further rework
- dump all every full hour - finish all streams properly on exit
This commit is contained in:
394
influx.py
394
influx.py
@ -16,33 +16,94 @@
|
||||
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
#
|
||||
# Module authors:
|
||||
# Konstantin Kholostov <k.kholostov@fz-juelich.de>
|
||||
# Markus Zolliker <markus.zolliker@psi.ch>
|
||||
#
|
||||
# *****************************************************************************
|
||||
import re
|
||||
import time
|
||||
import threading
|
||||
import queue
|
||||
from math import floor, ceil, copysign
|
||||
from datetime import datetime
|
||||
import pandas as pd
|
||||
from math import floor, ceil
|
||||
|
||||
from influxdb_client import InfluxDBClient, BucketRetentionRules, Point
|
||||
from influxdb_client.client.write_api import SYNCHRONOUS as write_option
|
||||
from influxdb_client.client.write_api import SYNCHRONOUS
|
||||
|
||||
OFFSET, SCALE = pd.to_datetime(['1970-01-01 00:00:00', '1970-01-01 00:00:01']).astype(int)
|
||||
DAY = 24 * 3600
|
||||
# write_precision from digits after decimal point
|
||||
TIME_PRECISION = ['s'] + ['ms'] * 3 + ['us'] * 3 + ['ns'] * 3
|
||||
|
||||
|
||||
try:
|
||||
parse_time = datetime.fromisoformat
|
||||
except AttributeError:
|
||||
from dateutil.parser import parse as parse_time
|
||||
|
||||
|
||||
def to_time(v):
|
||||
return parse_time(v).timestamp()
|
||||
|
||||
|
||||
def identity(v):
|
||||
return v
|
||||
|
||||
|
||||
def negnull2none(v):
|
||||
"""converts -0.0 to None, returns argument for everything else, also strings"""
|
||||
return None if v == 0 and copysign(1, v) == -1 else v
|
||||
def double(v):
|
||||
return None if v == '-0' else float(v)
|
||||
|
||||
|
||||
CONVERTER = {
|
||||
'string': identity,
|
||||
'long': int,
|
||||
'double': double,
|
||||
'unsigned_long': int,
|
||||
'duration': int,
|
||||
'dateTime:RFC3339': to_time,
|
||||
'dateTime:RFC3339Nano': to_time,
|
||||
# 'base64Binary': base64.b64decode,
|
||||
}
|
||||
|
||||
|
||||
class NamedTuple(tuple):
|
||||
"""for our purpose improved version of collection.namedtuple
|
||||
|
||||
- names may be any string, but when not an identifer, attribute access is not possible
|
||||
- access by key with get ([ ] is for indexed access)
|
||||
|
||||
Usage:
|
||||
|
||||
MyNamedTuple = NamedTuple.make_class(('a', 'b'))
|
||||
x = MyNamedTuple(('a', 2.0))
|
||||
assert x == ('a', 2.0) == (x.a, x.b) == (x.get('a'), x.get('b')) == (x[0], x[1])
|
||||
"""
|
||||
keys = None
|
||||
_idx_by_name = None
|
||||
|
||||
def __new__(cls, keys):
|
||||
"""create NamedTuple class from keys
|
||||
|
||||
:param keys: a sequence of names for the elements
|
||||
"""
|
||||
idxbyname = {n: i for i, n in enumerate(keys)}
|
||||
attributes = {n: property(lambda s, idx=i: s[idx])
|
||||
for i, n in enumerate(keys)
|
||||
if n.isidentifier() and not hasattr(cls, n)}
|
||||
# clsname = '_'.join(attributes)
|
||||
attributes.update(_idx_by_name=idxbyname, __new__=tuple.__new__, keys=tuple(keys))
|
||||
return type(f"NamedTuple", (cls,), attributes)
|
||||
|
||||
def get(self, key, default=None, strict=False):
|
||||
"""get item by key
|
||||
|
||||
:param key: the key
|
||||
:param default: value to return when key does not exist
|
||||
:param strict: raise KeyError when key does not exist and ignore default
|
||||
:return: the value of requested element or default if the key does not exist
|
||||
"""
|
||||
try:
|
||||
return self[self._idx_by_name[key]]
|
||||
except KeyError:
|
||||
if strict:
|
||||
raise
|
||||
return default
|
||||
|
||||
|
||||
class RegExp(str):
|
||||
@ -53,14 +114,17 @@ class RegExp(str):
|
||||
"""
|
||||
|
||||
|
||||
def wildcard_filter(key, names):
|
||||
def append_wildcard_filter(msg, key, names):
|
||||
patterns = []
|
||||
for pattern in names:
|
||||
if isinstance(pattern, RegExp):
|
||||
patterns.append(pattern)
|
||||
else:
|
||||
patterns.append('[^.]*'.join(re.escape(v) for v in pattern.split('*')))
|
||||
return f'|> filter(fn:(r) => r.{key} =~ /^({pattern})$/)'
|
||||
# patterns.append('[^.]*'.join(re.escape(v) for v in pattern.split('*')))
|
||||
patterns.append('.*'.join(re.escape(v) for v in pattern.split('*')))
|
||||
if patterns:
|
||||
pattern = '|'.join(patterns)
|
||||
msg.append(f'|> filter(fn:(r) => r.{key} =~ /^({pattern})$/)')
|
||||
|
||||
|
||||
class CurveDict(dict):
|
||||
@ -68,54 +132,7 @@ class CurveDict(dict):
|
||||
return []
|
||||
|
||||
|
||||
class NamedTuple(tuple):
|
||||
"""for our purpose improved version of collection.namedtuple
|
||||
|
||||
- names may be any string, but when not an identifer, no attribute access
|
||||
- dict like access with [<key>]
|
||||
- customized converter (or validator) function for initialization
|
||||
|
||||
Usage:
|
||||
|
||||
MyNamedTuple1 = NamedTuple('a', 'b')
|
||||
x = MyNamedTuple1(1, 'y')
|
||||
assert x == (1, 'y') == (x.a, x.b)
|
||||
MyNamedTuple2 = NamedTuple(a=str, b=float)
|
||||
y = MyNamedTuple2(10, b='2')
|
||||
assert y == ('10', 2) == (y['a'], y['b'])
|
||||
"""
|
||||
_indices = None
|
||||
_converters = None
|
||||
|
||||
def __new__(cls, *args, **kwds):
|
||||
if cls is NamedTuple:
|
||||
return cls.getcls(dict({a: identity for a in args}, **kwds))
|
||||
values = dict(zip(cls._converters, args), **kwds)
|
||||
elements = []
|
||||
for key, cvt in cls._converters.items():
|
||||
try:
|
||||
elements.append(cvt(values[key]))
|
||||
except KeyError:
|
||||
elements.append(None)
|
||||
return super().__new__(cls, elements)
|
||||
|
||||
def __getitem__(self, key):
|
||||
try:
|
||||
return tuple(self)[key]
|
||||
except Exception:
|
||||
return tuple(self)[self._indices[key]]
|
||||
|
||||
@classmethod
|
||||
def getcls(cls, converters):
|
||||
attributes = {'_converters': converters,
|
||||
'_indices': {k: i for i, k in enumerate(converters)}}
|
||||
for idx, name in enumerate(converters):
|
||||
if name.isidentifier():
|
||||
attributes[name] = property(lambda s, i=idx: s[i])
|
||||
return type('NamedTuple', (cls,), attributes)
|
||||
|
||||
|
||||
def abs_range(start=None, stop=None, interval=None):
|
||||
def abs_range(start=None, stop=None):
|
||||
now = time.time()
|
||||
if start is None:
|
||||
start = int(now - 32 * DAY)
|
||||
@ -142,64 +159,38 @@ class InfluxDBWrapper:
|
||||
(work of Konstantin Kholostov <k.kholostov@fz-juelich.de>)
|
||||
"""
|
||||
_update_queue = None
|
||||
_write_thread = None
|
||||
_write_api_write = None
|
||||
|
||||
def __init__(self, url, token, org, bucket, threaded=False, create=False, watch_interval=300):
|
||||
self._watch_interval = watch_interval
|
||||
def __init__(self, url, token, org, bucket, access='readonly'):
|
||||
"""initialize
|
||||
|
||||
:param url: the url for the influx DB
|
||||
:param token: the token
|
||||
:param org: the organisation
|
||||
:param bucket: the bucket name
|
||||
:param access: 'readonly', 'write' (RW) or 'create' (incl. RW)
|
||||
"""
|
||||
self._url = url
|
||||
self._token = token
|
||||
self._org = org
|
||||
self._bucket = bucket
|
||||
self._client = InfluxDBClient(url=self._url, token=self._token,
|
||||
org=self._org)
|
||||
self._write_api_write = self._client.write_api(write_options=write_option).write
|
||||
if access != 'readonly':
|
||||
self.enable_write_access()
|
||||
self._deadline = 0
|
||||
self._active_streams = {}
|
||||
self.set_time_precision(3)
|
||||
self.add_new_bucket(self._bucket, create)
|
||||
if threaded:
|
||||
self._update_queue = queue.Queue(100)
|
||||
self._write_thread = threading.Thread(target=self._write_thread)
|
||||
self.add_new_bucket(self._bucket, access == 'create')
|
||||
self._write_buffer = []
|
||||
|
||||
def _write(self, point):
|
||||
if self._update_queue:
|
||||
self._update_queue.put(point)
|
||||
else:
|
||||
self._write_api_write(bucket=self._bucket, record=[point])
|
||||
|
||||
def _write_thread(self):
|
||||
while 1:
|
||||
points = [self.write_queue.get()]
|
||||
try:
|
||||
while 1:
|
||||
points.append(self.write_queue.get(False))
|
||||
except queue.Empty:
|
||||
pass
|
||||
self._write_api_write(bucket=self._bucket, record=points)
|
||||
event = self._wait_complete
|
||||
if event:
|
||||
self._wait_complete = None
|
||||
event.set()
|
||||
|
||||
def flush(self):
|
||||
if self._write_thread:
|
||||
self._wait_complete = event = threading.Event()
|
||||
event.wait()
|
||||
def enable_write_access(self):
|
||||
self._write_api_write = self._client.write_api(write_options=SYNCHRONOUS).write
|
||||
|
||||
def set_time_precision(self, digits):
|
||||
self.timedig = max(0, min(digits, 9))
|
||||
self._write_precision = TIME_PRECISION[self.timedig]
|
||||
|
||||
def to_timestamp(self, timevalue):
|
||||
return round(timevalue.timestamp(), self.timedig)
|
||||
|
||||
def disconnect(self):
|
||||
for _ in range(10):
|
||||
self._write_thread.join(1)
|
||||
for stream, last in self._active_streams.items():
|
||||
self._write(Point('_streams_')
|
||||
.time(last, write_precision=self._write_precision)
|
||||
.field('interval', 0).tag('stream', stream))
|
||||
self.flush()
|
||||
self._client.close()
|
||||
|
||||
@ -231,138 +222,209 @@ class InfluxDBWrapper:
|
||||
bucket=self._bucket, org=self._org)
|
||||
|
||||
def delete_all_measurements(self):
|
||||
all = self.get_measurements()
|
||||
for meas in all:
|
||||
self.get_measurements(meas)
|
||||
print('deleted', all)
|
||||
measurements = self.get_measurements()
|
||||
for meas in measurements:
|
||||
self.delete_measurement(meas)
|
||||
print('deleted', measurements)
|
||||
|
||||
def query(self, start=None, stop=None, interval=None, last=False, **tags):
|
||||
# query the database
|
||||
|
||||
def query(self, start=None, stop=None, interval=None, last=False, columns=None, **tags):
|
||||
"""Returns queried data as InfluxDB tables
|
||||
|
||||
:param start: start time. default is a month ago
|
||||
:param stop: end time, default is tomorrow at the same time
|
||||
:param interval: is set an aggregation filter will be applied. This will
|
||||
return only the latest values for a time interval in seconds.
|
||||
:param interval: if set an aggregation filter will be applied. This will
|
||||
return only the latest values per time interval in seconds.
|
||||
:param last: when True, only the last value within the interval is returned
|
||||
(for any existing combinations of tags!)
|
||||
:param columns: if given, return only these columns (in addition to '_time' and '_value')
|
||||
:param tags: selection criteria:
|
||||
<tag>=None
|
||||
return records independent of the tag. the value will be contained in the result dicts key
|
||||
return records independent of this tag. the value will be contained in the result dicts key
|
||||
<tag>=[<value1>, <value2>, ...]
|
||||
return records with given tag from the list. the value is contained in the result dicts key
|
||||
return records where tag is one from the list. the value is contained in the result dicts key
|
||||
<tag>>=<value>:
|
||||
return only records with given tag matching <value>. the value is not part of the results key
|
||||
<tag>=<func>
|
||||
where <func> is a callable. return tag as value in returned rows. <func> is used for value conversion
|
||||
|
||||
:return: a dict <tuple of key values> of list of <row>>
|
||||
:return: a dict <tuple of key values> of list of <row>
|
||||
where <tuple of keys> and <row> are NamedTuple
|
||||
"""
|
||||
self.flush()
|
||||
start, stop = round_range(*abs_range(start, stop), interval)
|
||||
start, stop = round_range(*abs_range(start, stop))
|
||||
msg = [f'from(bucket:"{self._bucket}")',
|
||||
f'|> range(start: {start}, stop: {stop})']
|
||||
|
||||
columns = {'_time': self.to_timestamp, '_value': negnull2none}
|
||||
keynames = []
|
||||
dropcols = ['_start', '_stop']
|
||||
for key, crit in tags.items():
|
||||
if crit is None:
|
||||
keynames.append(key)
|
||||
continue
|
||||
if callable(crit):
|
||||
columns[key] = crit
|
||||
continue
|
||||
if isinstance(crit, str):
|
||||
if isinstance(crit, RegExp) or '*' in crit:
|
||||
keynames.append(key)
|
||||
msg.append(wildcard_filter(key, [crit]))
|
||||
append_wildcard_filter(msg, key, [crit])
|
||||
continue
|
||||
dropcols.append(key)
|
||||
crit = f'"{crit}"'
|
||||
elif not isinstance(crit, (int, float)):
|
||||
elif isinstance(crit, (int, float)):
|
||||
dropcols.append(key)
|
||||
else:
|
||||
try:
|
||||
keynames.append(key)
|
||||
msg.append(wildcard_filter(key, crit))
|
||||
append_wildcard_filter(msg, key, crit)
|
||||
continue
|
||||
except Exception:
|
||||
raise ValueError(f'illegal value for {key}: {crit}')
|
||||
msg.append(f'|> filter(fn:(r) => r.{key} == {crit})')
|
||||
|
||||
if last:
|
||||
msg.append('|> last(column: "_time")')
|
||||
if interval:
|
||||
msg.append(f'|> aggregateWindow(every: {interval}s, fn: last, createEmpty: false)')
|
||||
if columns is not None:
|
||||
msg.append(f'''|> keep(columns:["{'","'.join(list(columns) + keynames)}"])''')
|
||||
if columns is None:
|
||||
msg.append(f'''|> drop(columns:["{'","'.join(dropcols)}"])''')
|
||||
else:
|
||||
columns = ['_time', '_value'] + list(columns)
|
||||
msg.append(f'''|> keep(columns:["{'","'.join(columns + keynames)}"])''')
|
||||
|
||||
msg = '\n'.join(msg)
|
||||
print(msg)
|
||||
tables = self._client.query_api().query(msg)
|
||||
result = CurveDict()
|
||||
keycls = NamedTuple(*keynames)
|
||||
colcls = NamedTuple(**columns)
|
||||
for table in tables:
|
||||
key = None
|
||||
for rec in table:
|
||||
print(rec.values)
|
||||
if key is None:
|
||||
key = keycls(**rec.values)
|
||||
result.setdefault(key, [])
|
||||
data = colcls(**rec.values)
|
||||
result[key].append(data)
|
||||
result[key].sort(key=lambda v: v[0])
|
||||
print('---')
|
||||
|
||||
reader = self._client.query_api().query_csv(msg)
|
||||
sort = False
|
||||
converters = None
|
||||
group = None
|
||||
column_names = None
|
||||
key = None
|
||||
result = {}
|
||||
table = None
|
||||
|
||||
for row in reader:
|
||||
if not row:
|
||||
continue
|
||||
if row[0]:
|
||||
if row[0] == '#datatype':
|
||||
converters = {i: CONVERTER.get(d) for i, d in enumerate(row) if i > 2}
|
||||
column_names = None
|
||||
elif row[0] == '#group':
|
||||
group = row
|
||||
continue
|
||||
if column_names is None:
|
||||
column_names = row
|
||||
keys = {}
|
||||
for col, (name, grp) in enumerate(zip(column_names, group)):
|
||||
if grp != 'true':
|
||||
continue
|
||||
# if name in keynames or (columns is None and name not in dropcols):
|
||||
if name in keynames or columns is None:
|
||||
keys[col] = converters.pop(col)
|
||||
else:
|
||||
sort = True
|
||||
valuecls = NamedTuple([row[i] for i in converters])
|
||||
keycls = NamedTuple([row[i] for i in keys])
|
||||
continue
|
||||
if row[2] != table:
|
||||
# new table, new key
|
||||
table = row[2]
|
||||
key = keycls(f(row[i]) for i, f in keys.items())
|
||||
if result.get(key) is None:
|
||||
result[key] = []
|
||||
elif not sort:
|
||||
# this should not happen
|
||||
sort = True
|
||||
|
||||
result[key].append(valuecls(f(row[i]) for i, f in converters.items()))
|
||||
if last:
|
||||
for key, table in result.items():
|
||||
result[key], = table
|
||||
elif sort:
|
||||
for table in result.values():
|
||||
table.sort()
|
||||
return result
|
||||
|
||||
def curves(self, start=None, stop=None, measurement=None, field='float', interval=None,
|
||||
add_prev=True, **tags):
|
||||
add_prev=3600, add_end=False, **tags):
|
||||
"""get curves
|
||||
|
||||
:param start: start time (default: one month ago)
|
||||
:param stop: end time (default: tomorrow)
|
||||
:param measurement: '<module>.<parameter>' (default: ['*.value', '*.target'])
|
||||
:param field: default 'float' (only numeric curves)
|
||||
:param interval: if given, the result is binned
|
||||
:param add_prev: amount of time to look back for the last previous point (default: 1 hr)
|
||||
:param add_end: whether to add endpoint at stop time (default: False)
|
||||
:param tags: further selection criteria
|
||||
:return: a dict <tuple of key values> of list of <row>
|
||||
where <tuple of keys> and <row> are NamedTuple
|
||||
<row> is (<timestamp>, <value>)
|
||||
|
||||
when field='float' (the default), the returned values are either a floats or None
|
||||
"""
|
||||
for key, val in zip(('_measurement', '_field'), (measurement, field)):
|
||||
tags.setdefault(key, val)
|
||||
start, stop = abs_range(start, stop)
|
||||
rstart, rstop = round_range(start, stop, interval)
|
||||
if rstart < rstop:
|
||||
result = self.query(rstart, rstop, interval, **tags)
|
||||
result = self.query(rstart, rstop, interval, columns=[], **tags)
|
||||
else:
|
||||
result = {}
|
||||
if add_prev:
|
||||
prev = self.query(rstart - DAY, rstart, last=True, **tags)
|
||||
for key, prev in prev.items():
|
||||
prev_data = self.query(rstart - add_prev, rstart, last=True, **tags)
|
||||
for key, first in prev_data.items():
|
||||
curve = result.get(key)
|
||||
first = prev[-1]
|
||||
if first[1] is not None:
|
||||
if curve:
|
||||
if first[0] < curve[0][0]:
|
||||
curve.insert(0, first)
|
||||
else:
|
||||
result[key] = [first]
|
||||
if add_end:
|
||||
for key, curve in result.items():
|
||||
if curve:
|
||||
last = list(curve[-1])
|
||||
if last[0] < stop:
|
||||
last[0] = stop
|
||||
curve.append(type(curve[-1])(last))
|
||||
return result
|
||||
|
||||
def write(self, measurement, field, value, ts, **tags):
|
||||
self._active_streams[tags.get('stream')] = ts
|
||||
if ts > self._deadline:
|
||||
dl = ts // self._watch_interval * self._watch_interval
|
||||
for stream, last in self._active_streams.items():
|
||||
self._write(
|
||||
Point('_streams_')
|
||||
.time(datetime.utcfromtimestamp(last), write_precision=self._write_precision)
|
||||
.field('interval', self._watch_interval).tag('stream', stream))
|
||||
self._active_streams.clear()
|
||||
self._deadline = dl + self._watch_interval
|
||||
# write to the database
|
||||
|
||||
def _add_point(self, value, ts, measurement, field, tags):
|
||||
point = Point(measurement).field(f'{field}', value)
|
||||
if ts:
|
||||
point.time(datetime.utcfromtimestamp(ts), write_precision=self._write_precision)
|
||||
for key, val in tags.items():
|
||||
point.tag(key, val)
|
||||
self._write(point)
|
||||
self._write_buffer.append(point)
|
||||
|
||||
def write_float(self, measurement, field, value, ts, **tags):
|
||||
# make sure value is float
|
||||
value = -0.0 if value is None else float(value)
|
||||
self.write(measurement, field, value, ts, **tags)
|
||||
def write(self, measurement, field, value, ts, **tags):
|
||||
"""add point and flush"""
|
||||
self._add_point(measurement, field, value, ts, tags)
|
||||
self.flush()
|
||||
|
||||
def write_string(self, measurement, field, value, ts, **tags):
|
||||
# make sure value is string
|
||||
value = '' if value is None else str(value)
|
||||
self.write(measurement, field, value, ts, **tags)
|
||||
def flush(self):
|
||||
"""flush write buffer"""
|
||||
points = self._write_buffer
|
||||
self._write_buffer = []
|
||||
if points:
|
||||
try:
|
||||
self._write_api_write(bucket=self._bucket, record=points)
|
||||
except TypeError as e:
|
||||
if self._write_api_write is None:
|
||||
raise PermissionError('no write access - need access="write"') from None
|
||||
raise
|
||||
|
||||
def add_point(self, isfloat, value, *args):
|
||||
"""add point to the buffer
|
||||
|
||||
flush must be called in order to write the buffer
|
||||
"""
|
||||
if isfloat:
|
||||
# make sure value is float
|
||||
self._add_point(-0.0 if value is None else float(value), *args)
|
||||
else:
|
||||
self._add_point('' if value is None else str(value), *args)
|
||||
|
||||
|
||||
def testdb():
|
||||
|
Reference in New Issue
Block a user