamp = cp->current_time;
/* calculate the count-rate for this sample so far */
sp->count_delta = sp->count64 - psp->count64;
sp->time_delta = time_diff(&sp->timestamp, &psp->timestamp);
sp->counter_rate = (double) sp->count_delta / sp->time_delta;
/* test for the occurrence of a terminal event */
cntr_test_term(cp);
/* check if it is time to roll the sample */
if (cntr_time_to_next_sample(cp) <= 0)
{
/* check if it is time to roll the report */
if (cntr_time_to_next_report(cp) <= 0)
{
make_report(cp);
cntr_range_check(cp, 0); /* report range check */
cntr_report(cp);
}
cntr_range_check(cp, 1); /* sample range check */
cntr_sample(cp);
}
return error;
Error:
cntr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
void cntr_term(COUNTER* cp)
{
if (cp->private_data)
{
hdio_dtor(&cp->private_data);
cp->private_data = NULL;
}
cp->state = counter_idle;
}
bool cntr_fatal(int error)
{
return hdio_failed(error);
}
void cntr_errmsg(char* buff, int len)
{
hdio_errmsg(buff, len);
}
double cntr_time_to_next_report(COUNTER* cp)
{
uint64 last_report;
uint64 timeofday;
int timeout;
struct timeval now;
now = cp->current_time;
last_report = 1000 * (uint64) cp->report_timer.tv_sec;
last_report += (uint64) cp->report_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = cp->params.poll_period * cp->params.sample_period *
cp->params.report_period;
if ((last_report / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}
double cntr_time_to_next_sample(COUNTER* cp)
{
uint64 last_sample;
uint64 timeofday;
int timeout;
struct timeval now;
now = cp->current_time;
last_sample = 1000 * (uint64) cp->sample_timer.tv_sec;
last_sample += (uint64) cp->sample_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = cp->params.poll_period * cp->params.sample_period;
if ((last_sample / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}

View File

@@ -1,118 +0,0 @@
#ifndef _COUNTER_H_
#define _COUNTER_H_
#define SAMPLE_ARRAY_SZ 1000
#include "utility.h"
#include "params.h"
typedef enum counter_state_t
{
/** The counter has not yet been created or has been destroyed */
counter_idle = 0,
/** The counter has not yet been started or has been stopped */
counter_stopped,
/** The counter is counting */
counter_running,
/** the counter has been paused */
counter_paused
} COUNTER_STATE;
/**
* Logical counter sample
*/
typedef struct sample_t
{
/** sample number */
int sample_counter;
/** poll number */
int poll_counter;
/** time of last read */
struct timeval timestamp;
/** logical counter value */
uint64 counter_value;
/** extended physical counter value */
uint64 count64;
/** counts between current and previous */
int count_delta;
/** number of polls */
int num_polls;
/** this data is valid */
bool valid;
/** time between current and previous */
double time_delta;
/** computed */
double counter_rate;
/** computed */
double average_rate;
/** computed */
double minimum_rate;
/** computed */
double maximum_rate;
} SAMPLE, *pSAMPLE;
typedef struct counter_t
{
char name[64];
COUNTER_STATE state;
/** time of last start */
struct timeval start_time;
/** time of last stop */
struct timeval stop_time;
/** time of this read */
struct timeval current_time;
/** time of last read */
struct timeval previous_time;
/** time of next sample closure */
struct timeval sample_timer;
/** time of next report generation */
struct timeval report_timer;
/** accumulated runtime */
struct timeval accumulated;
/** Current value of logical 64-bit counter */
uint64 current_count;
/** an array of samples to be used for reporting */
SAMPLE sample_array[SAMPLE_ARRAY_SZ];
/** calculated values for reporting */
SAMPLE report;
/** index into the sample array of the current sample */
int sample_index;
/** number of polls */
int poll_counter;
/** number of samples */
int sample_counter;
/** is a terminal count exception due */
bool terminal_due;
/** error: 0:none, 1:low, 2:high */
int range_error;
/** is a range exception gate active */
bool range_gated;
/** Extended physical counter value */
uint64 count64;
/** Control parameters */
PARAMETERS params;
/** active value of parameter output_line */
int output_line;
struct counter_private_t* private_data;
} COUNTER, *pCOUNTER;
extern COUNTER counter;
void make_report(COUNTER* cp);
void cntr_sample(COUNTER* cp);
void cntr_send(COUNTER* cp, int n);
void cntr_read(COUNTER* cp, int n);
void cntr_print(COUNTER* cp, FILE* fd);
void cntr_report(COUNTER* cp);
int cntr_init(COUNTER* cp, char* name);
int cntr_start(COUNTER *cp);
int cntr_stop(COUNTER *cp);
int cntr_pause(COUNTER *cp);
int cntr_resume(COUNTER *cp);
int cntr_poll(COUNTER* cp);
void cntr_term(COUNTER* cp);
bool cntr_fatal(int error);
void cntr_errmsg(char* buff, int len);
double cntr_time_to_next_sample(COUNTER* cp);
double cntr_time_to_next_report(COUNTER* cp);
#endif

View File

@@ -1,164 +0,0 @@
#include "hdio.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <NIDAQmx.h>
#define SAMPLE_COUNT 1
#define BUFFER_SIZE 96
#define PORT_RANGE "Dev2/line0:95"
#define READ_TIMEOUT 2.0
#define DAQmxErrChk(functionCall) \
do { if( DAQmxFailed(error=(functionCall)) ) \
goto Error; } while(0);
/**
* This structure encapsulates the data that is private to
* the implementation of the NI DAQ counter interface
*/
typedef struct counter_private_t
{
/** NIDAQ opaque task handle */
TaskHandle taskHandle;
/** Actual physical data value, as returned by NIDAQ read function */
uInt8 data[BUFFER_SIZE];
/** previous physical data value */
uInt8 old_data[BUFFER_SIZE];
/** NIDAQ device number of card */
int device_number;
/** number of samples read */
int32 numRead;
/** number of bytes per sample */
int32 bytesPerSamp;
} COUNTER_PRIVATE;
int hdio_ctor(const char* device_name, pHDIO* ptr)
{
int error = 0;
bool flag = false;
char text_string[] = "dev1/line0:7";
const char *name;
const char *text;
*ptr = (COUNTER_PRIVATE*) malloc(sizeof(COUNTER_PRIVATE));
memset(*ptr, 0, sizeof(COUNTER_PRIVATE));
name = device_name;
text = text_string;
while (name && *name)
{
if (isspace(*name))
++name;
else if (*name >= '0' && *name <= '7')
{
if (flag)
{
}
else
{
(*ptr)->device_number = *name - '0';
flag = true;
}
}
else if (tolower(*name) != *text)
{
/* TODO error */
break;
}
++name;
++text;
}
/*********************************************/
// Create a DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxCreateTask("",&(*ptr)->taskHandle));
/*********************************************/
// Create a DAQmx port within the task
/*********************************************/
DAQmxErrChk (DAQmxCreateDIChan((*ptr)->taskHandle,
PORT_RANGE,
"",
DAQmx_Val_ChanPerLine));
/*********************************************/
// Start the DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxStartTask((*ptr)->taskHandle));
return 0;
Error:
free(*ptr);
*ptr = NULL;
return error;
}
int hdio_read(pHDIO hdio, unsigned long long* value)
{
int error = 0;
error = 0;
hdio->numRead = 0;
hdio->bytesPerSamp = 0;
/*********************************************/
// DAQmx Read Code
/*********************************************/
error = DAQmxReadDigitalLines (hdio->taskHandle,
SAMPLE_COUNT,
READ_TIMEOUT,
DAQmx_Val_GroupByScanNumber,
hdio->data,
BUFFER_SIZE,
&hdio->numRead,
&hdio->bytesPerSamp,
NULL);
if (error == DAQmxErrorSamplesNotYetAvailable)
{
printf("Timeout, reading raw data\n");
error = 0;
}
else if (hdio_failed(error))
goto Error;
else
{
// TODO copy the data
}
return error;
Error:
return error;
}
int hdio_dtor(pHDIO* hdio)
{
if( hdio && *hdio && (*hdio)->taskHandle!=0 )
{
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask((*hdio)->taskHandle);
DAQmxClearTask((*hdio)->taskHandle);
}
(*hdio)->taskHandle = 0;
free (*hdio);
*hdio = NULL;
return 0;
}
bool hdio_failed(int error)
{
if (DAQmxFailed(error))
return true;
else
return false;
}
void hdio_errmsg(char* buff, int len)
{
*buff = '\0';
DAQmxGetExtendedErrorInfo(buff, len);
}

View File

@@ -1,91 +0,0 @@
/*
* This is an encapsulation of a National Instruments counter.
*
* It presents a simple 64-bit counter abstraction. When the counter is
* created, it commences counting at zero until it is destroyed.
*
* The counter can be read and returns a 64-bit unsigned value.
*/
#ifndef _HDIO_H_
#define _HDIO_H_
#include <stdbool.h>
struct counter_private_t;
typedef struct counter_private_t* pHDIO;
/**
* Create a 64-bit counter and start it counting
*
* \param device_name the name of the device (e.g. "dev1/ctr0")
* \param ptr address of pointer to opaque private data structure
*
* \return
* 0 OK
* !0 Error
*/
int hdio_ctor(const char* device_name, pHDIO* ptr);
/**
* Read the value of the 64-bit counter
*
* \param hdio pointer to opaque private data structure
* \param value address of unsigned 64-bit value to receive the output
*
* \return
* 0 OK
* !0 Error
*/
int hdio_read(pHDIO hdio, unsigned long long* value);
/**
* Enables external sync on designated (up/down) line
*
* \param hdio pointer to opaque private data structure
* \param value to be written to the associated line
* < 0 disconnect
* = 0 logic low
* > 0 logic high
*/
int hdio_outp(pHDIO hdio, int value);
/**
* Enables external sync on designated (up/down) line
*
* \param hdio pointer to opaque private data structure
* \param external true for external sync, false for internal
*/
void hdio_sync(pHDIO hdio, bool external);
/**
* Destroy the 64-bit counter
*
* \param ptr address of pointer to opaque private data structure
*
* \return
* 0 OK
* !0 Error
*/
int hdio_dtor(pHDIO* hdio);
/**
* Tests returned error value to see if it represents failure
*
* \param error a value returned from another hdio function
*
* \return
* true the error was a failure
* false the error was not a failure (warning)
*/
bool hdio_failed(int error);
/**
* Retrieves a textual representation of the most recent error
*
* \param buff a pointer to the buffer to receive the text
* \param len the length of the provided buffer
*/
void hdio_errmsg(char* buff, int len);
#endif

View File

@@ -0,0 +1,501 @@
/* vim: ts=8 sts=2 sw=2 cindent
*/
#include "hware.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#define DEFAULT_DEVICE "dev2/port0"
#ifdef REGISTER_LEVEL_PROGRAMMING
#define DEVICE_ID_NUMBER "0x7085"
#define DAQmxFailed(e) ((e) != 0)
#define DAQmxGetExtendedErrorInfo(b, l) snprintf(b, l, "BAD")
#include <osiBus.h>
#include <tstaticDIO.h>
typedef unsigned long uInt32;
/**
* This structure contains the data for the PCI-6602 card
*/
typedef struct card_t
{
iBus* bus;
tAddressSpace Bar1;
tstaticDIO *board;
unsigned char dev_mask;
} CARD;
#else
#include <NIDAQmx.h>
#define SAMPLE_COUNT 1
#define PORT_RANGE "Dev2/port0"
#define READ_TIMEOUT 2.0
#define WRITE_TIMEOUT 2.0
#define DAQmxErrChk(functionCall) \
do { if( DAQmxFailed(error=(functionCall)) ) \
goto Error; } while(0)
#endif
#define BUFFER_SIZE 96
/**
* This structure encapsulates the data that is private to
* the implementation of the device
*/
typedef struct device_private_t
{
/** NIDAQ device number of card */
int card_number;
/** NI channel number on card */
int channel_number;
#ifdef REGISTER_LEVEL_PROGRAMMING
HWARE_VALUE value;
CARD* card;
#else
/** NIDAQ opaque task handle */
TaskHandle taskHandle;
/** NIDAQ opaque task handle for digital output */
TaskHandle taskHandle_dout;
/** Actual physical data value, as returned by NIDAQ read function */
uInt8 data[BUFFER_SIZE];
/** previous physical data value */
uInt8 old_data[BUFFER_SIZE];
/** number of samples read */
int32 numRead;
/** number of bytes per sample */
int32 bytesPerSamp;
#endif
} DEVICE_PRIVATE;
#ifdef REGISTER_LEVEL_PROGRAMMING
static void initMite(iBus *bus);
static CARD* card[10];
#else
#endif
int hware_ctor(const char* device_name, pHWARE* ptr)
{
pHWARE hware = NULL;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = NULL;
#endif
int error = 0;
bool flag = false;
char text_string[] = DEFAULT_DEVICE;
const char *name;
const char *text;
hware = (DEVICE_PRIVATE*) malloc(sizeof(DEVICE_PRIVATE));
*ptr = hware;
memset(hware, 0, sizeof(DEVICE_PRIVATE));
name = device_name;
text = text_string;
while (name && *name)
{
if (isspace(*name))
++name;
else if (*name >= '0' && *name <= '9')
{
if (flag)
{
hware->channel_number = *name - '0';
}
else
{
hware->card_number = *name - '0';
flag = true;
}
}
else if (tolower(*name) != *text)
{
/* TODO error */
printf("Device name error: %s (%d,%d)\n",
device_name,
hware->channel_number,
hware->card_number);
break;
}
++name;
++text;
}
#ifdef REGISTER_LEVEL_PROGRAMMING
if (card[hware->card_number] == NULL)
{
char local_name[40] = "PXI6::1::INSTR";
FILE* fd = fopen("/proc/nirlpk/lsdaq", "r");
if (fd)
{
bool found = false;
int count = 0;
char line[100];
while (fgets(line, 100, fd))
{
if (strstr(line, DEVICE_ID_NUMBER))
{
++count;
name = strstr(line, "PXI");
if (name && count == hware->card_number)
{
found = true;
strcpy(local_name, name);
break;
}
}
if (!found)
{
// TODO error
}
}
fclose(fd);
}
card[hware->card_number] = (CARD*) malloc(sizeof(CARD));
memset(card[hware->card_number], 0, sizeof(CARD));
pci = card[hware->card_number];
hware->card = pci;
pci->bus = acquireBoard((tChar*) local_name /* "PXI6::1::INSTR" */);
if(pci->bus == NULL)
{
printf("Error accessing the PCI device \"%s\". Exiting.\n",
local_name);
error = 1;
goto Error;
}
//Intitialise Mite Chip.
initMite(pci->bus);
pci->Bar1 = pci->bus->createAddressSpace(kPCI_BAR1);
pci->board = new tstaticDIO(pci->Bar1);
//
//Configure All Digital lines as Input or Output
pci->board->IOSelect0.writeDirection(pci->board->IOSelect0.kDirectionInput);
pci->board->IOSelect1.writeDirection(pci->board->IOSelect1.kDirectionInput);
pci->board->IOSelect2.writeDirection(pci->board->IOSelect2.kDirectionInput);
pci->board->IOSelect3.writeDirection(pci->board->IOSelect3.kDirectionOutput);
pci->board->IOSelect4.writeDirection(pci->board->IOSelect4.kDirectionInput);
pci->board->IOSelect5.writeDirection(pci->board->IOSelect5.kDirectionInput);
pci->board->IOSelect6.writeDirection(pci->board->IOSelect6.kDirectionInput);
pci->board->IOSelect7.writeDirection(pci->board->IOSelect7.kDirectionOutput);
pci->board->IOSelect8.writeDirection(pci->board->IOSelect8.kDirectionInput);
pci->board->IOSelect9.writeDirection(pci->board->IOSelect9.kDirectionInput);
pci->board->IOSelect10.writeDirection(pci->board->IOSelect10.kDirectionInput);
pci->board->IOSelect11.writeDirection(pci->board->IOSelect11.kDirectionOutput);
}
else
{
pci = card[hware->card_number];
hware->card = pci;
}
// Mark the counter on this card as in-use
if (pci->dev_mask & (1 << hware->channel_number))
{
// TODO error
}
pci->dev_mask |= 1 << hware->channel_number;
#else
char local_name[40] = "dev2/port0";
/*********************************************/
// Create a DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxCreateTask("",&hware->taskHandle));
DAQmxErrChk (DAQmxCreateTask("",&hware->taskHandle_dout));
/*********************************************/
// Create a DAQmx device within the task
/*********************************************/
snprintf(local_name, sizeof(local_name), "dev%d/line%d:%d",
hware->card_number,
hware->channel_number * 32,
hware->channel_number * 32 + 23);
DAQmxErrChk (
DAQmxCreateDIChan(hware->taskHandle,
local_name,
"",
DAQmx_Val_ChanForAllLines));
fprintf(stderr, "Input %s\n", local_name);
snprintf(local_name, sizeof(local_name), "dev%d/line%d:%d",
hware->card_number,
hware->channel_number * 32 + 24,
hware->channel_number * 32 + 31);
DAQmxErrChk (
DAQmxCreateDOChan(hware->taskHandle_dout,
local_name,
"",
DAQmx_Val_ChanForAllLines));
fprintf(stderr, "Output %s\n", local_name);
/*********************************************/
// Start the DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxStartTask(hware->taskHandle));
DAQmxErrChk (DAQmxStartTask(hware->taskHandle_dout));
#endif
hware_write(hware, 0);
return 0;
Error:
free(hware);
*ptr = NULL;
return error;
}
int hware_read(pHWARE hware, HWARE_VALUE* value)
{
int error = 0;
*value = 0;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = hware->card;
HWARE_VALUE uPattern;
switch (hware->channel_number)
{
case 0:
uPattern = pci->board->IOPort0Data.readRegister();
uPattern |= pci->board->IOPort1Data.readRegister() << 8;
uPattern |= pci->board->IOPort2Data.readRegister() << 16;
break;
case 1:
uPattern = pci->board->IOPort4Data.readRegister();
uPattern |= pci->board->IOPort5Data.readRegister() << 8;
uPattern |= pci->board->IOPort6Data.readRegister() << 16;
break;
case 2:
uPattern = pci->board->IOPort8Data.readRegister();
uPattern |= pci->board->IOPort9Data.readRegister() << 8;
uPattern |= pci->board->IOPort10Data.readRegister() << 16;
break;
}
*value = uPattern;
#else
/*********************************************/
// DAQmx Read Code
/*********************************************/
hware->numRead = 0;
hware->bytesPerSamp = 0;
error = DAQmxReadDigitalLines (hware->taskHandle,
SAMPLE_COUNT,
READ_TIMEOUT,
DAQmx_Val_GroupByScanNumber,
hware->data,
BUFFER_SIZE,
&hware->numRead,
&hware->bytesPerSamp,
NULL);
#if 0
if (hware->channel_number == 0)
{
int i;
fprintf(stderr, "dev:%d.%d, numRead:%d, bytesPerSamp:%d",
hware->channel_number,
hware->channel_number,
(int) hware->numRead,
(int) hware->bytesPerSamp);
for (i = 0; i < hware->bytesPerSamp; ++i)
fprintf(stderr, ", %02x", hware->data[i]);
fprintf(stderr, "\n");
fflush(stderr);
}
#endif
if (error == DAQmxErrorSamplesNotYetAvailable)
{
printf("Timeout, reading raw data\n");
error = 0;
}
else if (hware_failed(error))
goto Error;
else
{
int i;
HWARE_VALUE uPattern;
uPattern = 0;
for (i = 0; i < hware->bytesPerSamp; ++i)
if (hware->data[i])
uPattern |= 1 << i;
*value = uPattern;
}
return error;
Error:
#endif
return error;
} /* hware_read */
int hware_write(pHWARE hware, HWARE_VALUE value)
{
int error = 0;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = hware->card;
switch (hware->channel_number)
{
case 0:
pci->board->IOPort3Data.writeRegister(value & 0xFF);
break;
case 1:
pci->board->IOPort7Data.writeRegister(value & 0xFF);
break;
case 2:
pci->board->IOPort11Data.writeRegister(value & 0xFF);
break;
}
#else
/*********************************************/
// DAQmx Write Code
/*********************************************/
hware->bytesPerSamp = 8;
{
int i;
// copy the data
for (i = 0; i < hware->bytesPerSamp; ++i)
hware->data[i] = (value >> i) & 1;
}
error = DAQmxWriteDigitalLines(hware->taskHandle_dout,
1,
1,
WRITE_TIMEOUT,
DAQmx_Val_GroupByChannel,
hware->data,
NULL,
NULL);
#if 1
if (hware->channel_number == 0)
{
int i;
fprintf(stderr, "dev:%d.%d, Write: %d",
hware->card_number,
hware->channel_number,
(int) hware->bytesPerSamp);
for (i = 0; i < hware->bytesPerSamp; ++i)
fprintf(stderr, ", %02x", hware->data[i]);
fprintf(stderr, "\n");
fflush(stderr);
}
#endif
if (hware_failed(error))
goto Error;
return error;
Error:
#endif
return error;
} /* hware_write */
/*
* Select the source
*/
/*
* Shut down the channel
*/
int hware_dtor(pHWARE* ptr)
{
if (ptr && *ptr)
{
pHWARE hware = *ptr;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = hware->card;
switch (hware->channel_number)
{
case 0:
break;
case 1:
break;
case 2:
break;
case 3:
break;
case 4:
break;
case 5:
break;
}
pci->dev_mask &= ~(1 << hware->channel_number);
if (pci->dev_mask == 0)
{
delete pci->board;
pci->bus->destroyAddressSpace(pci->Bar1);
releaseBoard(pci->bus);
card[hware->card_number] = NULL;
free(pci);
}
#else
if (hware->taskHandle != 0)
{
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask(hware->taskHandle);
DAQmxClearTask(hware->taskHandle);
hware->taskHandle = 0;
}
if (hware->taskHandle_dout != 0)
{
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask(hware->taskHandle_dout);
DAQmxClearTask(hware->taskHandle_dout);
hware->taskHandle_dout = 0;
}
#endif
/* release the storage */
free(hware);
*ptr = NULL;
}
return 0;
}
bool hware_failed(int error)
{
if (DAQmxFailed(error))
return true;
else
return false;
}
void hware_errmsg(char* buff, int len)
{
*buff = '\0';
DAQmxGetExtendedErrorInfo(buff, len);
}
#ifdef REGISTER_LEVEL_PROGRAMMING
//
//Tell the MITE to link the BAR1 address to the DAQ Board
//You must initialize the MITE before you write to the rest of the PCI board
void initMite(iBus *bus)
{
tAddressSpace Bar0;
u32 physicalBar1;
//Skip MITE initialization for PCMCIA boards
//(which do not have a MITE DMA controller)
if(!bus->get(kIsPciPxiBus,0)) return;
Bar0 = bus->createAddressSpace(kPCI_BAR0);
//Get the physical address of the DAQ board
physicalBar1 = bus->get(kBusAddressPhysical,kPCI_BAR1);
//Tell the MITE to enable BAR1, where the rest of the board's registers are
Bar0.write32(0xC0, (physicalBar1 & 0xffffff00L) | 0x80);
bus->destroyAddressSpace(Bar0);
}
#else
#endif

View File

@@ -0,0 +1,87 @@
/*
* This is an encapsulation of a National Instruments DIO port.
*
* It presents a simple device abstraction.
*
* The device can be read and returns a 32-bit unsigned value.
*/
#ifndef _HWARE_H_
#define _HWARE_H_
#ifdef __cplusplus
#else
#include <stdbool.h>
#endif
struct device_private_t;
typedef struct device_private_t* pHWARE;
typedef unsigned int HWARE_VALUE;
/**
* Create a device
*
* \param card_name the name of the device (e.g. "dev1/port0")
* \param ptr address of pointer to opaque private data structure
*
* \return
* 0 OK
* !0 Error
*/
int hware_ctor(const char* card_name, pHWARE* ptr);
/**
* Read the value of the device
*
* \param hware pointer to opaque private data structure
* \param value address of value to receive the output
*
* \return
* 0 OK
* !0 Error
*/
int hware_read(pHWARE hware, HWARE_VALUE* value);
/**
* Write the value of the device
*
* \param hware pointer to opaque private data structure
* \param value to be written to the device
*
* \return
* 0 OK
* !0 Error
*/
int hware_write(pHWARE hware, HWARE_VALUE value);
/**
* Destroy the device
*
* \param ptr address of pointer to opaque private data structure
*
* \return
* 0 OK
* !0 Error
*/
int hware_dtor(pHWARE* hware);
/**
* Tests returned error value to see if it represents failure
*
* \param error a value returned from another hware function
*
* \return
* true the error was a failure
* false the error was not a failure (warning)
*/
bool hware_failed(int error);
/**
* Retrieves a textual representation of the most recent error
*
* \param buff a pointer to the buffer to receive the text
* \param len the length of the provided buffer
*/
void hware_errmsg(char* buff, int len);
#endif