major improvements and rework
- add stream / instrument availability data - events contain event kind for dispatching db methods
This commit is contained in:
520
influx.py
520
influx.py
@ -21,16 +21,19 @@
|
||||
# *****************************************************************************
|
||||
import re
|
||||
import time
|
||||
from datetime import datetime
|
||||
from pathlib import Path
|
||||
from configparser import ConfigParser
|
||||
from datetime import datetime, timezone
|
||||
from math import floor, ceil
|
||||
|
||||
from influxdb_client import InfluxDBClient, BucketRetentionRules, Point
|
||||
from influxdb_client.client.write_api import SYNCHRONOUS
|
||||
|
||||
DAY = 24 * 3600
|
||||
YEAR = 366 * DAY
|
||||
# write_precision from digits after decimal point
|
||||
TIME_PRECISION = ['s'] + ['ms'] * 3 + ['us'] * 3 + ['ns'] * 3
|
||||
|
||||
UNDEF = '<undef>'
|
||||
|
||||
try:
|
||||
parse_time = datetime.fromisoformat
|
||||
@ -42,92 +45,104 @@ def to_time(v):
|
||||
return parse_time(v).timestamp()
|
||||
|
||||
|
||||
def identity(v):
|
||||
return v
|
||||
def to_iso(t):
|
||||
return datetime.fromtimestamp(t, timezone.utc).isoformat().replace('+00:00', 'Z')
|
||||
|
||||
|
||||
def double(v):
|
||||
return None if v == '-0' else float(v)
|
||||
class PrettyFloat(float):
|
||||
"""saves bandwidth when converting to JSON
|
||||
|
||||
a lot of numbers originally have a fixed (low) number of decimal digits.
|
||||
as the binary representation is not exact, it might happen, that a
|
||||
lot of superfluous digits are transmitted:
|
||||
|
||||
CONVERTER = {
|
||||
'string': identity,
|
||||
'long': int,
|
||||
'double': double,
|
||||
'unsigned_long': int,
|
||||
'duration': int,
|
||||
'dateTime:RFC3339': to_time,
|
||||
'dateTime:RFC3339Nano': to_time,
|
||||
# 'base64Binary': base64.b64decode,
|
||||
}
|
||||
|
||||
|
||||
class NamedTuple(tuple):
|
||||
"""for our purpose improved version of collection.namedtuple
|
||||
|
||||
- names may be any string, but when not an identifer, attribute access is not possible
|
||||
- access by key with get ([ ] is for indexed access)
|
||||
|
||||
Usage:
|
||||
|
||||
MyNamedTuple = NamedTuple.make_class(('a', 'b'))
|
||||
x = MyNamedTuple(('a', 2.0))
|
||||
assert x == ('a', 2.0) == (x.a, x.b) == (x.get('a'), x.get('b')) == (x[0], x[1])
|
||||
str(1/10*3) == '0.30000000000000004'
|
||||
str(PrettyFloat(1/10*3)) == '0.3'
|
||||
"""
|
||||
keys = None
|
||||
_idx_by_name = None
|
||||
def __new__(cls, value):
|
||||
return None if value == '-0' else super().__new__(cls, value)
|
||||
|
||||
def __new__(cls, keys):
|
||||
"""create NamedTuple class from keys
|
||||
def __repr__(self):
|
||||
return '%.15g' % self
|
||||
|
||||
:param keys: a sequence of names for the elements
|
||||
"""
|
||||
idxbyname = {n: i for i, n in enumerate(keys)}
|
||||
attributes = {n: property(lambda s, idx=i: s[idx])
|
||||
for i, n in enumerate(keys)
|
||||
if n.isidentifier() and not hasattr(cls, n)}
|
||||
# clsname = '_'.join(attributes)
|
||||
attributes.update(_idx_by_name=idxbyname, __new__=tuple.__new__, keys=tuple(keys))
|
||||
return type(f"NamedTuple", (cls,), attributes)
|
||||
|
||||
def get(self, key, default=None, strict=False):
|
||||
"""get item by key
|
||||
class Converters(dict):
|
||||
def __init__(self, datatypes):
|
||||
super().__init__((i, getattr(self, f"cvt_{d.split(':')[0]}"))
|
||||
for i, d in enumerate(datatypes) if i > 2)
|
||||
|
||||
:param key: the key
|
||||
:param default: value to return when key does not exist
|
||||
:param strict: raise KeyError when key does not exist and ignore default
|
||||
:return: the value of requested element or default if the key does not exist
|
||||
"""
|
||||
try:
|
||||
return self[self._idx_by_name[key]]
|
||||
except KeyError:
|
||||
if strict:
|
||||
raise
|
||||
return default
|
||||
def as_tuple(self, row):
|
||||
"""get selected columns as tuple"""
|
||||
return tuple(f(row[i]) for i, f in self.items())
|
||||
|
||||
@property
|
||||
def names(self):
|
||||
return tuple(self._idx_by_name)
|
||||
cvt_double = staticmethod(PrettyFloat)
|
||||
|
||||
def tuple(self, *keys):
|
||||
return tuple(self.get(k) for k in keys)
|
||||
@staticmethod
|
||||
def cvt_string(value):
|
||||
return value
|
||||
|
||||
@staticmethod
|
||||
def cvt_long(value):
|
||||
return int(value)
|
||||
|
||||
@staticmethod
|
||||
def cvt_dateTime(value):
|
||||
return to_time(value)
|
||||
|
||||
@staticmethod
|
||||
def cvt_boolean(value):
|
||||
return value == 'true'
|
||||
|
||||
cvt_unsigned_long = cvt_duration = cvt_long
|
||||
|
||||
|
||||
class Table(list):
|
||||
"""a list of tuples with meta info"""
|
||||
def __init__(self, tags, key_names, column_names):
|
||||
def __init__(self, tags={}, key_names=(), column_names=(), rows=None):
|
||||
super().__init__()
|
||||
self.tags = tags
|
||||
self.key_names = key_names
|
||||
self.column_names = column_names
|
||||
if rows:
|
||||
self[:] = rows
|
||||
|
||||
def to_csv_rows(self, timeoffset=0, sep='\t', none='none', float_format='%.15g'):
|
||||
for row in self:
|
||||
result = ['%.15g' % (row[0] - timeoffset)]
|
||||
for value in row[1:]:
|
||||
try:
|
||||
result.append(float_format % value)
|
||||
except TypeError:
|
||||
if value is None:
|
||||
result.append(none)
|
||||
else:
|
||||
result.append(str(value).replace(sep, ' '))
|
||||
yield sep.join(result)
|
||||
|
||||
|
||||
class Single(Table):
|
||||
"""a single row of a table, as a list with meta info"""
|
||||
def __init__(self, table):
|
||||
super().__init__(table.tags, table.key_names, table.column_names)
|
||||
single, = table
|
||||
self[:] = single
|
||||
def __init__(self, tags={}, key_names=(), column_names=(), rows=None):
|
||||
super().__init__(tags, key_names, column_names)
|
||||
if rows:
|
||||
single_row, = rows
|
||||
self[:] = single_row
|
||||
|
||||
|
||||
def summarize_tags(curves, remove_multiple=False):
|
||||
"""summarize tags
|
||||
|
||||
:param curves: list of curves (type Table)
|
||||
:param remove_multiple: True: remove non-unique values
|
||||
:return: dict <key> of comma separated values
|
||||
"""
|
||||
result = {}
|
||||
for curve in curves:
|
||||
for k, v in curve.tags.items():
|
||||
result.setdefault(k, set()).add(str(v))
|
||||
if remove_multiple:
|
||||
return {k: ','.join(v) for k, v in result.items() if len(v) == 1}
|
||||
return {k: ','.join(v) for k, v in result.items()}
|
||||
|
||||
|
||||
class RegExp(str):
|
||||
@ -158,13 +173,13 @@ class CurveDict(dict):
|
||||
|
||||
def abs_range(start=None, stop=None):
|
||||
now = time.time()
|
||||
if start is None:
|
||||
start = int(now - 32 * DAY)
|
||||
elif start < 366 * DAY:
|
||||
if start is None: # since ever
|
||||
start = 0
|
||||
elif start < YEAR:
|
||||
start = int(now + start)
|
||||
if stop is None:
|
||||
stop = int(now + DAY)
|
||||
elif stop < 366 * DAY:
|
||||
stop = int(now + YEAR)
|
||||
elif stop < YEAR:
|
||||
stop = ceil(now + stop)
|
||||
return start, stop
|
||||
|
||||
@ -185,19 +200,24 @@ class InfluxDBWrapper:
|
||||
_update_queue = None
|
||||
_write_api_write = None
|
||||
|
||||
def __init__(self, url, token, org, bucket, access='readonly'):
|
||||
def __init__(self, uri=None, token=None, org=None, bucket=None, access='readonly'):
|
||||
"""initialize
|
||||
|
||||
:param url: the url for the influx DB
|
||||
:param uri: the uri for the influx DB or a name to look up in ~/.sehistory
|
||||
:param token: the token
|
||||
:param org: the organisation
|
||||
:param bucket: the bucket name
|
||||
:param access: 'readonly', 'write' (RW) or 'create' (incl. RW)
|
||||
"""
|
||||
self._url = url
|
||||
self._token = token
|
||||
self._org = org
|
||||
self._bucket = bucket
|
||||
if ':' in uri:
|
||||
args = uri, token, org, bucket
|
||||
else:
|
||||
parser = ConfigParser()
|
||||
parser.optionxform = str
|
||||
parser.read([Path('~').expanduser() / '.sehistory'])
|
||||
section = parser[uri]
|
||||
args = [section[k] for k in ('uri', 'token', 'org', 'bucket')]
|
||||
self._url, self._token, self._org, self._bucket =args
|
||||
self._client = InfluxDBClient(url=self._url, token=self._token,
|
||||
org=self._org)
|
||||
if access != 'readonly':
|
||||
@ -206,6 +226,8 @@ class InfluxDBWrapper:
|
||||
self.set_time_precision(3)
|
||||
self.add_new_bucket(self._bucket, access == 'create')
|
||||
self._write_buffer = []
|
||||
self._alias = {}
|
||||
print('InfluxDBWrapper', self._url, self._org, self._bucket)
|
||||
|
||||
def enable_write_access(self):
|
||||
self._write_api_write = self._client.write_api(write_options=SYNCHRONOUS).write
|
||||
@ -240,24 +262,47 @@ class InfluxDBWrapper:
|
||||
import "influxdata/influxdb/schema"
|
||||
schema.measurements(bucket: "{self._bucket}")""") for r in t]
|
||||
|
||||
def delete_measurement(self, measurement):
|
||||
def delete_measurement(self, measurement, start=None, stop=None):
|
||||
delete_api = self._client.delete_api()
|
||||
delete_api.delete('1970-01-01T00:00:00Z', '2038-01-01T00:00:00Z', f'_measurement="{measurement}"',
|
||||
start, stop = abs_range(start, stop)
|
||||
if stop is None:
|
||||
stop = time.time() + DAY
|
||||
delete_api.delete(to_iso(start), to_iso(stop), f'_measurement="{measurement}"',
|
||||
bucket=self._bucket, org=self._org)
|
||||
|
||||
def delete_all_measurements(self):
|
||||
measurements = self.get_measurements()
|
||||
def delete_all_measurements(self, measurements=None, start=0, stop=None):
|
||||
if measurements is None:
|
||||
measurements = self.get_measurements()
|
||||
for meas in measurements:
|
||||
self.delete_measurement(meas)
|
||||
print('deleted', measurements)
|
||||
self.delete_measurement(meas, start, stop)
|
||||
|
||||
def _get_rows(self, reader, as_tuple, first_row):
|
||||
row = first_row
|
||||
tableno = row[2]
|
||||
try:
|
||||
while 1:
|
||||
if row[0]:
|
||||
first_row[:] = row
|
||||
return
|
||||
if row[2] != tableno:
|
||||
# table id changed: new table, store first row for next call
|
||||
first_row[:] = row
|
||||
return
|
||||
yield as_tuple(row)
|
||||
row = next(reader)
|
||||
if not row:
|
||||
raise ValueError('EMPTY')
|
||||
except StopIteration:
|
||||
first_row.clear() # indicate end of data
|
||||
|
||||
|
||||
# query the database
|
||||
|
||||
def query(self, start=None, stop=None, interval=None, single=None, columns=None, **tags):
|
||||
"""Returns queried data as InfluxDB tables
|
||||
|
||||
:param start: start time. default is a month ago
|
||||
:param stop: end time, default is tomorrow at the same time
|
||||
:param start: start time (default: since ever)
|
||||
:param stop: end time (default: eternity = 1 year in the future)
|
||||
:param interval: if set an aggregation filter will be applied. This will
|
||||
return only the latest values per time interval in seconds.
|
||||
:param single: when True (or 1), only the last value within the interval is returned
|
||||
@ -276,24 +321,44 @@ class InfluxDBWrapper:
|
||||
the obtained value is contained in the result dicts key only
|
||||
if the value is an instance of RegExp or when it contains an asterisk ('*')
|
||||
|
||||
:return: a dict <tuple of key values> of list of <row>
|
||||
where <tuple of keys> and <row> are NamedTuple
|
||||
:return: a dict <tuple of key values> of <Table instance>
|
||||
Table is an extension of list, with some meta info
|
||||
"""
|
||||
result = {}
|
||||
for rows, key, props in self.query_gen(start, stop, interval, single, columns, **tags):
|
||||
if single:
|
||||
result[key] = Single(*props, rows=rows)
|
||||
else:
|
||||
table = Table(*props, rows=rows)
|
||||
table.sort()
|
||||
result[key] = table
|
||||
return result
|
||||
|
||||
def query_gen(self, start=None, stop=None, interval=None, single=None, columns=None, **tags):
|
||||
"""Returns queried data as InfluxDB as a generator
|
||||
|
||||
argument description: see query methods
|
||||
|
||||
:return: an iterator of (rows, key, (tags, key_names, column_names))
|
||||
|
||||
remark: rows not consumed in between iteration steps are lost
|
||||
using this generator version does reduce memory usage
|
||||
"""
|
||||
self.flush()
|
||||
start, stop = round_range(*abs_range(start, stop))
|
||||
msg = [f'from(bucket:"{self._bucket}")',
|
||||
f'|> range(start: {start}, stop: {stop})']
|
||||
|
||||
keys = {}
|
||||
keylist = []
|
||||
dropcols = ['_start', '_stop']
|
||||
fixed_tags = {}
|
||||
for key, crit in tags.items():
|
||||
if crit is None:
|
||||
keys[key] = None
|
||||
keylist.append(key)
|
||||
continue
|
||||
if isinstance(crit, str):
|
||||
if isinstance(crit, RegExp) or '*' in crit:
|
||||
keys[key] = None
|
||||
keylist.append(key)
|
||||
append_wildcard_filter(msg, key, [crit])
|
||||
continue
|
||||
fixed_tags[key] = crit
|
||||
@ -304,7 +369,7 @@ class InfluxDBWrapper:
|
||||
dropcols.append(key)
|
||||
else:
|
||||
try:
|
||||
keys[key] = None
|
||||
keylist.append(key)
|
||||
append_wildcard_filter(msg, key, crit)
|
||||
continue
|
||||
except Exception:
|
||||
@ -316,84 +381,96 @@ class InfluxDBWrapper:
|
||||
else:
|
||||
msg.append('|> last(column: "_time")')
|
||||
if interval:
|
||||
msg.append(f'|> aggregateWindow(every: {interval}s, fn: last, createEmpty: false)')
|
||||
msg.append(f'|> aggregateWindow(every: {interval:g}s, fn: last, createEmpty: false)')
|
||||
if columns is None:
|
||||
msg.append(f'''|> drop(columns:["{'","'.join(dropcols)}"])''')
|
||||
else:
|
||||
columns = ['_time', '_value'] + list(columns)
|
||||
msg.append(f'''|> keep(columns:["{'","'.join(columns + keys)}"])''')
|
||||
msg.append(f'''|> keep(columns:["{'","'.join(columns + keylist)}"])''')
|
||||
|
||||
msg = '\n'.join(msg)
|
||||
print(msg)
|
||||
# print(msg)
|
||||
self.msg = msg
|
||||
|
||||
reader = self._client.query_api().query_csv(msg)
|
||||
print('CSV', keys, columns)
|
||||
converters = None
|
||||
group = None
|
||||
column_names = None
|
||||
column_keys = None
|
||||
key = None
|
||||
result = {}
|
||||
tableno = None
|
||||
try:
|
||||
reader = self._client.query_api().query_csv(msg)
|
||||
except Exception:
|
||||
print(msg)
|
||||
raise
|
||||
|
||||
for row in reader:
|
||||
if not row:
|
||||
continue
|
||||
if row[0]:
|
||||
if row[0] == '#datatype':
|
||||
converters = {i: CONVERTER.get(d) for i, d in enumerate(row) if i > 2}
|
||||
column_names = None
|
||||
elif row[0] == '#group':
|
||||
group = row
|
||||
continue
|
||||
if column_names is None:
|
||||
try:
|
||||
row = next(reader)
|
||||
except StopIteration:
|
||||
return
|
||||
converters = key_dict = table_properties = None # make IDE happy
|
||||
for i in range(5):
|
||||
header = {}
|
||||
if row[0]: # this is a header
|
||||
header[row[0]] = row
|
||||
for row in reader:
|
||||
if row:
|
||||
if not row[0]:
|
||||
break
|
||||
header[row[0]] = row
|
||||
else:
|
||||
return # this should not happen
|
||||
# we are now at the row with the column names
|
||||
column_names = row
|
||||
converters = Converters(header['#datatype'])
|
||||
group = header['#group']
|
||||
keys = {k: None for k in keylist}
|
||||
|
||||
for col, (name, grp) in enumerate(zip(column_names, group)):
|
||||
if grp != 'true':
|
||||
continue
|
||||
if columns is None or name in keys:
|
||||
keys[name] = col, converters.pop(col)
|
||||
column_keys = tuple(column_names[i] for i in converters)
|
||||
continue
|
||||
if row[2] != tableno:
|
||||
# new table, new key
|
||||
tableno = row[2]
|
||||
key_dict = {n: f(row[i]) for n, (i, f) in keys.items()}
|
||||
key = tuple(key_dict.values())
|
||||
if result.get(key) is None:
|
||||
print('KC', key_dict, column_keys)
|
||||
result[key] = Table({**fixed_tags, **key_dict}, tuple(keys), column_keys)
|
||||
|
||||
result[key].append(tuple(f(row[i]) for i, f in converters.items()))
|
||||
if single:
|
||||
for key, table in result.items():
|
||||
result[key] = Single(table)
|
||||
else:
|
||||
for table in result.values():
|
||||
table.sort()
|
||||
return result
|
||||
none_keys = [k for k, v in keys.items() if v is None]
|
||||
if none_keys:
|
||||
for k in none_keys:
|
||||
keys.pop(k)
|
||||
# break
|
||||
row = next(reader)
|
||||
# we are at the first data row
|
||||
key_dict = {n: f(row[i]) for n, (i, f) in keys.items()}
|
||||
column_keys = tuple(column_names[i] for i in converters)
|
||||
table_properties = {**fixed_tags, **key_dict}, tuple(keys), column_keys
|
||||
key = tuple(key_dict.values())
|
||||
row = list(row) # copy row, as it will be modified
|
||||
rows = self._get_rows(reader, converters.as_tuple, row)
|
||||
yield rows, key, table_properties
|
||||
# consume unused rows
|
||||
consumed = sum(1 for _ in rows)
|
||||
if consumed:
|
||||
print('skip', consumed, 'rows')
|
||||
if not row: # reader is at end
|
||||
return
|
||||
|
||||
def curves(self, start=None, stop=None, measurement=('*.value', '*.target'), field='float',
|
||||
interval=None, add_prev=3600, add_end=True, **tags):
|
||||
interval=None, add_prev=3600, add_end=False, merge=None, pivot=False, **kwds):
|
||||
"""get curves
|
||||
|
||||
:param start: start time (default: one month ago)
|
||||
:param stop: end time (default: tomorrow)
|
||||
:param start: start time (default: since ever)
|
||||
:param stop: end time (default: eternity = 1 year in the future)
|
||||
:param measurement: '<module>.<parameter>' (default: ['*.value', '*.target'])
|
||||
:param field: default 'float' (only numeric curves)
|
||||
:param interval: if given, the result is binned
|
||||
:param add_prev: amount of time to look back for the last previous point (default: 1 hr)
|
||||
:param add_end: whether to add endpoint at stop time (default: False)
|
||||
:param tags: further selection criteria
|
||||
:return: a dict <tuple of key values> of <Table> or <Single>
|
||||
:param merge: None: no merge happens, else curves with the same final key are merged. 2 cases:
|
||||
one key (str): the name of final key. result will be a dict of <str> of <Table>
|
||||
a tuple of keys: the names of the final key elements. result: dict of <tuple> of Table
|
||||
:param pivot: sort values in to columns of one big table
|
||||
:param kwds: further selection criteria
|
||||
:return: a dict <key or tuple of key values> of <Table> or <Single>
|
||||
|
||||
where <Table> is a list of tuples with some meta info (table.tags, table.column_names)
|
||||
and <Single> is a list (a single row of a table) with the same meta info
|
||||
|
||||
when _field='float' (the default), the returned values are either a floats or None
|
||||
"""
|
||||
tags.setdefault('_measurement', measurement)
|
||||
tags.setdefault('_field', field)
|
||||
tags = {k: v for k, v in (('_measurement', measurement), ('_field', field)) if v is not None}
|
||||
tags.update(kwds)
|
||||
start, stop = abs_range(start, stop)
|
||||
rstart, rstop = round_range(start, stop, interval)
|
||||
if rstart < rstop:
|
||||
@ -401,6 +478,7 @@ class InfluxDBWrapper:
|
||||
# result = self.query(rstart, rstop, interval, columns=['stream', 'device'], **tags)
|
||||
else:
|
||||
result = {}
|
||||
start_row = {}
|
||||
if add_prev:
|
||||
prev_data = self.query(rstart - add_prev, rstart, single=1, **tags)
|
||||
for key, first in prev_data.items():
|
||||
@ -408,21 +486,105 @@ class InfluxDBWrapper:
|
||||
if first[1] is not None:
|
||||
if curve:
|
||||
if first[0] < curve[0][0]:
|
||||
curve.insert(0, first)
|
||||
if pivot:
|
||||
curve.insert(0, (rstart,) + tuple(first[1:]))
|
||||
# start_row.setdefault(key[1:], {})[key[0]] = first[1]
|
||||
else:
|
||||
curve.insert(0, tuple(first))
|
||||
else:
|
||||
result[key] = [first]
|
||||
result[key] = table = Table(first.tags, first.key_names, first.column_names)
|
||||
table.append(tuple(first))
|
||||
if add_end:
|
||||
self.complete(result, stop)
|
||||
if merge:
|
||||
single_merge = isinstance(merge, str)
|
||||
if single_merge:
|
||||
merge = [merge]
|
||||
rows = []
|
||||
common_tags = summarize_tags(result.values(), True)
|
||||
col_keys = {}
|
||||
col_info = {}
|
||||
for key, curve in result.items():
|
||||
if curve:
|
||||
last = list(curve[-1])
|
||||
if last[0] < stop:
|
||||
last[0] = stop
|
||||
curve.append(type(curve[-1])(last))
|
||||
merge_tags = {k: curve.tags.get(k, '') for k in merge}
|
||||
for k, v in zip(curve.key_names, key):
|
||||
merge_tags.setdefault(k, v)
|
||||
merge_key = tuple(zip(*merge_tags.items())) # (<keys tuple>, <values tuple>)
|
||||
info = col_info.get(merge_key)
|
||||
if info is None:
|
||||
col_idx = len(col_keys) + 1
|
||||
col_keys[col_idx] = merge_key
|
||||
col_info[merge_key] = info = [col_idx, []]
|
||||
else:
|
||||
col_idx = info[0]
|
||||
info[1].append(curve)
|
||||
assert curve.column_names[1] == '_value'
|
||||
for row in curve:
|
||||
rows.append((row[0], row[1], col_idx))
|
||||
# merged.append((merge_key, curve))
|
||||
rows.sort(key=lambda x: x[0])
|
||||
if pivot:
|
||||
header = []
|
||||
for merge_key, (col_idx, curves) in col_info.items():
|
||||
tags = summarize_tags(curves)
|
||||
primary = tags.pop(merge[0])
|
||||
header.append(' '.join([primary] + [f"{k}={v}" for k, v in tags.items() if k not in common_tags]))
|
||||
result = Table(common_tags, (), ('_time',) + tuple(header))
|
||||
values = [0] + [None] * len(col_keys)
|
||||
for row in rows:
|
||||
col_nr = row[2]
|
||||
values[col_nr] = row[1]
|
||||
if row[0] > values[0]:
|
||||
values[0] = row[0]
|
||||
result.append(tuple(values))
|
||||
elif row[0] < values[0]:
|
||||
raise ValueError(f'{rstart} {values[0]} {row[0]}')
|
||||
else:
|
||||
result = {}
|
||||
by_idx = {}
|
||||
for merge_key, (col_idx, curves) in col_info.items():
|
||||
tags = summarize_tags(curves)
|
||||
primary = tags[merge[0]]
|
||||
table = Table(tags, merge_key[0], ('_time', primary))
|
||||
result[primary if single_merge else merge_key[1][:len(merge)]] = table
|
||||
by_idx[col_idx] = table
|
||||
for row in rows:
|
||||
by_idx[row[2]].append((row[0], row[1]))
|
||||
return result
|
||||
|
||||
@staticmethod
|
||||
def complete(curve_dict, end_time=0, tag='stream'):
|
||||
"""complete to end_time
|
||||
|
||||
if end_time is not given, is is the max timestamp within the same stream
|
||||
"""
|
||||
end_time_dict = {}
|
||||
if not end_time:
|
||||
for curve in curve_dict.values():
|
||||
key = curve.tags.get(tag)
|
||||
end_time_dict[key] = max(end_time_dict.get(key, 0), curve[-1][0])
|
||||
for curve in curve_dict.values():
|
||||
if len(curve):
|
||||
tlast, value = curve[-1]
|
||||
etime = end_time_dict.get(curve.tags.get(tag), end_time)
|
||||
if value is not None and tlast < etime:
|
||||
curve.append((etime, value))
|
||||
|
||||
def export(self, start, stop, measurement=('*.value', '*.target'), field='float',
|
||||
interval=None, add_prev=3600, add_end=False, timeoffset=None, none='', **tags):
|
||||
result = self.curves(start, stop, measurement, field, interval, add_prev, add_end,
|
||||
merge=('_measurement', 'device', 'stream'), pivot=True, **tags)
|
||||
if timeoffset is None:
|
||||
timeoffset = int(start)
|
||||
result.tags.pop('_field', None)
|
||||
rows = [f"# {' '.join(f'{k}={v}' for k, v in result.tags.items())}"]
|
||||
rows.extend(f'# col {i} {k}' for i, k in enumerate(result.column_names))
|
||||
rows.extend(result.to_csv_rows(timeoffset, none=none))
|
||||
rows.append('')
|
||||
return '\n'.join(rows)
|
||||
|
||||
# write to the database
|
||||
|
||||
def _add_point(self, value, ts, measurement, field, tags):
|
||||
def _add_point(self, measurement, field, value, ts, tags):
|
||||
point = Point(measurement).field(f'{field}', value)
|
||||
if ts:
|
||||
point.time(datetime.utcfromtimestamp(ts), write_precision=self._write_precision)
|
||||
@ -447,16 +609,66 @@ class InfluxDBWrapper:
|
||||
raise PermissionError('no write access - need access="write"') from None
|
||||
raise
|
||||
|
||||
def add_point(self, isfloat, value, *args):
|
||||
"""add point to the buffer
|
||||
# TODO: move these sehistory related methods to a subclass
|
||||
def add_float(self, value, key, tags, ts):
|
||||
self._add_point('.'.join(key), 'float', -0.0 if value is None else float(value), ts, tags)
|
||||
|
||||
flush must be called in order to write the buffer
|
||||
def add_error(self, value, key, tags, ts):
|
||||
self._add_point('.'.join(key), 'error', '' if value is None else str(value), ts, tags)
|
||||
|
||||
def get_instrument(self, stream, ts=None, **tags):
|
||||
if ts is None:
|
||||
ts = int(time.time())
|
||||
reply = self.query(None, int(ts) + 1, _measurement='_stream_', _field='on',
|
||||
stream=stream, single=1, **tags)
|
||||
if reply:
|
||||
entry = sorted(reply.values(), key=lambda r: r[0])[-1]
|
||||
return entry.tags.get('instrument'), entry[0]
|
||||
return None, None
|
||||
|
||||
def get_streams(self, instrument=None, ts=None, **tags):
|
||||
"""get streams for one or all instruments
|
||||
|
||||
:param instrument: None when looking for all instruments
|
||||
:param ts: the time or None when now
|
||||
:return: dict <stream> of <instrument> or '0' when instrument is not known
|
||||
"""
|
||||
if isfloat:
|
||||
# make sure value is float
|
||||
self._add_point(-0.0 if value is None else float(value), *args)
|
||||
if ts is None:
|
||||
ts = int(time.time())
|
||||
reply = self.query(None, int(ts) + 1, _measurement='_stream_', _field='on',
|
||||
single=1, instrument=instrument, **tags)
|
||||
all_entries = {}
|
||||
for entry in reply.values():
|
||||
all_entries.setdefault(entry.tags.get('stream'), []).append(entry)
|
||||
result = {}
|
||||
for stream, entries in all_entries.items():
|
||||
entry = sorted(entries, key=lambda r: r[0])[-1]
|
||||
if entry[1]: # on=True
|
||||
result[stream] = entry.tags.get('instrument', '0')
|
||||
return result
|
||||
|
||||
def set_instrument(self, stream, value, ts=None, **tags):
|
||||
"""set stream and instrument on or off
|
||||
|
||||
:param stream: the uri of the stream
|
||||
:param value: instrument, "0" when unknown or None when switching to off
|
||||
:param ts: the time or None when now
|
||||
"""
|
||||
prev, row = self.get_instrument(stream, ts, **tags)
|
||||
if row is not None:
|
||||
if prev in (None, '0') or ts < row[0]:
|
||||
ts = prevts + 0.001
|
||||
tags['stream'] = stream
|
||||
if value:
|
||||
tags['instrument'] = value
|
||||
flag = True
|
||||
else:
|
||||
self._add_point('' if value is None else str(value), *args)
|
||||
tags['instrument'] = prev or '0'
|
||||
flag = False
|
||||
self._add_point('_stream_', 'on', flag, ts, tags)
|
||||
|
||||
def add_stream(self, value, tags, key, ts):
|
||||
self.set_instrument(key, value, ts, **tags)
|
||||
|
||||
|
||||
def testdb():
|
||||
|
Reference in New Issue
Block a user