Files
sea/tcl/drivers/fictrl.tcl
2023-03-31 10:34:30 +02:00

446 lines
11 KiB
Tcl

# furnace control (for now used by FI blue ILL type furnace)
# for Arduino fictrl_11 (not fictrl_12!!)
namespace eval fictrl {
}
if {![namespace exists lsc]} {
source drivers/lsc.tcl
}
proc stdConfig::fictrl {body} {
variable name
variable node
variable path
controller std
prop startcmd "s=1 vers"
pollperiod 5 5
array set arguments $body
# arguments(voltscale) voltage at 100 %
# arguments(min_resist) switch off when resistivity is lower than this
# arguments(max_resist) switch off when resistivity is bigger than this
obj FICTRL -drive wr
# @switch_on: set by check_set for switching on control
prop @switch_on 0
prop @voltscale $arguments(voltscale)
prop @min_resist $arguments(min_resist)
prop @max_resist $arguments(max_resist)
prop @offset_I $arguments(current_offset)
prop @offset_U $arguments(voltage_offset)
prop @offset_h 0
prop @power_supply_off 0
if {[info proc stdConfig::tdrive] eq ""} {
namespace eval :: {
source drivers/trun.tcl
}
}
tdrive $name -log 1
hsetprop $path/set check fictrl::check_set
kids "fi control ($name)" {
foreach ch {1 2 3 4} {
node t$ch upd
kids "settings channel $ch" {
node raw rd
prop readcmd v$ch
prop readfmt v$ch=%g
prop update fictrl::update_v
prop channel $ch
node curve out -text
prop width 32
prop model 0
prop check fictrl::curve
prop write stdSct::completeUpdate
kids "calibration" {
hfactory $path/points plain mugger floatvarar 1
}
node valid rd
prop readcmd s$ch
prop readfmt s$ch=%d
}
}
node tref rd
prop readcmd t2
prop update fictrl::update_ref
# prop readfmt "s$ch=%g"
prop old 0
node tout rd
prop readcmd t1
prop update fictrl::update_out
# prop readfmt "s$ch=%g"
node ctrlmode wr
prop writecmd s=%d
prop readcmd s
prop readfmt s=%d
prop enum ok,off,illegal_channel,no_sensor,no_waterflow,above_alarm,bad_vacuum,power_supply_off
prop update fictrl::update_c
node ramp par 20
node smooth par 60
node prop par 0.5
node int par 0.1
node powerset out
default 0
prop check fictrl::check_power
prop write stdSct::completeUpdate
node power upd
node resist upd
default 0.025
node maxpower par 150
node maxheater wr
prop writecmd m=%.7g
prop readcmd m
prop readfmt m=%g
node output wr
prop writecmd o=%.7g
prop readcmd o
prop readfmt o=%g
node ctrlchan wr -int
prop writecmd c=%d
prop readcmd c
prop readfmt c=%d
node interlock_state rd -int
prop readcmd is
prop readfmt is=%d
prop enum ok=0,no_waterflow=1
# ,no_vacuum=2,no_water_no_vacuum=3
node interlock_mask wr -int
prop readcmd im
prop readfmt im=%d
prop writecmd im=%d
prop enum check_water_flow=0,no_check=1
# ,check_vacuum_only=2,check_all=3
node sramp upd
node slope upd
node v_htr upd
node i_htr upd
node htr rd
prop readcmd "h U I"
prop update fictrl::update_power
node powerprop upd
}
}
proc fictrl::check_power {} {
set p [sct target]
if {$p > 0} {
set r [hval [sct parent]/resist]
set s [sct @voltscale]
set output [format %.2f [expr 100 * sqrt($p * $r) / $s]]
# clientput "output $output"
hset [sct parent]/output $output
} else {
# clientput "output 0"
hset [sct parent]/output 0
}
}
proc fictrl::update_power {} {
array set keyval {h 0 U 0 I 0}
foreach item [sct result] {
lassign [split $item =] key val
set keyval($key) [expr $val + [silent 0 sct @offset_$key]]
}
sct update $keyval(h)
set v $keyval(U)
set i $keyval(I)
set pow [expr max(0, $v * $i)]
set vout [expr $keyval(h) * 0.01 * [sct @voltscale]]
# set vpercent [expr $v * 100.0 / [sct @voltscale]]
# difference output voltage % - read voltage %
clientput "v $v vout $vout last [silent None sct last_v]"
if {abs($v - $vout) > 0.5} {
if {abs($v - [silent 100 sct last_v]) > 100.02} {
clientput "power supply feedback does not follow"
enum_decode [sct parent]/ctrlmode power_supply_off new
sct @power_supply_off 1
if {$new != [sctval [sct parent]/ctrlmode]} {
hset [sct parent]/ctrlmode $new
}
return idle
}
sct last_v $v
set pow [expr max(0, $vout * $i)]
}
sct @power_supply_off 0
if {[sctval [sct parent]/ctrlmode]} {
updateval [sct parent]/power 0
return idle
}
updateval [sct parent]/v_htr $v
updateval [sct parent]/i_htr $i
updateval [sct parent]/power $pow
if {$i > 1 && $v > 0.05} {
set r [hval [sct parent]/resist]
set r1 [expr ($v - 0.005) / double($i + 0.1)]
set r2 [expr ($v + 0.005) / double($i - 0.1)]
if {$r1 > [sct @max_resist]} {
clientput "ERROR: resistance $r1 too high"
}
if {$r2 < [sct @min_resist]} {
clientput "ERROR: resistance $r2 too low"
}
if {$r < $r1} {
# set r $r1
set r [expr $r * 0.9 + $r1 * 0.1]
} elseif {$r > $r2} {
set r [expr $r * 0.9 + $r2 * 0.1]
# set r $r2
}
hupdate [sct parent]/resist $r
}
return idle
}
proc fictrl::check_set {} {
sct @switch_on 1
sct @power_supply_off 0
hupdate [sct parent]/status ""
hset [sct parent]/ctrlmode 0
}
proc fictrl::cmds {} {
set base [sct objectPath]
sct cmd_p $base
foreach node [hlist $base] {
catch {
set cmd [hgetpropval $base/$node cmd]
sct cmd_$cmd $base/$node
lappend query $cmd
}
}
return [join $query " "]
}
proc fictrl::to_kelvin {ch value} {
if {[hvali [sct objectPath]/t$ch/curve] eq ""} {
return $value
}
set tref [hvali [sct objectPath]/tref]
set vref [interpolate [hvali [sct objectPath]/t$ch/curve/points] 1 $tref]
set v [expr $value + $vref]
return [interpolate [hvali [sct objectPath]/t$ch/curve/points] 0 $v extrapolate]
}
proc fictrl::to_mvolt {ch value} {
if {[hvali [sct objectPath]/t$ch/curve] eq ""} {
return $value
}
set tref [hvali [sct objectPath]/tref]
set vref [interpolate [hvali [sct objectPath]/t$ch/curve/points] 1 $tref]
set vval [interpolate [hvali [sct objectPath]/t$ch/curve/points] 1 $value]
return [expr $vval - $vref]
}
proc fictrl::ctrl_slope {} {
if {[sct @switch_on]} {
if {[hvali [sct parent]/ctrlmode]} {
hupdate [sct parent]/powerset 0
}
set init "s=0 "
} elseif {[hvali [sct parent]/ctrlmode]} {
# error state
return idle
} else {
set init ""
}
set ch [hvali [sct parent]/ctrlchan]
if {$ch == 0} {
return idle
}
# set ta [expr [hval [sct parent]/t$ch] + 20]
set ta 1370
set valarm [to_mvolt $ch $ta]
sct @switch_on 0
sct send "${init}a=$valarm c=$ch dx vx sx"
return fictrl::ctrl_do
}
proc fictrl::ctrl_do {} {
array set keyval {dx 0 vx 0 sx 0}
foreach item [sct result] {
lassign [split $item =] key val
set keyval($key) $val
}
set dt $keyval(dx)
if {$dt == 0} {
# no delta time available (happend on init)
return idle
}
set ch [hvali [sct parent]/ctrlchan]
# clientput [array get keyval]
set tist [to_kelvin $ch $keyval(vx)]
# convert voltage slope to T slope
set v1 [to_mvolt $ch [expr $tist - 10]]
set v2 [to_mvolt $ch [expr $tist + 10]]
set slope [expr $keyval(sx) * 20.0 / ($v2 - $v1)]
set tg [hval [sct parent]/target]
set ramp [hval [sct parent]/ramp]
set out [hval [sct parent]/powerset]
set prop [hval [sct parent]/prop]
set int [hval [sct parent]/int]
updateval [sct parent] $tist
set sramp [expr abs($tist - $tg) * 60.0 / [hval [sct parent]/smooth]]
if {$sramp > $ramp} {
set sramp $ramp
}
if {$tg < $tist} {
set sramp [expr -$sramp]
}
hupdate [sct parent]/sramp $sramp
# filter slope
set slope [expr [silent $slope hval [sct parent]/slope] * 0.9 + $slope * 0.1]
hupdate [sct parent]/slope $slope
set last_dif [silent 0 sct last_dif]
set dif [expr $sramp - $slope]
# clientput "$dif slope $slope sramp $sramp"
sct last_dif $dif
set out [expr $out + ($dif * $dt / double($int) + $dif - $last_dif) * $prop]
set maxpower [hval [sct parent]/maxpower]
set r [hval [sct parent]/resist]
set s [sct @voltscale]
hset [sct parent]/maxheater [expr sqrt($maxpower * $r) * 100.0 / $s]
if {$out < 0} {
if {$dif > 0} {
set out 0
} elseif {$out < -$maxpower*10} {
set out [expr -$maxpower*10]
}
} elseif {$out > $maxpower} {
if {$dif < 0} {
set out $maxpower
} elseif {$out > $maxpower * 11} {
set out [expr $maxpower * 11]
}
}
# clientput "dif $dif powerset $out"
hset [sct parent]/powerset [format %.5g $out]
hupdate [sct parent]/powerprop [expr $prop * $dif]
return idle
}
proc fictrl::update_ref {} {
[sct controller] queue [sct] slow fictrl::ctrl_slope
set v [lindex [split [sct result] =] 1]
set t [format %.1f [expr $v + 273.15]]
sct update $t
return idle
}
proc fictrl::update_out {} {
set v [lindex [split [sct result] =] 1]
sct update [format %.1f [expr $v + 273.15]]
return idle
}
proc fictrl::update_v {} {
stdSct::update
updateval [sct parent] [to_kelvin [sct channel] [hvali [sct]]]
return idle
}
proc fictrl::update_c {} {
set value [stdSct::scanresult]
set old_status [hvali [sct objectPath]/status]
enum_decode [sct] $value _ old_mode
set new $old_mode
lassign [split [hvali /pv/sps] ","] pstate
set pstate 1 ;# HACK: when comm to TPG does not work
if {$pstate eq ""} {
set pstate 0
}
if {!$pstate} {
# bad_vacuum
enum_decode [sct] bad_vacuum num
sct update $num
if {$old_mode eq "ok" || $old_mode eq "off"} {
hset [sct] $num
set new bad_vacuum
}
hsetprop [sct parent]/v_htr geterror powersupply_switched_off
hsetprop [sct parent]/i_htr geterror powersupply_switched_off
} else {
sct update $value
catch {
hdelprop [sct parent]/v_htr geterror
hdelprop [sct parent]/i_htr geterror
}
}
if {$new eq "power_supply_off"} { # HACK
set new "ok"
}
if {$new ne "ok"} {
switch $new {
bad_vacuum {
if {$pstate} { set new "off after bad_vacuum" }
}
no_waterflow {
if {[hval [sct parent]/interlock_state] == 0} { set new "off after no_waterflow" }
}
power_supply_off {
if {![sct @power_supply_off]} { set new "off after power_supply_off" }
}
}
if {$new ne $old_status} {
hupdate [sct parent]/powerset 0
if {[lindex $new end] ne [lindex $old_status end]} {
clientput "ERROR: $new"
}
}
hupdate [sct objectPath]/status $new
} elseif {$old_status != ""} {
hupdate [sct objectPath]/status ""
}
return idle
}
proc fictrl::write {} {
set p [expr [sct target]/double([silent 1 sct fact])]
sct send "[sct cmd]=$p [fictrl::cmds]"
#return fictrl::update
return stdSct::complete
}
proc fictrl::curve {} {
if {[sct requested] ne "" && [sct requested] ne "raw"} {
lsc::read_curve
}
}