570 lines
83 KiB
Plaintext
570 lines
83 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"'''\n",
|
|
"utilities for creating cernox calibration curves\n",
|
|
"'''\n",
|
|
"\n",
|
|
"import numpy as np\n",
|
|
"import matplotlib.pyplot as plt\n",
|
|
"from scipy.interpolate import splrep, splev\n",
|
|
"import math\n",
|
|
"from glob import glob\n",
|
|
"import time\n",
|
|
"\n",
|
|
"nplog = np.vectorize(math.log10)\n",
|
|
"npexp = np.vectorize(lambda x:10 ** x)\n",
|
|
"\n",
|
|
"class StdFilter(object):\n",
|
|
" '''filter used for reading columns'''\n",
|
|
"\n",
|
|
" def __init__(self, colnums = None, logformat = None):\n",
|
|
" if colnums is None:\n",
|
|
" colnums = (0,1)\n",
|
|
" self.colnums = colnums\n",
|
|
" self.logformat = logformat\n",
|
|
" self.output = [[] for i in colnums]\n",
|
|
" \n",
|
|
" def parse(self, line):\n",
|
|
" '''get numbers from a line and put them to self.output'''\n",
|
|
" values = []\n",
|
|
" row = line.split()\n",
|
|
" try:\n",
|
|
" for c in self.colnums:\n",
|
|
" values.append(float(row[c]))\n",
|
|
" except (IndexError, ValueError):\n",
|
|
" # print('SKIP: %s' % line.strip())\n",
|
|
" return\n",
|
|
" self.posttreat(values)\n",
|
|
" \n",
|
|
" def posttreat(self, values):\n",
|
|
" '''post treatment, mainly converting from log'''\n",
|
|
" if self.logformat:\n",
|
|
" values = values[:]\n",
|
|
" for c in self.logformat:\n",
|
|
" values[c] = 10 ** values[c]\n",
|
|
" for out, val in zip(self.output, values):\n",
|
|
" out.append(val)\n",
|
|
"\n",
|
|
"class Filter340(StdFilter):\n",
|
|
" '''filter for LakeShore *.340 files'''\n",
|
|
"\n",
|
|
" def __init__(self):\n",
|
|
" self.logformat = None\n",
|
|
" self.header = True\n",
|
|
" self.output = [[], []]\n",
|
|
" \n",
|
|
" def parse(self, line):\n",
|
|
" '''scan header for data format'''\n",
|
|
" if self.header:\n",
|
|
" if line.startswith(\"Data Format\"):\n",
|
|
" dataformat = line.split(\":\")[1].strip()[0]\n",
|
|
" if dataformat == '4':\n",
|
|
" self.logformat = [0]\n",
|
|
" elif dataformat == '5':\n",
|
|
" self.logformat = [0, 1]\n",
|
|
" elif line.startswith(\"No.\"):\n",
|
|
" self.header = False\n",
|
|
" # print('HDR: %s' % line.strip())\n",
|
|
" return\n",
|
|
" try:\n",
|
|
" no, r, t = line.split()\n",
|
|
" self.posttreat([float(r),float(t)])\n",
|
|
" except ValueError:\n",
|
|
" # print('SKIP: %s' % line.strip())\n",
|
|
" return\n",
|
|
" except OverflowError:\n",
|
|
" # print('OVERFLOW:', no, r, t)\n",
|
|
" pass\n",
|
|
"\n",
|
|
"\n",
|
|
"def read_curve(filename, kind=None, instance=None, **filterargs):\n",
|
|
" '''general curve reading'''\n",
|
|
" path = '%s'\n",
|
|
" if kind is None:\n",
|
|
" kind = filename.split(\".\")[-1]\n",
|
|
" try:\n",
|
|
" filelist = glob(KINDS[kind][\"path\"] % filename)\n",
|
|
" if instance is None :\n",
|
|
" if len(filelist) > 1:\n",
|
|
" for i,file in enumerate(filelist):\n",
|
|
" print(i,file)\n",
|
|
" raise ValueError('instance number needed')\n",
|
|
" instance = 0\n",
|
|
" if len(filelist) > 0:\n",
|
|
" filename = filelist[instance]\n",
|
|
" except KeyError:\n",
|
|
" # print(\"Keep\", kind, filename)\n",
|
|
" pass\n",
|
|
" try:\n",
|
|
" args = KINDS[kind][\"args\"]\n",
|
|
" except KeyError:\n",
|
|
" args = {}\n",
|
|
" args.update(filterargs)\n",
|
|
" try:\n",
|
|
" filter = KINDS[kind][\"filter\"](**args)\n",
|
|
" except KeyError:\n",
|
|
" filter = StdFilter(**args)\n",
|
|
" print(\"READ %s\" % filename)\n",
|
|
"\n",
|
|
" with open(filename) as f:\n",
|
|
" curves = [[] for c in filter.output]\n",
|
|
" for line in f:\n",
|
|
" values = filter.parse(line)\n",
|
|
" return [np.asarray(c) for c in filter.output]\n",
|
|
"\n",
|
|
"def convert_res(res1, res2, resc1, log1=True, log2=True):\n",
|
|
" '''interpolate (by default in log scale) the curve res1, res2 from sensors 1,2\n",
|
|
" \n",
|
|
" resc1: input for values with sensor 1\n",
|
|
" return nvalues: interpolated values for sensor 2\n",
|
|
" \n",
|
|
" may also be used for converting resistivity to T or vice versa\n",
|
|
" '''\n",
|
|
" if log1:\n",
|
|
" res1 = nplog(res1)\n",
|
|
" resc1 = nplog(resc1)\n",
|
|
" if log2:\n",
|
|
" res2 = nplog(res2)\n",
|
|
" if res1[-1] < res1[0]:\n",
|
|
" res1 = res1[::-1]\n",
|
|
" res2 = res2[::-1]\n",
|
|
" fun = splrep(res1, res2, s=0)\n",
|
|
" resc2 = splev(resc1, fun)\n",
|
|
" if log2:\n",
|
|
" resc2 = npexp(resc2)\n",
|
|
" return resc2\n",
|
|
"\n",
|
|
"def compare_calib(res1, res2, test1, test2, log1=True, log2=True):\n",
|
|
" '''compare two curves\n",
|
|
" \n",
|
|
" the number of points returned is len(test1)\n",
|
|
" '''\n",
|
|
" calc2 = convert_res(res1, res2, test1, log1, log2)\n",
|
|
" dif = (calc2 - test2) / test2\n",
|
|
" for i, d in enumerate(dif):\n",
|
|
" if test1[i] < 2:\n",
|
|
" print(test1[i], test2[i], calc2[i], dif[i])\n",
|
|
" return dif\n",
|
|
"\n",
|
|
"def make_calib(r_dat, t_dat, r_ref, r_test, t_points=(1.0, 1.2, (1.4, 310, 195), 330)):\n",
|
|
" '''create calibration curve\n",
|
|
" \n",
|
|
" r_dat,t_dat: data from known sensor\n",
|
|
" r_ref, r_test: resisitvities measured\n",
|
|
" t_points: points to be used for the output. Tuples (firstT, lastT, npoints) denote a log scale.\n",
|
|
" '''\n",
|
|
" t_cal = np.asarray([])\n",
|
|
" for t in t_points:\n",
|
|
" try:\n",
|
|
" t_min, t_max, n_points = t\n",
|
|
" t = np.logspace(math.log10(t_min), math.log10(t_max), n_points)\n",
|
|
" except TypeError:\n",
|
|
" pass\n",
|
|
" t_cal= np.append(t_cal, t)\n",
|
|
" t_cal.sort()\n",
|
|
" r_dat_cal = convert_res(t_dat, r_dat, t_cal)\n",
|
|
" r_cal = convert_res(r_ref, r_test, r_dat_cal)\n",
|
|
" return r_cal, t_cal\n",
|
|
"\n",
|
|
"def write_calib340(rc, tc, out_sensor_no, logR=True, logT=False, path='%s.340', caldate=None, model=None, package='CU'):\n",
|
|
" '''write a calibration curve in LakeShores 340 format\n",
|
|
" \n",
|
|
" out_sensor_no: output sensor serial no (a string!)\n",
|
|
" logT, logR: use logT/logT for output\n",
|
|
" path: for output, might contain %s to be replaced by the sensor serial no\n",
|
|
" caldate: date of measurment (default: today)\n",
|
|
" model: something like CX-1050 (guessed, if not given)\n",
|
|
" package: for example CU or SD\n",
|
|
" '''\n",
|
|
" try:\n",
|
|
" dataformat = {(True,True): 5, (True,False): 4, (False,False): 3}[(logR,logT)]\n",
|
|
" except KeyError:\n",
|
|
" raise ValueError(\"logT without logR is not possible\")\n",
|
|
" if caldate is None:\n",
|
|
" caldate = time.strftime(\"%Y-%m-%d\")\n",
|
|
" if model is None:\n",
|
|
" if float(convert_res(tc, rc, 20.0)) > 50000:\n",
|
|
" model = 'CX-unknown'\n",
|
|
" elif float(convert_res(tc, rc, 20.0)) > 5000:\n",
|
|
" model = 'CX-1080'\n",
|
|
" elif float(convert_res(tc, rc, 4.0)) > 8000:\n",
|
|
" model = 'CX-1070'\n",
|
|
" elif float(convert_res(tc, rc, 1.4)) > 3000:\n",
|
|
" model = 'CX-1050'\n",
|
|
" elif float(convert_res(tc, rc, 1.4)) > 600:\n",
|
|
" model = 'CX-1030'\n",
|
|
" elif float(convert_res(tc, rc, 1.4)) > 200:\n",
|
|
" model = 'CX-1010'\n",
|
|
" else:\n",
|
|
" model = 'CX-unknown'\n",
|
|
" try:\n",
|
|
" path = path % out_sensor_no\n",
|
|
" except TypeError:\n",
|
|
" pass\n",
|
|
" with open(path, 'w') as f:\n",
|
|
" f.write(HEADER % (model, package, out_sensor_no, dataformat, tc[-1], len(tc), caldate))\n",
|
|
" if logT:\n",
|
|
" tc = nplog(tc)\n",
|
|
" if logR:\n",
|
|
" rc = nplog(rc)\n",
|
|
" for row in zip(range(1,len(tc)+1), rc, tc):\n",
|
|
" f.write(\"%3d %#10.7g %#10.7g\\n\" % row)\n",
|
|
"\n",
|
|
"KINDS = {\n",
|
|
" # lakeshore 340 format\n",
|
|
" \"340\": dict(path=\"/home/l_samenv/sea/tcl/calcurves/%s\", filter=Filter340),\n",
|
|
" # markus zollikers *.inp calcurve format\n",
|
|
" \"inp\": dict(path=\"/home/l_samenv/sea/tcl/calcurves/%s\", filter=StdFilter),\n",
|
|
" # format from sea/tcl/startup/calib_ext.tcl\n",
|
|
" \"caldat\": dict(path=\"/home/l_samenv/zolliker/calib_test/%s\", filter=StdFilter, args=dict(colnums=(1,2))),\n",
|
|
" # lakeshore raw data *.dat format\n",
|
|
" \"dat\": dict(path=\"/afs/psi.ch/project/SampleEnvironment/SE_internal/Thermometer_calibs/*/*/%s\", filter=StdFilter),\n",
|
|
"}\n",
|
|
"\n",
|
|
"\n",
|
|
"HEADER = '''Sensor Model: %s-%s\n",
|
|
"Serial Number: %s\n",
|
|
"Data Format: %d (Log Ohms/Kelvin)\n",
|
|
"SetPoint Limit: %.1f (Kelvin)\n",
|
|
"Temperature coefficient: 1 (Negative)\n",
|
|
"Number of Breakpoints: %d\n",
|
|
"Calibration date: %s\n",
|
|
"\n",
|
|
"No. Units Temperature (K)\n",
|
|
"\n",
|
|
"'''\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 2,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"READ /afs/psi.ch/project/SampleEnvironment/SE_internal/Thermometer_calibs/2012/73027 Cernox 5/X75610.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan1.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan1.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan1.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan2.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan2.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan2.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan4.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan4.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan4.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan6.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan6.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan6.dat\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"# write optimized calibration curves, selecting the best samples for each temperatures\n",
|
|
"#\n",
|
|
"# algorithm: calculate pairwise difference of samples 1,2,3 (internal index: 0,1,2)\n",
|
|
"# the two samples with the biggest difference are omitted for each temperature\n",
|
|
"\n",
|
|
"# reference sensor\n",
|
|
"tref, rref = read_curve(\"X75610.dat\")\n",
|
|
"t_points = (1.0, 1.2, (1.4, 310, 195), 330)\n",
|
|
"config = {1: 'X133979', 2: 'X133978', 4: 'X133928', 6:'X133981'}\n",
|
|
"# model = None: automatic\n",
|
|
"options = dict(logT=False, logR=True, caldate='2018-10-25', package='SD', model=None)\n",
|
|
"\n",
|
|
"for chan in sorted(config.keys()):\n",
|
|
" sensor = config[chan]\n",
|
|
" ref = [0,0,0]\n",
|
|
" tst = [0,0,0]\n",
|
|
" for j in range(3):\n",
|
|
" ref[j], tst[j] = read_curve('calib%s_c%d_chan%d.dat' % (options['caldate'], j+1, chan,), 'caldat')\n",
|
|
" dif = [0,0,0]\n",
|
|
" for j in range(3):\n",
|
|
" dif[j] = compare_calib(ref[(j+1) % 3], tst[(j+1) % 3], ref[(j+2) % 3], tst[(j+2) % 3])\n",
|
|
" n = len(ref[0])\n",
|
|
" refbest = np.zeros(n)\n",
|
|
" tstbest = np.zeros(n)\n",
|
|
" for i in range(n):\n",
|
|
" ibest = 2\n",
|
|
" for j in range(3):\n",
|
|
" if abs(dif[(j+1) % 3][i]) < abs(dif[j][i]) > abs(dif[(j+2) % 3][i]):\n",
|
|
" ibest = j\n",
|
|
" break\n",
|
|
" refbest[i] = ref[ibest][i]\n",
|
|
" tstbest[i] = tst[ibest][i]\n",
|
|
"\n",
|
|
" rc, tc = make_calib(rref, tref, refbest, tstbest, t_points)\n",
|
|
" write_calib340(rc, tc, sensor, **options)"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 3,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"READ /afs/psi.ch/project/SampleEnvironment/SE_internal/Thermometer_calibs/2012/73027 Cernox 5/X75610.dat\n",
|
|
"READ X133979.340\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan1.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan1.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan1.dat\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD/CAYAAAD12nFYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VNX9//HXyb5ANiAsAZIAsosoBVEQWVRwqahoXVoL\n2lbbfvn2UWtbabVKbW0Vbd2wavuzolbr8gUrtVJBIWyKgAoiBMKWjSWEBLKvM5/fH2cCSchMJuuE\nmc/z8cgD7sy5M2dubu57zjn33mNEBKWUUqpOkK8roJRSqmvRYFBKKdWABoNSSqkGNBiUUko1oMGg\nlFKqgRBfV6CtjDF6WpVSSrWCiJimHveLFoOIePyZNk34+GPPZTrq56GHHurSr9+a9VuyjjdlPZVp\nzXMdvc19/TvTfUL3ifZ4fU/8IhiaExEBlZW+ee+pU6d26ddvzfotWcebsp7KtPa5rkz3iebL6j7h\n29c3zSVHV2eMkeY+ww03wHe+Y/9V/m/hwoUsXLjQ19VQXYjuE2cyxiD+3JXUHF+2GFTnO1u/NaqO\no/tEy2gwKL+jBwHVmO4TLXPWn5XkDQ0GpQJPSkoKWVlZvq6GzyUnJ5OZmdmidTQYlFJ+KSsrq9mz\nbwKBMU0OI3ikXUlKKaUa0GBQSinVgAaDUkqpBjQYlFJKNaDBoJRSXcAdd9zBgw8+yIYNGxgxYsSp\nxzMyMjj//POJjY1l8eLFnVIXDQallOpCJk+eTHp6+qnlRYsWMX36dIqKipg/fz5paWlMnz6duLg4\nBg0a1CF10GBQSqkuLCsri1GjRp1ajo6O5nvf+x5PPPFEh72nBoNSSvnAl19+ybhx44iNjeWWW26h\n0nWQWrt2LQMGDABgxowZrFmzhv/5n/8hJiaGffv2MX78eL797W+TmpraYXXTYFBKqU5WU1PD9ddf\nz9y5cyksLOSmm25i6dKlp56vuyjt448/5pJLLuG5556juLiYIUOGdEr99MpnpVRAasUFwU1qzcXV\nmzZtora2lp/85CcAzJkzh/Hjx7dPhdqBBoNSKiD58m4Zhw8fJikpqcFjycnJPqrNmdqlK8kYM8sY\ns9sYk2GMuc9NmWeMMXuNMduMMWO9XdcYc68xxmmMSWht/TQYlFJdSd++fTl06FCDx7Kzs31UmzO1\nORiMMUHAYmAmMAq41RgzvFGZK4HBInIOcDfwgjfrGmP6A5cDbbpFogaDUqorueiiiwgJCeHZZ5+l\ntraWZcuWsXnz5lPPe7r5n4hQVVVFdXU1TqeTqqoqampq2rV+7dFimADsFZEsEakB3gRmNyozG3gV\nQEQ+A2KNMb29WPdJ4BdtraAGg1KqKwkNDWXZsmW8/PLL9OjRg3feeYc5c+acer7+HVEb3x113bp1\nREZGcs0115CTk0NUVBQzZ85s1/q1xxhDEpBTbzkXe8BvrkySp3WNMdcCOSKyozW3ja1Pg0Ep1dVc\ncMEFfPHFF00+V79bafXq1Q2eu/TSS3E6nR1aN18NPns80htjIoFfY7uRml1n3rx5pKSkABAXF8fY\nsWNPzdiUlpZGWRlUVp5eBho8r8u6rMv+uaxOS0tLY8mSJQCnjpfumLZOZGGMmQgsFJFZruUFgIjI\nY/XKvACsEZG3XMu7gUuB1KbWBf4DfASUYwOhP3AImCAixxq9vzT3GaqroVs3+69SKjC4Jrv3dTV8\nzt12cD3e5Bfu9hhj2AIMMcYkG2PCgFuA5Y3KLAe+66rMROCkiOS5W1dEvhaRPiIySERSsV1M5zcO\nBW+FhkJtLTgcrfuASikVSNrclSQiDmPMfGAlNmheEpF0Y8zd9mn5q4h8YIy5yhizDygD7vC0blNv\nQzPdT54YY8cZqqogKqq1r6KUUoGhzV1JvuZNVxJAQgLs22f/VUr5P+1KsnzVlXRW0DOTlFLKOxoM\nSimlGtBgUEop1YAGg1JKdQE6tacPaDAopc4GzU3t+cQTT3DuuecSExPD4MGDO2QmNw0GpZTqwhpP\n7Qnw2muvcfLkSVasWMHixYt5++232/U9NRiUUsoHWju1589//nPGjh1LUFAQQ4cOZfbs2WzcuLFd\n66bBoJRSnaw9p/Zcv379GS2KtgqIGdzAXvFcUuLrWiilugrz2/aZ21MeavlFdO01tedDDz2EiHDH\nHXe0eF1PAiYY+veH3Fxf10Ip1VW05oDeXtpjas/Fixfzj3/8gw0bNhAaGtqe1QucrqTkZMhq0zxw\nSinVPto6teff//53Fi1axOrVq+nbt297Vy9wgmHgQOhCU6oqpQJYW6b2fP3117n//vtZtWpVi1sZ\n3gqYYNAWg1Kqq2jL1J6/+c1vKCwsZPz48XTv3p2YmBh+/OMft2v9AubuqsXF0KcPlJXZ23Arpfyb\n3l3V0rurehATA+HhUFDg65oopVTXFjDBANqdpJRS3tBgUEop1UBABYOemaSUUs0LqGDQFoNSSjVP\ng0EppVQDARUM2pWklFLNC6hg0BaDUko1L6CCITHR3mG1rMzXNVFKqYZ0ak8fCQqCAQMgJ8fXNVFK\nqaY1N7XnU089xeDBg4mJiaFPnz7ceeedlJaWtmsdAioYQLuTlFJnl8ZTe86ePZutW7dSXFzM7t27\nycrK4pFHHmnX99RgUEopH2jt1J6pqanEx8cD4HA4CAoKavdbbwdcMOiZSUopX2vr1J7//Oc/iY2N\nJTExkcTExFMzwbWXgAsGbTEopQB7m+X2+GmF+lN7BgcHt3hqz1tvvZWioiIyMjLYtWsXTz31VKvq\n4U5ABoO2GJRSiLTPTyu0x9SeAIMHD2bBggW8+uqrraqHOwEXDAMHaotBKeVbbZ3as76amhqioqLa\no1qnBFww9O8Phw9Dba2va6KUClRtmdrzpZdeIj8/H4Bdu3bx6KOPNpj9rT0EXDCEh0PPnnDkiK9r\nopQKVG2Z2nPjxo2ce+65xMTEcMMNNzB37lzuueeedq1fwEztWd9FF8Hjj8PkyR1UKaWUz+nUnpZO\n7eklPTNJKaXcC8hg0GsZlFLKvXYJBmPMLGPMbmNMhjHmPjdlnjHG7DXGbDPGjG1uXWPMImNMuqv8\nUmNMTHvUFbTFoJRSnrQ5GIwxQcBiYCYwCrjVGDO8UZkrgcEicg5wN/CCF+uuBEaJyFhgL/Crtta1\njgaDUkq51x4thgnAXhHJEpEa4E1gdqMys4FXAUTkMyDWGNPb07oi8pGIOF3rbwL6t0NdAe1KUkop\nT9ojGJKA+jeyznU95k0Zb9YFuBNY0eaautS1GPSEBaWUOlOIj97X6xuMGGPuB2pE5A13ZebNm0dK\nSgoAcXFxjB07lqlTpwKQlpYGcMZySMhUCgthx46mn9dlXdbls3s5OTn5jGsAAlHdnVfT0tJYsmQJ\nwKnjpTttvo7BGDMRWCgis1zLCwARkcfqlXkBWCMib7mWdwOXAqme1jXGzAN+AEwXkSo379/i6xgA\nxoyBV16B889v8apKKXXW6+jrGLYAQ4wxycaYMOAWYHmjMsuB77oqMxE4KSJ5ntY1xswCfgFc6y4U\n2kIHoFuhtBSOHfN1LZRSHazNXUki4jDGzMeeRRQEvCQi6caYu+3T8lcR+cAYc5UxZh9QBtzhaV3X\nSz8LhAGrXM3BTSLy47bWt44GQyv8/vfw6aewdq2va6KU6kABeUsMgEWLIC8P/vSnDqiUvzr/fMjI\ngI8+svcVUUqdtfSWGE3QFkML5eVBZiY88gg89lizxZVSZy8NBuWdVatg2jS46y7YuFE3nlJ+LGCD\nQS9ya6GVK2HmTIiKggkTYPt2X9dIKdVBAjYY+vSBoiKoqPB1Tc4CIjYYrrjCLg8dCnv2+LZOSqkO\nE7DBEBRkZ3PTVoMX6qYgTE21/w4bZgehlVJ+KWCDAbQ7yWv798OQIaeXtcWglF8L6GDQAWgv7d8P\ngwefXtYWg1J+TYNBg6F5jYOhXz97FXRRke/qpJTqMAEdDNqV5KXGwWCM7U7SVoNSfimgg0FbDF5q\nHAyg4wxK+TENBg2G5jUVDMOGaTAo5acCOhj694fDh8Hh8HVNurATJ6C2Fnr2bPi4diUp5bcCOhgi\nIiAhAY4c8XVNurC61kLjCU+GDoW9e31TJ6VUhwroYADtTmpWU91IoBtOKT8W8MGgZyY1w10w9OoF\n5eX2tFWllF8J+GDQL77NcBcMxmiqKuWnAj4YBg7UYPAoM/P0PZIa01RVyi8FfDAkJ+uXXo+ys216\nNkWDQSm/pMGgxzb3nE7IyYEBA5p+XjeeUn4p4IOhrivpLJ/6umPk50P37nZynqboGINSfinggyEu\nzo6jnjzp65p0QZ66kUBbDEr5qYAPBmP0+OZWVpbdOO7ohlPKLwV8MID2iLjVXIshKQny8qCmpvPq\npJTqcBoM6Bdft5oLhtBQ6N379NSfSim/oMGABoNbzQUD6MZTyg9pMKBdSW5pMCgVkDQY0GObW80N\nPgMMGgQHDnROfZRSnUKDAQ2GJpWXQ0mJvVmeJ4MH2/spKaX8hgYD0KePnY+mstLXNelC6q54Dmpm\nF9FgUMrvaDAAwcH2zMucHF/XpAvJzGx+fAE0GJTyQxoMLl22O6miwjf369i7187S1py+fW2XU0lJ\nx9dJKdUpNBhcOvvMpMpKqK72UCA7G77zHTv36Nix8PrrnVY3wAbDOec0X84YHYBWys9oMLh0Vovh\nwAG44AKIj4cRI2DTpiYKicDcuZCYCLm58Pjj8Ic/wE9+Ag5Hx1cSICPDu2AA7U5Sys9oMLh0RjAU\nFMCVV8J3vwtFRfDEE3DttfDxx40K/vOf9q5+ixZBjx5wxRWwcSPs2gW33Qa1tR1bUfC+Kwk0GJTy\nMxoMLi3tSjpyBPbs8b77XwS+/W2YPRt++lMIC4Prr7c9RPPmQWGhq2B1NfziF/CXv0BIyOkXiIuD\n99+3ffkdHQ7V1bal4m7mtsY0GJTyKxoMLt62GEpK4Ec/glGj4LLLICUFNm9ufr0334SjR+GRRxo+\nfvnlcOONMH++64H166F/f7joojNfJCICli2D0tKODYeDB+1pWmFh3pXXYFDKr7RLMBhjZhljdhtj\nMowx97kp84wxZq8xZpsxZmxz6xpj4o0xK40xe4wxHxpjYtujru4MGGC/JDud7ssUFMCMGfZEoT17\nbAvj6afhm9+E7duBFSvg+edtt089J07Az34GL75o7zvX2B/+AOvWwZYtwL//bfuX3GltODid8Mkn\nsHp18xdstKQbCdo/GKqrbYoeP95+r6mU8pqRNp4KaYwJAjKAGcBhYAtwi4jsrlfmSmC+iFxtjLkQ\neFpEJnpa1xjzGFAgIotcgREvIguaeH9p62eo07s3fPkl9As5Bs8+a4/oU6bADTdQXB7ClCkwcyY8\n+qg9GafO22/DV3cv5rfRiwi+5ip45x0bDsOHA3D33bZX6Lnn3L/3Cy/Au8uED/cPgXffhTFjPFe2\nshJuuAG6dbP9UU0lDtjB6iVL4Pe/h8hIiI2F9HTbLTV5coOiJSVw+DAkvfMk3Y4dhGee8WKrYQ/k\ncXF2xrfoaBxOB9lF2Rw8eZCSqhJKqksoryknMiSSXtG9GN5zOANjBxJkGn0vycy0A+1vvGFbK5WV\nMHUqPPggjBt3qlhVle16q6mBmBj7ker/PrqSvNI8VuxbwabcTZysPElESAQXJl3I1UOvZmCsF9eJ\ndICTJ2HlSrsNR4ywjVNvG4eqCeXltqX/ySf27JLqajs2OHas3bgjR9qLpTpAcbEdkly/Hvbts98T\nExNh0iS49VZ7wqA7xhhEpMm/nJCmHmyhCcBeEclyvdmbwGxgd70ys4FXAUTkM2NMrDGmN5DqYd3Z\nwKWu9V8B0oAzgqE9paRAzv99Rr+FV8LNN9tvwosX4/zDH/lV2F+ZNGn8GaEAcNPxvzCNx5l53i8Y\nee1+xuTH0m/uJB7+wTmEVffly7zhPP3r89iVP4ahPYYSEnTmZr/zTlj2+3Qqa2uJOPfc5itb13K4\n7TYYP54v/+f/8fAH3yA7236O226D6yI/JHjBL+yR8403YOJEW/n//td+vk2bYMAAsrJsF9c779g7\nYNyXmUHEuJFcfdIe791xOB3kleWx+/huhg/pzRt/msNbfQvYlb+LHpE9SI1PJTY8lpiQaK5ZmUnK\nriNU1VTw+NAa/m9wJUn9hjO853DGRQzimhX7GfLGfwn64Y8wO3bY7rSyMnj1VbjqKpw/+jFvD/41\nf1sSymef2TwMDbWD+EFBcP759myvup/UFCEiuKbBEa+iwgbf/v32j6ju34ICu1l69LC/8ssug+nT\nITzcu/2msYqaCt7PeJ9Xv3qV9VnruWLwFUweOJnE6ESKq4rZmLORP7//a77lGM5NMRczhkSC8o7Z\nD9Snj/1CMWqU3QZuEq+21jYux41reB3iiYoTvLfnPbYe3kpRVRFJ3ZMY1WsUoxJHMarXKLZ/Ec7N\nN9tASEqCv//dHsvmzbMnRZx7rnchW1FTweGSw1TUVgBgMESFRpEYnUh0WDRgG57/+Y9tCRcU2PX6\n9bM/SUn2oDVoEPQf4KCg+gg5RTnkFudS46whMiSSgbEDSYlLISEyAWOMHah74w1YuhR27LA7wcCB\nMHq0/Rk1CoYNa/0vrhkitqGenw/F+VX0Tk+j50dvEvKff2FGj4ZLL7VdChERcOwYbNhgzzDJy7N/\ne5MmUXTuZLY4LuCLA3FERtrtfemlLf9iU1VlX/pPf7L76tVXw49/bHehnBxIS4MJE+y+/NRTdrdq\nifZoMcwBZorIXa7l7wATROQn9cr8G/ijiHziWl4F3IcNhibXNcacEJH4eq9RKCIJTbx/u7UYfvb0\n6/z4N/N5544hfDQuBoBwE0Hq6/k8uH4HX08bzId3TMbExBIZGsnx8uNEr0rjnpd2cd38nmSWTaav\nYyKL7hzK1MvvYMNLf+Hbi0OZfP0unL2+Ynvedg4VH2JErxGc1/s8+sf0p67uDnEw6M/rCc0qYsMf\nLqTKUYVDTp+aajB1n7fhYyIMeesg3//3F1TEhJOdkkBtlTB0fz7VBPHi1ReQe+0AwiMb7nlXLd3B\nqG1HuPX6y8nIsH9Pw4ZBdFQQP39wJU8NP5e3w/tz1ZUQHX16vZLqEnKLc8ktzuVo6VHiI+MZ2mMo\n9/+3nF7d+lC18H5GJ44mJtxuP0TsHvvVV/bfqipYuhTZsIGSc4dSWltB3M59fDK2J/dfWkt6dDmj\nE0fTt3tfYsJj6B4WQ8WXTm57ZgVxteU8/8NplJ0XSpWUUlpdSllNGcYRxuDcOC7eYhj11QkGHt1P\n71o7R0RpUAxHQgZywJnMOpnC572vgmHDGHKOof+gEnITXmdn9Qoyy3ZSVH2CWoeToNJ4RmZG8c0S\n4YqTZaQcKiLmRDkhtU4EEAO1ocFURYRSHRlKdWQY1ZFhlIYZCoIqyXYU0r1HP4YOPJ8RiSMJCw6z\n26GgwLaKtm1DSkvJG5TIl2EFZIZXEj1gED1DY4kvrCA+8yi9swsIrarlYN9IjiRGERqfQFyP/vRL\nHExNYQ8+WO4gOrSGspM1jBpZSq/kfWQXHKCwOI+kyER6RfYiJCyCMmclhTVFHK8u4kRNCdXlPejZ\nI4aePbsTGd6NYKCy1MGxwzWUFNZiHA6iw2oJD3YQ4qwlWByE4iAiuJaw4GocjkrKnFWUBdcSFBGJ\nMzSUqlBDdYihNKiWAsqpCg7C4exOeHEkfYIiSAwOI54QHKHh7EmI5f1BSaSH1lBQk0NJcDaOyCME\nVfYgonoAMaY/4cHhSEg5ZaFZlAQfBIQBFQNZvLyQQSdqWXrhlRxJnESPyh4MOFlDv+N76F2wk77H\nv6ZH8QFqg8MRE4TTBFMTHElZeAJ7+kzgk9TRrE/uRkH4IcqCDlFrKiCkkuDwKsLChB611Vy2+yjj\n9xcyNLeYiEoHTjEUhYRTaCIpcEZRHNyNlOoSxpZkkx6VzNKIS3kj6psEJw6kf98wEgeU0L1HCcFR\nxQRFFlMpxdQcOUq/bfkM2ZnHuGOZjKndj4SGkR8zhD0VA6gO686Ey7rTOyWK6tpqCsryOV52jILS\n4xRXnKSmthKcToLEECzgrDWcKDCEBUFCLIQHG3tcMAZMkOv/QYjAiROG4iLo08fQLdoQEhpBWHgk\noeFRjHlrjdsWg6+C4SPgl7QsGApEpEcT7y9z584lJSUFgLi4OMaOHcvUqVMBSEtLA/C4XO2o5p2y\nd7j46WUc3d2D9ybfzv0PXsTRo/DHh7cQEV3F/fcmMu6ZNziwbhvbr/kG8ZOHcsEnByl691MqfvsA\n196zgIoKuPRS+/rPJ65h58aTrJ59PXPnwrRp9v1WrFrBwZMHCU4N5mjpUTK3ZWIwDLpgELf+8nXu\nyh9E0h3DmXHNGEKCQti1ZRcAI8aPQERI35IOwPDxtpvqw6W7ePdf8NCjwxidv59967ZhnMLAay5m\nW3A/lr6yh4y9MP7SEYwYCWV56TgcUCFDeebJBfxk3EwGzunPhOmu19+8k2n3LubEmwtZtiOBlcv2\ncMvNMH6afb+s7Vn0iurFN2d+k37d+/HJ+k8AuKikGsfDv2fpTx6mXz+YMcO1fe+6C9auZeqWLRAT\nc3r7n3cefPYZaV99BYMHM3XOHACWf7iczBOZ9BuTxIbNxbz+8uc4gyq54pa+zNu9Hf62isLhAxk2\nazKh4VHsXfUZ0TszmBxs+PK8RJ4wR8lPiuOmO+Zz9eDb2bp8EyY/j2sHxhP56WrWLltKTRCEje/N\n3xIyqYk4h3EDJnLryAkkfH2AT97/gKBd6YzvlciGbsP5S1EIERfFctn3xmAiQsn4ch8GGDkqlZCK\nSjK27iGoopLRA3rgPBbKlg0FJNT04LphqYwYUMq6rIP286akQEICacXF9vPecgsYQ1paGkdKjuBM\ndnKk9AjpW9KJCY9h0pRJ9K4MYd+/12KO5jEoxkne0f2s3bWH4qpKxiT1JS4ukk9zj1FQVcp5fUZx\n5YQLKSrpRnh4FFNHjwaHg7QdO8DhYOKAc3jkkTIiR66jR69iRvSKpKyimG1HCiE4hHOTEzGhIWw9\neJKK6mCSe/bHGRTKnqP51DhD6BY8mH37YnAEFTNueDT3zDmfmNBq0rZtg5oapqakcOhAJS+8u4sT\nx8q5cXwMA8Y4WXssl5LgWgamxhFUUkr+lkwGfpVF8jWTyXv4l+RmHCc+vCdjRl3BoUOwcmUaFRWQ\nmjqVykrYuTON8rLj/GbdI+T07MEDo1I4EXKM2pQqCmU/Jw5kEWni6DN4FHFBA3DuKyXM6SBuYBwO\nZwX5+9KhPIerKiqYvTeMwsMVHOzbh+hxk8jrl0rGoTxijhVx89FDjMrZyYuxyWyLHUJx/4nUJIRQ\nVbmH3t3KmDi0O/FBRezdncnJKEP19GTywmvI3p5NRXUljv7BlFVVUZ0BQY4oopOSobo71ZkldAuP\npN8FCUj3XA58vZ3DpYcZmdyTS6r7QkY15fm1xFY4SIg5zp7CImIj45k0KJneMX05WOAgPDSCiwan\n4AyCdz/JYfNWuHFGf0aOhs2ZuThxMi41Cac42bo/B3E6OT+5N2Lg84OHKTwh5O/pS2RSLtuOZeBw\n1JAQFczSL3I7NBgmAgtFZJZreQEgIvJYvTIvAGtE5C3X8m5sN1Gqu3WNMenAVBHJM8b0ca0/oon3\nb1OLIbc4lxvfvpH+Mf1568EdnHz+HW5/fAwbNkBUlB00/tnP6p05unatvb4gN9eOAzz2mG0bu1RV\n2fHnklWb+NFXP6RnzjbvKiICffqw+M4v+Cw3iddea36Vykr7Lf/FF2HWLPfljh2z4yAbNtiulJAQ\nuPhiuJsXGfDlctver7NxI/zwh7apDjz5JCxeDGvWNH3rpOxsO3j+7mulHKjow7gB+RwqjGTGDPju\npP1c9+iFBG370o7uN6O8HD7/3HbVLllie4EWLoTrrqvX1C4psd1LO3faFSZOhGnT7GC5MTjFydrM\ntbyy/RX+tftfTBo4icsHXU5CZAIHTxxk1f6VhO/ey4LiMVyyv5aI4yftYEViou0TnjLFjr247iq7\nYwfcc4/dbn/+85nb2eGwXTqLF9sq3XyzHcpJS7MT2/385/CDH9jH6nM67TZdscKeyNCvnz2decoU\n99untNT2Hd84N4+pczIoqS6hX/d+dKsaxrTJkSxebE+HbqzuVOnoaPjb35r9NbhVXQ0ffgivvWb/\nnTHDdtuJ2DGL/fvtmdZ33dWwlXmGwkK7jx06BP/6l+c7+Docdiyte3f7e290U8daZy25xbkcOHGA\nnKIcCioKTnVrRYZG0ju6N8N7DmdA7AA7plVYaCv78cd2w9fU2P6sWbPsxouJaf0G8pLD6SC3OJeM\nggyOlh4lyARRlt+L392bws1XDOKxP4acMSThdNqxzeees12+F1/csvfMyLC/r2eftX9P4HmMARFp\n0w8QDOwDkoEwYBswolGZq4D/uP4/EdjU3LrAY8B9rv/fBzzq5v2ltdZmrpW+T/SVP67/ozhra0Ui\nIkRKS0VEpKhIpLy81S8tUl0t0q2bSGGhd+Wzs0V695YThU6JjxfJymp+lUWLRK67rg11rKgQ6ddP\nZOvW04/de6/Ib37ToNif/yySnCyyevXpx/LzRR54QCQhQWTBApFjx0TkwgtFVq+WggKR114T2dzn\nGnko/I9y+eUizzwjsny5yJo19uett0Qef1zkf/9XZPZskXPPFYmMFBk/XmT+fJG1a0WczjZ8NhEp\nrSqV17a/JvP/M19uW3qb/OqjX8ny3culura6Ra/jdNq6n3OOyNSpIk8/LfLPf4r89rd2u1x4ocg/\n/iFSWdlwvc2bRa69VqRvX7sNv/7a/jz6qH2t884TefhhkWXLRJ58UqR/f5E77zy1CzbgcNjf9fe/\n3/R2+fRTkV69RDIzz3zuxRft9m3T/tzIyZMiL78s8utfi/ziFyIffGB3J685HHbHGTlS5MgR9+V+\n9jOR6dPt35OfO37cftRLLhHZvfv043v32v3u4otFcnNb//qffWb3kbrXdh07mz6uu3uiJT/ALGAP\nsBdY4HrsbuCuemUWu0JgO3CBp3VdjycAH7meWwnEuXnvFm8gp9MpT296WhIfT5T/7v2vfTAnR6RP\nnxa/lkdtR79KAAAPcklEQVSXXSby3nvelV22TOTqq0XEHpvvucdz8YICkZ49RdLT21jHF16we6LT\naX8GDRL54oszir33nj1wfeMbIpMmicTGitxxh91sp9x3n/1Drnvd4cOltKBSli61B7SrrhKZMsX+\nzJljP+OTT4osXWqzqUUHFh+oqrKB9v3vi9x0k63/5s3Nr/fFFyI33ywyYoRIaqrID38osn79mQf4\n4mKRefNERo8W2bPn9OO1tTZAp0yxdXDnscdELrqoYbCsWWP3k/oHmi7l4YdFhg0TOXjwzOeee84m\naEFBp1fLV2pr7ReP+Hj7Jenii+2Xr0WL7HNt9de/2iwuKemEYPDlT0uDoby6XG5fdruc9/x5sr9w\n/+kn0tLsb6E9/e539ijvjfvvF3nwQRGxjYf4eM+NjXvvFbn77naoY22tyNix9ivw9u32K7Cbr+ol\nJSIbN4p8/LE9iJ1h3z4bLHPm2JDdu7cdKhhYnE6R558X6dHD7hJvvmlbHVOmNH98dDhE5s614b15\ns8irr9pQ+PjjTql66z39tG25pqXZDVBTI7Jwod2XAnQfKi21Xx5WrPD8ZaA1vvc9+8VGg8Hl4ImD\ncv4L58ttS2+Tsuqyhk++9JLI7bd7/VpeWbfO/pV6Y+ZM21/h8t3v2lxpysGD9luEpxZ4i6xfLxIV\nZbvSXOHUagUFtj9ky5b2qVuAys62wX/TTTYgvD04OJ12vxk+3HZLbNjQsfVsN++9Z5tTo0fbVJw2\nTeToUV/Xyi9VVNjDkqdgaPPgs695O/i8Lmsd33rnW9w36T5+OvGnDU77BOD+++1o50MPtV/lKiuh\nZ087culpUEvEDn5u335qIHvvXnttzI4ddsqD+m6/3Z5vv3Bh+1WVwkJ7/ndUVNe9Wkz5N6fTnvyQ\nnOzdJFGq1bKzITnZ/eBzwNwr6Z4P7+HZK5/lnovuOTMUwJ5SMXhw+75pRIQ90+Xzzz2Xy862V6bU\nO7vpnHPg+9+HX/6yYdH//teeGHXvve1bVRIS7KkkGgrKV4KC4JJLNBQ6QXObOCCCIfNkJtlF2Vw/\n4nr3hQ4caP9gAPjGN1w3QfJg69YGt3yo88AD9rTHl1+2y3l59grp116zZ+8ppVRHaI9bYnR576a/\ny+xhs5u8FcUpHdFiABsMy5d7LvP557ZcI926wapV9nL3d96x+TF/vr2EXimlOkpAtBiW7V7GDSNu\ncF/g5El7ZZqnC21aa/z4VrcYwN42Z9MmO3fDZ5/Z+8kppVRH8vsWw9HSo3x97GtmpM5wX6iutdAR\n/evnnGMHdo8ftwPRjYnYFoObYACbVz/4QftXTSmlmuL3LYb3dr/HlUOuJDzEwx0XO6obCeyA2rhx\n7gegMzPtIHXjU4+UUspH/D4Ymu1Ggo4NBvA8AL11a5PjC0op5St+HQwnKk7wac6nzBri4Q5z0HFn\nJNXxNM7gZuBZKaV8xa+D4f2M95meOp1uYd08F+zoFsPEifaWoU1diOdh4FkppXzBr4PBq24ksMHg\naQ68thowwJ57unt3w8dramDzZjvVklJKdRF+Gwxl1WWsPriaa4Ze47lgVZWdeL6jr7a85BI7MWt9\nX3wBqalNn62klFI+4rfB8OH+D7kw6UISIs+YDbShzEw7t25oaMdWaMqUM4MhLc1Odq+UUl2I3wbD\nsvQWdCN15PhCnUsugXXrGj62Zo2dfUwppboQvwyGakc1H+z9gNnDmpjnsLGOPiOpztCh9m6r2dl2\nuabGDkh7mstRKaV8wC+DYfXB1YzsNZK+3b24aKyzWgzG2Jsc1c2v/PnndsA7oZmuLqWU6mR+GQxe\ndyNBx5+RVN9Pf2pn9K6qghdfhCuv7Jz3VUqpFvC7eyU5nA7e2/Mev5r8K+9W6KwWA8DFF8Po0fCt\nb8GuXfDll53zvkop1QJ+FwwbczaS1D2J1PjU5gs7nXDwYOe1GAB+9zs7Ndu6dfbaBqWU6mL8LhiW\npS/j+uEeJuSp78gRO+NNZ856c8EFkJ/veapPpZTyIb8aYxCRlo0vdNYZSY1pKCilujC/CobPj3xO\nZGgkI3uN9G6FzhxfUEqps4RfBcOy9GXcMPwGjLcT7nTmGUlKKXWW8JtgEBGWpi/1vhsJtMWglFJN\n8JtgSD+eTnlNOd/o14K5DTQYlFLqDH4TDC3uRgINBqWUaoJ/BUNLupGKiuy9i3r37rhKKaXUWcgv\nguHgiYPkFucyeeBk71c6cMAOPLekhaGUUgHAL4Lh3d3vMnvYbIKDgr1fSc9IUkqpJvlFMLS4Gwl0\nfEEppdzwi2DYmb+T6anTW7aSBoNSSjXJL4LhqnOuIjwkvGUraTAopVST/CIYbhjewm4k8N19kpRS\nqoszIuLrOrSJMUZKq0qJDov2fqXqantH1dJSCA3tuMoppVQXZYxBRJo8LbNNLQZjTLwxZqUxZo8x\n5kNjTKybcrOMMbuNMRnGmPuaW98Yc5kxZqsxZrsxZosxZpqnerQoFACysqBfPw0FpZRqQlu7khYA\nH4nIMGA1cMa0acaYIGAxMBMYBdxqjBnezPr5wDUich4wD3itjfVsSMcXlFLKrbYGw2zgFdf/XwGu\na6LMBGCviGSJSA3wpms9t+uLyHYROer6/04gwhjTfl/vNRiUUsqttgZDoojkAbgO5IlNlEkCcuot\n57oeA+jd3PrGmBuBL1yh0j40GJRSyq1mp/Y0xqwC6t9QyAACPNBE8baOZDdY3xgzCvgjcHkbX7eh\nAwdg0qR2fUmllPIXzQaDiLg9KBtj8owxvUUkzxjTBzjWRLFDwMB6y/1djwEcdbe+MaY/sAy4XUQy\nPdVx3rx5pKSkABAXF8fYsWOZOnUqAGlpaQANl7dvZ+rChe6f12Vd1mVd9rPltLQ0lixZAnDqeOlO\nm05XNcY8BhSKyGOus43iRWRBozLBwB5gBnAE2AzcKiLp7tY3xsQBacBCEflXM3WQFn0GEejWDY4c\n0bmXlVIBy9Ppqm0NhgTgbWAAkAV8S0ROGmP6An8TkWtc5WYBT2PHNF4SkUebWf9+7BlLeznddXWF\niBxvog4tC4YjR2DMGMjPb+WnVkqps1+HBUNX0OJg2LABfv5z2LSp4yqllFJdXIdd4HZW0jOSlFLK\no8ALBr1HklJKeRR4waAtBqWU8igwg0FnblNKKbcCMxi0xaCUUm4FVjCUlNhbbfft6+uaKKVUlxVY\nwVDXjWSaPENLKaUUgRYMekaSUko1K7CCQccXlFKqWYEXDHpGklJKeRR4waAtBqWU8kiDQSmlVAOB\ncxO9mhp7u+2SEggL6/iKKaVUF6Y30QPIzrbXL2goKKWUR4ETDNqNpJRSXgmsYNAzkpRSqlmBFQza\nYlBKqWYFTjDk5sLAgb6uhVJKdXmBEwzl5RAd7etaKKVUlxc4wVBRAZGRvq6FUkp1eYETDOXlEBXl\n61oopVSXFzjBoC0GpZTySuAEQ3m5BoNSSnkhcIKhokK7kpRSyguBFQzaYlBKqWYFTjBoV5JSSnkl\nMIJBRFsMSinlpcAIhpoaCAqC0FBf10Qppbq8wAgGvYZBKaW8FhjBoN1ISinlNQ0GpZRSDQRGMGhX\nklJKeS0wgkFbDEop5TUNBqWUUg0ERjBoV5JSSnktMIJBWwxKKeW1NgWDMSbeGLPSGLPHGPOhMSbW\nTblZxpjdxpgMY8x93q5vjBlojCkxxvysLfXUYFBKKe+1tcWwAPhIRIYBq4FfNS5gjAkCFgMzgVHA\nrcaY4V6u/yfggzbWUbuSlFKqBdoaDLOBV1z/fwW4rokyE4C9IpIlIjXAm671PK5vjJkNHAB2trGO\n2mJQSqkWaGswJIpIHoCIHAUSmyiTBOTUW851PQbQu9H6vQGMMd2AXwK/BUwb66hzMSilVAuENFfA\nGLMK1wG77iFAgAeaKC5trI/T9e9DwJMiUm6MqXtPt+bNm0dKSgoAcXFxjB07lqlTpwKQlpYGu3Yx\nNTn59DI0fF6XdVmXddnPl9PS0liyZAnAqeOlO0ak9cdyY0w6MFVE8owxfYA1IjKiUZmJwEIRmeVa\nXgCIiDzmbn1jzDqgv+sl4gEH8KCI/KWJOkizn+G++yA+HhYsaPVnVUopf2KMQUSa/NLd1q6k5cA8\n1//nAu81UWYLMMQYk2yMCQNuca3ndn0RmSIig0RkEPAU8IemQsFrOvislFJea2swPAZcbozZA8wA\nHgUwxvQ1xrwPICIOYD6wEjuQ/KaIpHtav93p4LNSSnmtTV1JXYFXXUnf/jZceSV85zudUymllOri\nOrIr6eygXUlKKeW1wAgG7UpSSimvaTAopZRqIDCCQbuSlFLKa4ERDNpiUEoprwVOMGiLQSmlvBIY\nwVBeri0GpZTyUmAEg3YlKaWU1wInGLQrSSmlvOL/weBwQE0NhIX5uiZKKXVW8P9gqOtGMm2f1kEp\npQJBYASDdiMppZTX/D8Y9IwkpZRqEf8PBj0jKeDUzVqlVB3dJ1omMIJBu5ICih4EVGO6T7SM/weD\nj7uSOnqHbOvrt2b9lqzjTVlPZVr7XFem+0TzZXWf8O3r+38w+Lgrqav9wttjfT0ItI3uE82X1X3C\nt6/vFzO4+boOSil1NnI3g9tZHwxKKaXal/93JSmllGoRDQallFINaDAopZRqQINBKaVUAxoMSiml\nGgjxdQU6gjEmCvgLUAWsFZE3fFwl5WPGmFTgfiBGRL7l6/oo3zPGzAauBroDfxeRVT6uUpfhl6er\nGmO+A5wQkf8YY94UkVt8XSfVNRhj3tZgUPUZY+KAx0XkB76uS1dxVnQlGWNeMsbkGWO+avT4LGPM\nbmNMhjHmvnpP9QdyXP93dFpFVadpxT6h/Fwb9okHgOc6p5Znh7MiGICXgZn1HzDGBAGLXY+PAm41\nxgx3PZ2DDQcAnaHHP7V0nzhVrHOqp3ygxfuEMeZR4AMR2daZFe3qzopgEJENwIlGD08A9opIlojU\nAG8Cs13PvQvcaIx5Dvh359VUdZaW7hPGmARjzPPAWG1J+KdW7BP/C8zAHivu6tTKdnFn8+BzEqe7\niwBysTsBIlIO3OmLSimf8rRPFAI/8kWllE952ieeBZ71RaW6urOixaCUUqrznM3BcAgYWG+5v+sx\nFbh0n1CN6T7RCmdTMBgaDhxuAYYYY5KNMWHALcByn9RM+YruE6ox3SfawVkRDMaYN4BPgKHGmGxj\nzB0i4gD+F1gJ7ATeFJF0X9ZTdR7dJ1Rjuk+0H7+8wE0ppVTrnRUtBqWUUp1Hg0EppVQDGgxKKaUa\n0GBQSinVgAaDUkqpBjQYlFJKNaDBoJRSqgENBqWUUg38f+h7GVKFul3UAAAAAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x33d98d0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"READ X133978.340\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan2.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan2.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan2.dat\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD/CAYAAAD12nFYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdWh/vHvykQgkAkIMwkzgkpAQXCMDAJOtA4ttlZR\nr7Wt1Fr1Flu9Dr21Va/+aiv2Wq9ax6p1qODIaJicFUFlCAiEhEBCEpJAQub1+2MlkITM55CT7Lyf\n58lD9s7e+6ycbPZ71lp7r2WstYiIiFQLCnQBRESkfVEwiIhILQoGERGpRcEgIiK1KBhERKSWkEAX\nwFfGGN1WJSLSCtZaU996T9QYrLXt9uvuu+9u18dvzf4t2ac52za2TWt+drzf80D/zXRO6Jzwx/Eb\n44lgaM+SkpLa9fFbs39L9mnOto1t09qftWc6J5reVudEYI9vmkqO9s4YYzv67yD+dc8993DPPfcE\nuhjSjuicOJYxBuvlpiSRmjrqp0Y5fnROtIxqDCIinVBjNYYOf1eSiEh9EhISSE1NDXQxAi4+Pp5d\nu3a1aB/VGETEk6o+EQe6GAHX0PugPgYREWk2BYOIiNSiYBARkVoUDCIiUouCQUSkHbjmmmu46667\nWLt2LSeccMKR9SkpKYwfP56oqCgWLlzYJmVRMIiItCNnnnkmmzdvPrL84IMPMnXqVPLz85k/fz7J\nyclMnTqV6Ohohg4delzKoGAQEWnHUlNTGTt27JHliIgIrrvuOh566KHj9poKBhGRAFi/fj2nnHIK\nUVFRzJ07l+LiYgBWrVrFoEGDAJg2bRoffPABN954I5GRkWzfvp2JEyfy4x//mCFDhhy3sikYRETa\nWFlZGd///ve5+uqryc3N5fLLL+f1118/8nNj3HNnK1as4KyzzuKxxx6joKCA4cOHt0n5NCSGiHRK\npt5nfluuNQ9Xf/zxx5SXl3PTTTcBcOmllzJx4kT/FMgPFAwi0ikFcrSMjIwMBgwYUGtdfHx8gEpz\nLL80JRljZhljthhjUowxCxrY5q/GmG3GmK+MMYnN3dcYc6sxptIYE+uPsoqIBFq/fv3Ys2dPrXW7\nd+8OUGmO5XMwGGOCgIXATGAscIUxZnSdbWYDw6y1I4AbgMebs68xZiAwA9AQiSLiGVOmTCEkJIRH\nH32U8vJy3njjDT799NMjP29s8D9rLSUlJZSWllJZWUlJSQllZWV+LZ8/agyTgG3W2lRrbRnwMjCn\nzjZzgOcArLWfAFHGmD7N2PfPwH/6oYwiIu1GaGgob7zxBv/4xz/o2bMnr776KpdeeumRn5saHSCm\nTmfI6tWr6dq1KxdeeCFpaWl069aNmTNn+rV8/uhjGACk1VhOx13wm9pmQGP7GmMuBtKstV/XfWNE\nRDq6CRMm8OWXX9b7s5rNSitXrqz1s3POOYfKysrjWrZAdT43eqU3xnQFfodrRmpyn3nz5pGQkABA\ndHQ0iYmJR6byS05OBtCylrXcCZflqOTkZJ555hmAI9fLhvg8UY8xZjJwj7V2VtXy7YC11j5QY5vH\ngQ+sta9ULW8BzgGG1Lcv8A6wHCjCBcJAYA8wyVqbVef1NVGPiBxDE/U4gZqo5zNguDEm3hgTBswF\nFtfZZjFwVVVhJgN51trMhva11n5jre1rrR1qrR2Ca2IaXzcURETE/3xuSrLWVhhj5gNLcUHzlLV2\nszHmBvdj+4S19l1jzPnGmO1AIXBNY/vW9zI00fwkIiL+oTmfRcST1JTkaM5nERHxmYJBRERqUTCI\niEgtCgYRkXZAU3uKiEi9mpra86GHHuKkk04iMjKSYcOGHZeZ3BQMIiLtWN2pPQGef/558vLyeO+9\n91i4cCH/+te//PqaCgYRkQBo7dSet912G4mJiQQFBTFy5EjmzJnDunXr/Fo2BYOISBvz59Sea9as\nOaZG4SvN4CYinZK51z+DKdi7W/4Qnb+m9rz77rux1nLNNde0eN/GKBhEpFNqzQXdX/wxtefChQt5\n4YUXWLt2LaGhof4snpqSRETamq9Tez799NM8+OCDrFy5kn79+vm7eAoGEZG25svUni+++CJ33HEH\ny5Yta3Eto7kUDCIibcyXqT3/67/+i9zcXCZOnEiPHj2IjIzkF7/4hV/Lp9FVRcSTNLqqo9FVRUTE\nZwoGERGpRcEgIiK1KBhERKQWBYOIiNSiYBARkVoUDCIiUouCQUREalEwiIi0A5raU0RE6tXU1J6P\nPPIIw4YNIzIykr59+3Lttddy6NAhv5ZBwSAi0o7Vndpzzpw5fP755xQUFLBlyxZSU1O57777/Pqa\nCgYRkQBo7dSeQ4YMISYmBoCKigqCgoL8PvS2gkFEpI35OrXnSy+9RFRUFHFxccTFxR2ZCc5fFAwi\n0jkZ45+vVqg5tWdwcHCLp/a84ooryM/PJyUlhU2bNvHII4+0qhwNUTCISOdkrX++WsEfU3sCDBs2\njNtvv53nnnuuVeVoiIJBRKSN+Tq1Z01lZWV069bNH8U6QsEgItLGfJna86mnnmL//v0AbNq0ifvv\nv7/W7G/+oGAQEWljvkztuW7dOk466SQiIyO55JJLuPrqq/n1r3/t1/Jpak8R8SRN7eloak8REfGZ\ngkFERGrxSzAYY2YZY7YYY1KMMQsa2OavxphtxpivjDGJTe1rjHnQGLO5avvXjTGR/iiriIg0zudg\nMMYEAQuBmcBY4ApjzOg628wGhllrRwA3AI83Y9+lwFhrbSKwDfitr2UVEZGm+aPGMAnYZq1NtdaW\nAS8Dc+psMwd4DsBa+wkQZYzp09i+1trl1trKqv0/Bgb6oawiItIEfwTDACCtxnJ61brmbNOcfQGu\nBd7zuaQiItKkkAC9brMHGDHG3AGUWWv/2dA28+bNIyEhAYDo6GgSExNJSkoCIDk5GUDLWtZyJ1uO\nj48/5hmAzqh65NXk5GSeeeYZgCPXy4b4/ByDMWYycI+1dlbV8u2AtdY+UGObx4EPrLWvVC1vAc4B\nhjS2rzFmHnA9MNVaW9LA6+s5BhGRFjrezzF8Bgw3xsQbY8KAucDiOtssBq6qKsxkIM9am9nYvsaY\nWcB/Ahc3FArVtmzxw28hIiKAH5qSrLUVxpj5uLuIgoCnrLWbjTE3uB/bJ6y17xpjzjfGbAcKgWsa\n27fq0I8CYcCyqurgx9baX9RXhkWLYPTo+n4iIiIt5YkhMaZMsXz4YaBLIiLScXh+SIxNmyAzM9Cl\nEBHxBk8Ew8yZ8NZbgS6FiIg3eCIY5syBxXW7u0VEpFU80cdw4IBl8GDYuxciIgJdIhGR9s/zfQzR\n0TBpEixbFuiSiIh0fJ4IBoCLL3a3rYqIiG880ZRkrSU1FU49Ffbtg+DgQJdKRKR983xTEkB8PAwY\ngJ5nEBHxkWeCAdzdSWpOEhHxjSeDoYO3jomIBJSngmH8eCgp0aB6IiK+8FQwGKO7k0REfOWpYAD1\nM4iI+Mozt6tWKy2FPn1g82bo2zeABRMRacc6xe2q1cLCNKieiIgvPBcMoOYkERFfeK4pCSAvDwYP\nhowM6N49QAUTEWnHOlVTErhB9U47TYPqiYi0hieCYcn2JcesU3OSiEjreCIY5r83n+Ly4lrrLr4Y\n3nkHyssDVCgRkQ7KE8FwYtyJ/M+6/6m1bvBgGDRIg+qJiLSUJ4LhkZmP8JdP/sLOAztrrVdzkohI\ny3kiGOKj47l1yq3c9P5NtdZXD4/RwW+8EhFpU54IBoBbT7+VbTnbWLx18ZF1iYlQVgabNgWwYCIi\nHYxngiEsOIzHzn+Mm967iaKyIuDooHqLFzexs4iIHOGZYACYNnQakwdO5r7V9x1Zp34GEZGW8dyT\nz3sK9jDu8XGsu3Ydo3qNoqzMDar37bfQr18AC9reVVZCkKc+J4hIIzrVk88DIgfwu7N+x/z35mOt\nJTQUZs3SoHqNSk11j4v/539Cfr5vxyovhx/9SB07Ih2Y54IB4JeTfknmoUxe3fQqoOakJr3xBsyY\nAVu3wn//t2/Huu8+16nz2GP+KZuItDnPNSVVW7t7LXNfm8vmGzdTWdyDQYM0qF6DzjoLfvtb92n/\niSfg7bdbd5z16131bNEiuOACSEuDbt38W1YR8YtO1ZRU7czBZzJ96HTuXXUvUVFw+unwf/8X6FK1\nQ/v2wTffwLRpMHw4bNvW+mO9/z5cdRVMnuxGMXztNf+VU0TajGeDAeDBGQ/y7IZn+TrzaxYuhIcf\nhhdeCHSp2plFi2D2bOjSBYYOdf0NrR1gKjUVhgxx319/PTz9tP/KKSJtxtPBEBcRx71J93Ljuzcy\nbJhl6VLXv/rqq4EuWTuyeDF873vu+/BwdwvX7t2tO9auXRAf776fNQs+/xwKCvxSTBFpO54OBoAb\nTrmBorIint/4PGPGuNaO+fN1lxLgagZr18K55x5dN3w4bN/euuOlpkJCgvu+a1eYNAlWr/a5mCLS\ntjwfDMFBwfztgr+xYPkCcopyGDfO9a1ed50m8mH9ejcEbe/eR9eNGNG6fgZrXTBU1xjA9VusXOl7\nOUWkTXk+GAAmDZjE9ROuZ/Rjo7n7g7sZOjaHN96AH/8YVq0KdOmOqqz0ccC/vXtd09CSJe5gTVm1\nCs45p/a61tYY9u93dyDVvO1r2jRYsaLlxxKRgArxx0GMMbOAR3BB85S19oF6tvkrMBsoBOZZa79q\nbF9jTAzwChAP7AJ+YK1t9dNXvz/39/zk5J/wwLoHGPHoCK4bfx2PPXcLl1/ej0WLYMqU1h7Zd3v2\nwEMPwUsvQW4u9O/vbu658UbX5N8s+fnuIj9kiLsvd/RoeO4516TTkFWr4Cc/qb1uxAhITia9IJ1P\n0j9hV94uyivLiQqPYmzvsZzS/xS6hdZzC2rd2gLAqae69VlZEBfXzF+k5dLy0/j7F38nJSeFLiFd\n+I/x/8HZ8WdjTL134nVqFRWuK6iiwv2p9Ra1PWvdJGJPPeUeHTrtNNf3OWaM78f96itYt879twsJ\ngQED3J3j1feENJfPNQZjTBCwEJgJjAWuMMaMrrPNbGCYtXYEcAPweDP2vR1Ybq0dBawEfutrWUf0\nHMGTFz/Jhp9toLSilBs2jGXSvb/gop/s4ssvfT16y1VWwv/+L5w6roxQyli9Gg4edP0f2dlw0knw\n/PPuD77v0D4+Sf+ET/d8yu783ZSUlxw9kLVwzTUwfbqrLXz+OYSGuk7lGjWHFSvgD3+AZ56B8pIK\n179Qo8aQU5TDs4fWsePzZYz/+3ie3fAsaQVp5BzO4fOMz7lt2W30f7g/4/9wBSdftIbE8ZYXX3QX\nmVodz9VCQtzxj1Ot4XDZYW5behvjHh9HUVkRl5xwCRP7T+T6t67n+698nwOHDxyX122u/YX7eX3T\n69yx4g7mvTmPX7zzCx7+8GG2Zm9t1v4VlRWk5afxTdY35BXn+Vye1193HzSmTnWVuYQEeOABKCpq\n5QHLyrw1pv3One45nl/9CubOdf/+/e+QkuK33zM31x16wQK46CJ3l+QJJ0BSkuv/bI3CQnj0UfdZ\n8LLL3N3nvXpBZKRrLZ48Gc4/HzZvbv4xfX7AzRgzGbjbWju7avl2wNasNRhjHgc+sNa+UrW8GUgC\nhjS0rzFmC3COtTbTGNMXSLbW1gqcqn3qfcCtObIKs/jzR39m4cdPUL7pQl6Z/1suPn00bNkC//iH\na1IJD3fv7IUXNhm7paVQUgLBwcc+11VpK9lfuJ+MgxnkHs5l/+5Y1vxqJ3duvYW+5emYQYPg44+P\nVBGyi7J5cuVKHnxtOSX9l9MlMp+hse71MwszyTyUSVR4FKN6jmJORiTXPPUFnyz+X0b0P5GhMUMJ\nqcQ9uPbDH1Lxy5u54w548UXXfLZ0Kdw45UuuW/ljKr79hlWpq3h2w7Ms2rKIS4acz5NXvw4HDxIU\nGnbM7/j0K/u5/YWXCT3zL0SG9KJizW3E5X6Pt856hJjDGfD//l/tHZ591t0G1tBDc6WllCx7n9z3\n/01GZT5be8HnJ0RBTAwDIwdyxqAzOKX/KYQEHa3cWmtZ8t0Sfr3k15zc52QWzl5I74ij/SQl5SX8\nZtlveCvlLV657BXGRE/k00/dbH5ffOH+n+fmuv/r/fvDhAnwwx+6C2at4aLKyyE93X2sW7/efRzb\nvBkOHHAXxa5d3f/GU0/FnnEG342K46P8b/go/SPW7F7D7vzdnDn4TE4bcBoDIwdSVFbEpv2bWLR1\nEX279+Xnp/6cy8ZcRnR49NG3o6KU5TuW8/I3L7N462IiwiKI7BJJekE6cV37cXrv8zmzz/nMHnM2\ng/uH13or84vz+Sj9IzZmbiTjYAbWWnpH9GZARALvPXsSn783mlf+2YWJE93vvmGDe1D9ww/hzjtd\nv1tYnT95aUUp+cX5dA3tSkRoBKaiwv09n3nGfTQNCYEzzoA//5n9MSP54gv47DP3NuXkuPezd283\nBP6kSe697tYNl0br1rn3ceRIiuMHsDUnhS3ZW46EYFxEHH2796V/j/4Mjhp8tAa4c6c7iZctg40b\n3YOUxkBMDIwc6b5GjTr6lZDgyllXbi589JH7MLVkCeTluREAJkxw/w+zstzfvPqDzdSpR78GD65x\nPjZe8yqrKCOrMIslqwq489e9ufzCnjxwvyG8xp9v3Tq45BL3QfC88xo+Vk0VFe4yddddrsXj1lvd\nv3XLUlrqBiK47z53DZg5061v7AE3fwTDpcBMa+1Pq5avBCZZa2+qsc1bwJ+stR9WLS8DFuCCod59\njTEHrLUxNY6Ra62Nref1Wx0M1fKK8/jpkwt5Pe0v3Lm+mJs+LmblOYNIH9mX8JIKxmzOZvzne0gb\nGMnSswfz/gm9yCy1HCq0FBUGUXgomKJDwVSUBRNmDSPyioiotBT3rCA9Po+yrvsoMllEBEfRw/TH\n7o/itg82c/nOHG66vDt7J4/ltiUHOXFTNnfdcTqbC75jV94uzo4/m3MHz2Dre9N5/e8ncPsCw/z5\nLqustew7tI+tOVuJu+UutsdaHj+3B1uyt5BxMINBUYM4o7Qvj/7+c669+Aa+KT2FP/52IAl9osnY\nV8mu8+9h8CmZ/GzqHvpE9OHKk6/kqnFX0atbL9chvWbN0TuMqmRlwcknw5tvwsRJFSzauoiHP3yY\nr9K38j8v9iJ01Gi6/P4HlNoi9h7cS2p+KplZO3jhV6u5cMEgsmLDCA0KJTQ4lNCgUOL3FnHf31I4\nEFbOlyf3ZmCX3ozeU0r8N2nsH9qX9ePieLF/Du9HZTFp0Bl0LxlBVqZhc9EayihiUv4DnFA8g1Gl\nX3NC2UZ6FabS7cAeQvalU3a4jGybT1bEJspzxxDJKHr2Dia2dzA9YoIJ7xYMQUEUHigmfc8+srIz\nCLWH6NmthG6mhKj8EmIPFFMQ1YXMfpGkDe3FnmG9yYzvRWFkOAWVhynK20/Ujj0MSdlP4vZDjM+w\nZA2IouiEEUSNHke/hBMJLi2HQ4dcVTAnB7KysFlZFObspfDQAcpLDhMSHMrhHl3ZGxPM+h6FFCUM\nYPik2QwadTWfbjuFlclBfJBcSUnMBqLHLGJQ+L+JK09h4P4RDAsNon9wAaEFBygvOkTPrrHEhMfQ\nNbw7JRHh7K2o5NM9hyiIzaIkPIf+4b0Z1LUvfUOiiThcQcThcsqzS8nYc5jsygryB0DKYPhsYAmb\nuudSYosIs5F0Kyrkqg2Wmz+xZPaI5a3x09mZcDHhRX2Z8MUH/ODrR7gt7ld8ftYYeg9PJyIui9Dw\nUsoryygsshzM7EnWjj5kp8Twx8J/8x9pi9nSuzcHu5QwIjuHgrBKFo/uybLhiezrl0BEd0NFeBaH\ng/dRWrCL078rZu7enkzeVEBEqcVMn03OhPPYHjORbwsGsf07Q2FqNr0PpNA3fysDDm1lUNlX9Du0\niejCPPIiQjkUHkRIRTlhFRBRWklwJewaGsuWCYP5dsJAUuOjqTCWCltBpa3EYDDGUFFq6LHjEKPX\nZ3LSpkwm7MigMCiM/aE9KCCcfLpRHBxKWReDjSzjcHQ5ubFl7Is+zK7wfHZ2KaTExHK4tDtBvXKp\nqCwiPqQXA0NiGEAkg8sjiCmyVO4t47uNlnGjK+gRWoopKSWorIyg0jKCyyoIKa+svuhRWm7IzgaL\nIba3ISzcgKEqFQzWHF2u/r7osGF3mmFwvKFrhOHct79pd8GwHPgNLQuGHGttz3pe31599dUkVF3E\noqOjSUxMJCkpCYDk5GSAZi1vu/IuvnjzGW7tfiPFQ8YS27eQ8oKvqbSVdOk2nIkpX3NS+rucWLKb\nyqHnsOPEU9gVsp8+Qflc2K2Cvt9sZuPGbRTH9GBSTBRhOQf5JO8gmZEJREVOY2vYBIrKP2RC7jJm\nn3MawU8+zpufriYtP43Y0dGcc+ODvB8/kIrvf4/rLrmO0ODQI+Xr2zeJBQtgzZpkLrgA5s9P4pRT\nYG3ycrj0UpI2boT4eJKTkymtKCV+XDzf7t3BO1c9zJnffcGyx2eSXpJBxtcZhJVV8uHT6Vw4++dc\nf+UE4qPja78f119P0ksvwamn1np/FiyAlJRkfvWr2u/fvkP7GP/7P/Jw7CD+UXaYnjFdGH3yBEbE\nxROel8e5y9/hrInjybn1Z3y4+kPKbTlnFxcz7Ka7eefHlxMx5zJmTDvv6OuXlpJkDPb9Jbz/wmsE\nZWcS2TWBfT278XVYMb1Ce3BRSAw9snbwefYuCqIG0y/uTDK6DOGj0kOY3r2YNHYifaJL2JS9lFV7\nXmLS8EHMSpjB9rR8CosP0i+mgi1Zm3h/22bCunZn2qmTKDzYj7dWHqS0rDsX/uRUhs2OZuP6TZRX\nljPilBGUVZSx6TM3OOD4KePp3a03qRtSiQ6P5qLzLqKHDSX56adhxw6SunaF3FySs7KgWzeSTjwR\nevYkOTMToqNJOvdcCAvjvY/WsjN3O8P6RdA3p4Qda7dzcGMuJ6Ueou/BbXxNNuU9enJejzBCDuWT\nfOgQDBzIlDGj2VxSwr/TDrMzN5KJo6cw67whpBdvwwQZpgwazifLD/Ls4q+YcnIR150STUV5KW+n\nbSevvJARceEc7BrMx7l5lIQGc+rIBLoUdGHD2nRiM3L4QX4WobaSpWGRhJoyZpfkk3bSVB4dNoxv\nekL5oAr2lH1Lzq4USjnElJgInvtHFn+ZMIDtMyYwYcoEwoLD2PXVLgyGmBNiKN35HSf9bhG5XcNY\ncuVZBMWMp2IHxNh45kSMYPSGN0n/+AWCSg4zIvYkikuD+DZ/G93L8wgOm8TawQN4vdceNg/cih0c\nQvfM84jJ6MnAqMFMnnwOUb0K+WLzG+wp/Yb0flsoLj9Mr51jiD00lviQRMgK4rvd6eQVBlEYNoai\nmCCC7WeEdTtM9KBRdO0STEn2NiorggiOHENhIWTv/pbyMkuf4aPo3aeC4NKviYwqZkpCV3qU5ZGW\n8h0hJYcZ2z+a0MPBbN9WSHBeMBNKYwnPLGZHXjqxHOSCCEP3sFJWFR7CBgdzZmR3ysLDWF5eyuFu\noYwb1IvD3bvw/o4Cdu4J5tKkfkT27sL6rHwIDWXCyAQqQoL44rs9bN9WSVFGf0491VISvocgaxmf\n0BcqLV/uyoBKy/j4PmAt63ftA2sZPziO9an7eP2TnWRnW04e3o2X128+rsEwGbjHWjurark5TUlb\ngHNwwVDvvtXNTTWakj6w1p5Qz+v7XGMAXFt8796wfj120GBSU12n8MGDrrk+MtI1offuDWZvhmsc\n/OQT9zG6Xz/Xc3T66a4nKSrq6HFzclx1tPqrTx/38Ne0acfW+d57z3UCrFvXYDE3b4Ynn3Q16fR0\n+PXo97gm4w9s/Ns6xo1zfbz5+a5z6w9/gDPPsDyZ/T1Cxo6CBx90B/m//6Ni0VvEfbSYDRtg4MA6\nLzJ9umsEnTGj1tuTkOBahE4+uZ6CnXwyPPcce3onsmKFK+f27e7O1+5bv+A1LmXpn77k4nmxRCe/\nCT/9qRu878wzjznU/v2u3/yJJ1xrzfwfH+CSYRuILUp3v1yXLu59HDLENRWEhjb6py0uL+ZPa/7E\n0h1L2XlgJ3ERcST2TWTG0BlMGzqN/j36H9nWWtfWe8897tm8K65wLQcjRrh22+DgRl+qxax13TMf\nfAD//rd77GP6dNfkd9FFEFpyyA1bEhTkzquYmGOGR8/Lc23Mzz/vzte4OHduTJ4M99/v+qpaZe9e\nd/4a497n+ppjakpLc+0UF13kXrjm+b1mjWtcv/lmuO22xtte9u51J4610LcvDB9OYXEwmZmuqTY6\n2lIQsp1lO5fwWcZnbM3eSlFZEeEh4YzuNZrTBpzG1CFTGd1rdIM3IJSXu79vfn7tf4uK3OkVHe3e\n6rg4d6q1ZSf9q6/CL3/phvC56CK3zlp3jtx8s3tLnnjimAp9s73yCtxyC2RkNNyUhLXWpy8gGNiO\nu3soDPgKOKHONucD71R9Pxn4uKl9gQeABVXfLwDub+D1rV988YW1o0f751itVVJibUyMtenpzdp8\n3z5rd5x1lf331L/aGTOsjYuzNiTE2h49rP3+9619552qDTMzrR0xwtpbb7V25Uprhw2z9v337bXX\nWvvww/Uc+LLLrH355Vqr1q61dswYaysr69m+stK9aG5uveUsyK+02y6+xWaH97fLQ86z+yKG2BV/\n+sQePHh097Q0a196ydrLL7c2Ksraq6+2ds2aBl6vDVRWWrt6tbU332ztpEnW9uxprTHWdu3q3udh\nw6xNTLT2rLOs/d73rL3pJmsfesjaf/3L2lWrrN282drsbGtzctzbn55u7caN1i5ZYu2zz1p7773W\n/uhH1g4ebG3fvtb+8IfWPv+8tfn5vpV51y5rv/qq2aeQ/2VnW3vaadZeeqkryDffWHvLLe6XfPvt\nABWq41m50trhw6094wxrr7jC/fcdPtza117zz/+Jxx+3turaWe913S+jq1bdcvoXjt5yer8x5oaq\nF36iapuFwCzc7arXWGu/bGjfqvWxwL+AQUAq7nbVY27N8FuN4cEH3VAQCxf6fixfzJvnOr9uuqnJ\nTbHW1VY+/rjpjw+5ue7jb1qa+7hw3XUsW2644w749NM6295wA4wfDz/72ZFV8+e7Typ33lnPsYuK\noGdP929YaTcGAAAPMUlEQVRjH61Wr6bwy628GHwVr73VhdWrXU2suNh9SjvzTPeBc+5c94mtvams\ndL/iwYO1v7Kz3du6e7f7ysqCzExX8wFXoQkJcZ9A+/VzX4MGuVrI6ae7vlJP3TZaWOhuQvj7390v\nfsEFcPfdx/WWZS86fNjdUb5/v2uQmDDBv+fJce18DjS/BcPMmfDznx8dNyhQ3n7bhVRzhpJISXHN\nPamprXqp8nJ3n/OHH8KwYTV+cPvt7or9u9/V2m7dOvf82zH27IGJE93zEy1QWekuoF26QOwxtxVI\nh1f9/9JTqecdnXLY7RYpKXFXx6oO1YCaMcP1ReTmNr3tqlVw9tmtfqmQEJeDx0xiFBvrbsms8vHH\n7lNuvaEAbtuYmAZ+2LCgIHdchYJHGaNQ6KAUDODuZR4zpn20X3Tp4toXmlNjqG9Iixa64ALXUV1L\nTEytYHjnHbddgw4caB/vnYj4hYIBYPlyd5dQe5GU5G5BaIy1fgmGqVNdH0Ot0bFjY2vVWJoVDK2o\nMYhI+6RgAPdk4/TpgS7FUeee23Qw7NrlGv8bbN9pnu7d3dOStUatqFFj2L3bdR2cdlojB1EwiHiK\ngiE/3w0ucvrpgS7JURMmuA7l7OyGt6muLfihDff88+Hdd2usiIk5UmN491332EWj9+/n5SkYRDxE\nwbBqlXsSKDy86W3bSmioG3+msTHB/dCMVK26n+HIeHs1Op8XLXLDRDVKNQYRT1EwtLf+hWrnngtV\nw1HUy8c7kmoaMcI90b1mTdWKqhpDdra7WUvBINK5KBjaW/9CtcY6oNPS3JNVvg7gXsOPfgT//GfV\nQo8eUFLCm/8qZdas2nPv1EvBIOIpnTsYMjLcODTjxwe6JMcaP94NeJOVdezPVq92tQU/3iM+d64b\nr7+0FHfc6Gje++cB5s5txs4KBhFP6dzBsGKF+2Tu75HR/CEkxI0RUV8/gx/7F6rFx7sJQ6onCymL\njCVt4wFmz27GzgoGEU9RMLTHZqRqDd22Wl1j8LMbb3RTDO7fD9tzYrhmTm7z+uQVDCKe0nmDwdr2\n2/FcLSnp2A7olBR3i22rx1Ju2Ny5MGeOqzkUhMTy08ubOTWmnnwW8ZQmBlj3sJQUN1jPiBGBLknD\nEhPd2PR797pBhQBefhl+8IPj1vx1//3upcatiyE4vxnjNYFqDCIe03lrDNW1hfY8yFdwMFx8sZu1\nBlwt56WXaF6PcOsEBcGvfw3h/WoPpNeg4mI3+WzdSa5FpMPqvMHQ3vsXqt1yC/z1r24E2I0b3SDt\nkycf/9et8fRzo6qfem7PASsiLdI5m5IqKlyn7mOPBbokTRs3DsaOhYcfPjo9YltchGNjYefOprdT\nM5KI53TOGsOXX7qZZ6rb7du73/wG7rvPjaFU7xRqx0FzawwKBhHP6Zw1hvZ+N1Jd06e7C3BYWNu9\nZp05GRqkYBDxnM5ZY+go/Qs1tWUogIJBpBPrfMFw+LCbq9LPTw57TmRkndl7GqBgEPGczhcMH34I\nJ5/sLnzSsKgoBYNIJ9X5gqGj9S8ESmSke8K6KXl5eupZxGM6ZzB0tP6FQIiMdEN7W9v4dqoxiHhO\n5wqGAwdgy5a2eUCsowsJcbPaHTrU+Hb5+a7ZSUQ8o3MFwwcfuCkzu3QJdEk6hub0MygYRDyncwXD\nihXqX2iJ5tyZVFCgYBDxmM4VDOpfaJmoqKY7oPPzdYeXiMd0nmBIS4OcHDf2kDRPc2oMakoS8ZzO\nEwwrVsDUqW5caWme5tYYFAwintJ5rpKrV7upMqX5mqoxlJRAZSXNm/9TRDqKzhMMe/a4Ge+l+Zqq\nMVTXFjQXg4indJ5gyMmBXr0CXYqOpakaQ0GBOp5FPKhzBUPPnoEuRcfS3BqDiHiKgkEa1lSNQcEg\n4kmdIxhKS91w27qItUxTTz4rGEQ8yadgMMbEGGOWGmO2GmOWGGPqvUoYY2YZY7YYY1KMMQua2t8Y\nM90Y87kxZoMx5jNjjG+3E+XmasL61mhqhFU93CbiSb7WGG4HlltrRwErgd/W3cAYEwQsBGYCY4Er\njDGjm9h/P3ChtXYcMA943qdSZmer47k1VGMQ6ZR8DYY5wLNV3z8LfK+ebSYB26y1qdbaMuDlqv0a\n3N9au8Fau6/q+2+BcGNMaKtLqf6F1mmqxqBxkkQ8yddgiLPWZgJUXcjj6tlmAJBWYzm9ah1An6b2\nN8ZcBnxZFSqto2BoHdUYRDqlkKY2MMYsA/rUXAVY4M56Nm9iVpcm1drfGDMW+BMww6ejKhhapzl9\nDCNHtl15RKRNNBkM1toGL8rGmExjTB9rbaYxpi+QVc9me4DBNZYHVq0D2NfQ/saYgcAbwE+stbsa\nK+O8efNISEgAIDo6msTERJKSkgBITk6Gzz4jqSoYkpOTAWr/XMv1L0dEkFxUBCtWkFQ1XHmtn+fn\nk5yeDsnJ7aO8WtaylhtcTk5O5plnngE4cr1siLFNTd3Y2M7GPADkWmsfqLrbKMZae3udbYKBrcA0\nYC/wKXCFtXZzQ/sbY6KBZOAea+2bTZTBNvk73HYb9O4NCxY0vp0cKzoadu2qf17nmTPh5pth9uw2\nL5aI+MYYg7W23ls1fe1jeACYYYypvvDfX/WC/YwxbwNYayuA+cBS4FvgZWvt5sb2B24EhgF3GWPW\nG2O+NMa0/rYiDYfReo01J6nzWcSTmmxKaoy1Nhc4ZuYba+1e4MIay+8Do1qw/33Afb6UrRb1MbRe\nYx3Q6nwW8aTO8eSzgqH1GqsxKBhEPEnBII1rqsagJ59FPEfBII1rqMZQXu7Gn+reve3LJCLHlfeD\nobISDhyA2NhAl6Rjiolx719dBQXQo4emShXxIO//r87Lc59qQ1s/okan1lgwqH9BxJO8HwxqRvJN\nQ8Gg/gURz1IwSOMaCoa8vPofehORDk/BII1rKBhyc/W+iniU94NBczH4prFgUIe+iCd5PxhUY/BN\nQ8GQk6NgEPEoBYM0LibG1Q7qUo1BxLMUDNI49TGIdDoKBmlcjx7uCeeyOhPoqcYg4lkKBmlcUJB7\nkC0vr/Z69TGIeJb3g0F3JfkuNvbY5iTVGEQ8y/vBoBqD7+rrZ1Afg4hneTsYrFUw+ENDwaAag4gn\neTsYiorAGOjWLdAl6djqBkNxseuMjogIXJlE5LjxdjCotuAfdYOhurZg6p1HXEQ6OG8Hgzqe/aO+\nYFDginiWt4NBNQb/aKjGICKepGCQptUdFkPBIOJpCgZpWt0agx5uE/E0BYM0TX0MIp2Kt4NBnc/+\noT4GkU7F28GgGoN/KBhEOhUFgzQtNta9l9a6ZfUxiHiagkGaFhkJ4eGwf79bVh+DiKcpGKR5Ro6E\nrVvd99nZqjGIeJiCQZpn1ChISYHycvjuOxg+PNAlEpHjxLvBUFoKhYVukhnx3ciRLhi2bYN+/dzM\nbiLiSd4Nhuo7Z4K8+yu2qepg2LABxo0LdGlE5Djy7lVTzUj+VTMYEhMDXRoROY4UDNI8w4fDjh3w\nxReqMYh4nIJBmqdbN4iLg1WrFAwiHufdYNBwGP43cqQLiMGDA10SETmOfAoGY0yMMWapMWarMWaJ\nMabeW4CMMbOMMVuMMSnGmAXN3d8YM9gYc9AYc0uLC6cag/+NHOlqC5q5TcTTfK0x3A4st9aOAlYC\nv627gTEmCFgIzATGAlcYY0Y3c/+HgXdbVTIFg/9NmQLTpwe6FCJynIX4uP8c4Jyq758FknEX+5om\nAdustakAxpiXq/bb0tj+xpg5wA6gsFUly8lxD2WJ/1x5ZaBLICJtwNcaQ5y1NhPAWrsPiKtnmwFA\nWo3l9Kp1AH3q7N8HwBjTHfgNcC/QunYL1RhERFqlyRqDMWYZVRfs6lWABe6sZ3PrY3kqq/69G/iz\ntbbIuPbsRsNh3rx5JCQkABAdHU1iYiJJOTnQqxfJyckAJCUlAWhZy1rWcqdcTk5O5plnngE4cr1s\niLG29ddyY8xmIMlam2mM6Qt8YK09oc42k4F7rLWzqpZvB6y19oGG9jfGrAYGVh0iBqgA7rLW/q2e\nMth6f4fRo+GNN2DMmFb/fiIiXmWMwVpb74duX5uSFgPzqr6/GlhUzzafAcONMfHGmDBgbtV+De5v\nrT3bWjvUWjsUeAT4Y32h0Cg1JYmItIqvwfAAMMMYsxWYBtwPYIzpZ4x5G8BaWwHMB5YC3wIvW2s3\nN7a/zyor3YxjGhpaRKTFfGpKag/qbUo6cAASEiA/PyBlEhFp745nU1L7pGYkEZFW82YwaDgMEZFW\n82YwqMYgItJqCgYREalFwSAiIrUoGEREpBbvBoM6n0VEWsWbwZCdrRqDiEgreTMY1JQkItJqCgYR\nEalFwSAiIrV4LxisVeeziIgPvBcMRUXu327dAlsOEZEOynvBoGakTq961iqRajonWkbBIJ6ji4DU\npXOiZRQMx9nxPiF9PX5r9m/JPs3ZtrFtWvuz9kznRNPb6pwI7PEVDMdZe/uD+2N/XQR8o3Oi6W11\nTgT2+J6YwS3QZRAR6YgamsGtwweDiIj4l/eakkRExCcKBhERqUXBICIitSgYRESkFgWDiIjUEhLo\nAhwPxphuwN+AEmCVtfafAS6SBJgxZghwBxBprf1BoMsjgWeMmQNcAPQAnrbWLgtwkdoNT96uaoy5\nEjhgrX3HGPOytXZuoMsk7YMx5l8KBqnJGBMN/I+19vpAl6W96BBNScaYp4wxmcaYjXXWzzLGbDHG\npBhjFtT40UAgrer7ijYrqLSZVpwT4nE+nBN3Ao+1TSk7hg4RDMA/gJk1VxhjgoCFVevHAlcYY0ZX\n/TgNFw4A9T7ZJx1eS8+JI5u1TfEkAFp8Thhj7gfetdZ+1ZYFbe86RDBYa9cCB+qsngRss9amWmvL\ngJeBOVU/+zdwmTHmMeCttiuptJWWnhPGmFhjzP8CiapJeFMrzolfAtNw14qftmlh27mO3Pk8gKPN\nRQDpuJMAa20RcG0gCiUB1dg5kQv8PBCFkoBq7Jx4FHg0EIVq7zpEjUFERNpORw6GPcDgGssDq9ZJ\n56VzQurSOdEKHSkYDLU7Dj8Dhhtj4o0xYcBcYHFASiaBonNC6tI54QcdIhiMMf8EPgRGGmN2G2Ou\nsdZWAL8ElgLfAi9bazcHspzSdnROSF06J/zHkw+4iYhI63WIGoOIiLQdBYOIiNSiYBARkVoUDCIi\nUouCQUREalEwiIhILQoGERGpRcEgIiK1/H8qAgw3ALZXSwAAAABJRU5ErkJggg==\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x3485610>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"READ X133928.340\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan4.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan4.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan4.dat\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD/CAYAAAD12nFYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VdW99/HPyjxABiCEECAgM4gEFQUnqBNIrdxb1KtV\nK2rRp9V62+qteq1K7aVVK1UrVlofnAduq9Thcag4RARkEhWZQQUShBAgEMicc37PHzsgJ2TOSU5y\n+L5fr7xg77P22euEzf6evdZeezkzQ0RE5JCIUFdARETaFwWDiIgEUDCIiEgABYOIiARQMIiISICo\nUFegpZxzuq1KRKQZzMzVtj4srhjMrN3+3HPPPe36/ZuzfVO2aUzZ+so057XW/p2H+t9Mx4SOiWC8\nf33CIhjas/Hjx7fr92/O9k3ZpjFl6yvT3NfaMx0TDZfVMRHa93cNJUd755yzjv4ZJLimT5/O9OnT\nQ10NaUd0TBzNOYeFc1OSyJE66rdGaT06JppGVwwiIseg+q4YOvxdSSIitenbty9bt24NdTVCLisr\niy1btjRpG10xiEhYqv5GHOpqhFxdvwf1MYiISKMpGEREJICCQUREAigYREQkgIJBRKQduOaaa7j7\n7rtZuHAhQ4cOPbx+48aNjBo1iuTkZGbNmtUmdVEwiIi0I2eccQbr1q07vPzAAw9w9tlns3//fm66\n6SZycnI4++yzSUlJ4bjjjmuVOigYRETasa1btzJ8+PDDy4mJiVx33XU8+OCDrbZPBYOISAh89tln\nnHTSSSQnJ3PZZZdRVlYGwEcffUTv3r0BOOecc/jwww+58cYbSUpKYvPmzYwePZorrriCfv36tVrd\nFAwiIm2ssrKSf//3f+fqq69m7969XHLJJbzyyiuHX3fOG3f2/vvvc+aZZ/LYY49RVFTEgAED2qR+\neiSGiByTXK1jfpuuOYOrlyxZQlVVFTfffDMAU6ZMYfTo0cGpUBAoGETkmBTKp2V8++23ZGZmBqzL\nysoKUW2OFpSmJOfcROfceufcRufcbXWU+bNzbpNz7nPnXHZjt3XO3eKc8zvnugSjriIioZaRkcH2\n7dsD1m3bti1EtTlai4PBORcBzAImAMOBy51zQ2qUuQDob2YDgRuA2Y3Z1jnXCzgP0CMSRSRsjB07\nlqioKB599FGqqqqYN28ey5YtO/x6fQ//MzPKy8upqKjA7/dTXl5OZWVlUOsXjCuGU4BNZrbVzCqB\nucDkGmUmA88CmNlSINk5l96IbR8C/isIdRQRaTeio6OZN28eTz31FF27duUf//gHU6ZMOfy6O6ID\nxNXoDFmwYAHx8fFceOGF5ObmkpCQwIQJE4Jav2D0MWQCuUcs5+Gd8Bsqk1nfts65i4BcM/uy5i9G\nRKSjO/HEE1m5cmWtrx3ZrPTBBx8EvDZu3Dj8fn+r1i1Unc/1numdc/HAf+M1IzW4zdSpU+nbty8A\nKSkpZGdnH57KLycnB0DLWtbyMbgs38nJyeHpp58GOHy+rEuLJ+pxzo0BppvZxOrl2wEzs/uPKDMb\n+NDM/rd6eT0wDuhX27bAm8B7QAleIPQCtgOnmNmuGvvXRD0ichRN1OMJ1UQ9y4EBzrks51wMcBnw\neo0yrwM/rq7MGGCfmeXXta2ZrTazHmZ2nJn1w2tiGlUzFEREJPha3JRkZj7n3E3Au3hBM8fM1jnn\nbvBetr+Z2VvOuUnOuc1AMXBNfdvWthsaaH4SEZHg0JzPIhKW1JTk0ZzPIiLSYgoGEREJoGAQEZEA\nCgYRkXZAU3uKiEitGpra88EHH2TEiBEkJSXRv3//VpnJTcEgItKO1ZzaE+C5555j3759vP3228ya\nNYu///3vQd2ngkFEJASaO7XnrbfeSnZ2NhEREQwaNIjJkyezaNGioNZNwSAi0saCObXnxx9/fNQV\nRUtpBjcROSa53wbnYQp2T9MH0QVras977rkHM+Oaa65p8rb1UTCIyDGpOSf0YAnG1J6zZs3i+eef\nZ+HChURHRwezempKEhFpay2d2vPJJ5/kgQce4IMPPiAjIyPY1VMwiIi0tZZM7fnCCy9w5513Mn/+\n/CZfZTSWgkFEpI21ZGrPu+66i7179zJ69Gg6d+5MUlISP/vZz4JaPz1dVUTCkp6u6tHTVUVEpMUU\nDCIiEkDBICIiARQMIiISQMEgIiIBFAwiIhJAwSAiIgEUDCIiEkDBICLSDmhqTxERqVVDU3s+/PDD\n9O/fn6SkJHr06MG1117LwYMHg1oHBYOISDtWc2rPyZMns2LFCoqKili/fj1bt25lxowZQd2ngkFE\nJASaO7Vnv379SE1NBcDn8xERERH0R28rGERE2lhLp/Z86aWXSE5Opnv37nTv3v3wTHDBomAQkWOT\nc8H5aYYjp/aMjIxs8tSel19+Ofv372fjxo2sXbuWhx9+uFn1qIuCQUSOTWbB+WmGYEztCdC/f39u\nv/12nn322WbVoy4KBmm8xx+HX/4y1LUQ6fBaOrXnkSorK0lISAhGtQ5TMEjjzZ8PL74IPl+oayLS\nobVkas85c+ZQUFAAwNq1a7nvvvsCZn8LBgWDNI4ZLF4MUVGwcGGoayPSobVkas9FixYxYsQIkpKS\n+OEPf8jVV1/NL4N8Ja+pPaVxvvkGzjgDfvpTKCiARx4JdY1E6qWpPT2a2lNaz+LFcNppMGUKzJsH\nfn+oayQirUTBII1zKBiGDoW4OFi7NtQ1EpFWEpRgcM5NdM6td85tdM7dVkeZPzvnNjnnPnfOZTe0\nrXPuAefcuuryrzjnkoJRV2mmQ8EAMHAgbNkS0uqISOtpcTA45yKAWcAEYDhwuXNuSI0yFwD9zWwg\ncAMwuxHbvgsMN7NsYBNwR0vrKs1UWgobNsCoUd5ynz7QzFvrRKT9C8YVwynAJjPbamaVwFxgco0y\nk4FnAcxsKZDsnEuvb1sze8/MDjVkLwF6BaGu0hzbt0NGBsTEeMu9e0NubmjrJCKtJhjBkAkceZbI\nq17XmDKN2RbgWuDtFtdUmicvD44cpakrBpGwFhWi/Tb6ASPOuTuBSjN7sa4yU6dOpW/fvgCkpKSQ\nnZ3N+PHjAcjJyQHQckuW589nfHUw5OTkwJ49jK++YmgX9dOylmtZzsrKOmoMwLHo0JNXc3JyePrp\npwEOny/r0uJxDM65McB0M5tYvXw7YGZ2/xFlZgMfmtn/Vi+vB8YB/erb1jk3FZgGnG1m5XXsX+MY\nWtsDD3hjF/74R2/566/h7LPVAS3SgbX2OIblwADnXJZzLga4DHi9RpnXgR9XV2YMsM/M8uvb1jk3\nEfgv4KK6QkHaSM2mpMxM2LFDj8YQCVMtDgYz8wE34d1FtAaYa2brnHM3OOeury7zFvCNc24z8Ffg\nZ/VtW/3WjwKdgPnOuZXOub+0tK7STNu3BwZDbCx06QI7d4auTiLSaoLSx2Bm7wCDa6z7a43lmxq7\nbfX6gcGomwRBzWAArwM6N/fo9SLS4WnkszQsLw961bhbuHdv3ZkkEqYUDFI/nw927fLGMRzp0BWD\niIQdBYPULz/f60+Ijg5crysGkbAVHsFw8GCoaxC+at6RdIiuGETCVngEw6uvhroG4Wv79qP7F8Bb\np2AQCUvhEQzPPx/qGoSv2u5IAq/PQberioSl8AiGpUt1kmotdTUlpad7ndIadS4SdsIjGCZPhrlz\nQ12L8FTXFUNsLCQmQmFh29dJRFpVeATDlVeqOam17Nx59K2qh/TooSs1kTAUHsHwve95z+5Zt67h\nstI0+fles1Ft0tMVDCJhKDyCITISfvQjXTW0hvqCQVcMImEpPIIBvOakF14Av7/hstI4Ph/s3Qtp\nabW/rmAQCUvhEwwnnACdO8OiRaGuSfjYvRtSUyGqjmctKhhEwlL4BINz6oQOtp07625GAgWDSJgK\nn2AAr5/h5ZehXPP6BEV9/QugYBAJU+EVDL17e01Kb70V6pqEh/x87+RfFwWDSFgKr2AANScFk64Y\nRI5J4RcMU6bAe+9pRG4wNNTH0K2b93uurGy7OolIqwu/YEhJgfPP9/oapGUaumKIjISuXaGgoO3q\nJCKtLvyCAdScFCwN9TGA93p+ftvUR0TaRHgGwwUXwJo1sHVrqGvSsTV0xQDqZxAJQ+EZDDExcMkl\n3khoab6G+hjAC4YdO9qmPiLSJsIzGACuugqee07zBTRXQ4/DOKRnT+/R3CISNsI3GMaO9Qa6ffZZ\nqGvSMTX0OIxDevVSMIiEmfANBj0io2Ua078A3iQ+CgaRsBK+wQBwxRXw0ktQVRXqmnQ8O3c2fEcS\nKBhEwlB4B8Pgwd5jMj74INQ16Xhyc71mooZkZnrzQotI2AjvYIDwaU7y+eDTT70O4baQl+eFakO6\nd4d9+/TgQpEwEv7B8B//Aa+/DsXFoa5J8y1f7p2AL7sMTj21bcZn5OU17oohMlK3rIqEmfAPhvR0\nOO00eO21UNekeSor4brr4M9/hk2b4KabYNy41r9yaGxTEqifQSTMhH8wQMduTnrwQe/E+6Mfecv/\n+Z8waRLcfXfr7rexVwzglVM/g0jYcNbBB4A556zBz1Bc7J1cN2xo3C2Y7UVREfTrB8uWQf/+363f\nsweGDYN334WRI1tn3ykp8M033liGhvziF9CnD/zqV61TFxEJOuccZuZqe+3YuGJITPRGQl92mTdw\nq6N48kk499zAUADviaa//S388petM7L7wAGvCSslpXHl1ZQkElaOjWAAePhhr+P2lFPgyy9DXZuG\n+XzwyCN1fwv/yU+8k/H8+cHf96FmJFfrl4mjafSzSFg5doIhMhLuuw9+9zs4+2z45z9DXaP6vfoq\nZGR4YVabqCiYMQPuuAP8/uDuu7G3qh6isQwiYeXYCYZDrrgC3n4bbr4Z7r03+CfVYPnTnxpus58y\nxQu8554L7r6bckcSNL4pyUzjHUQ6gKAEg3NuonNuvXNuo3PutjrK/Nk5t8k597lzLruhbZ1zqc65\nd51zG5xz/3LOJQejrgCcfLLXofv223Dppe1vjMPSpd6J9t/+rf5yzsHjj8Ovfx3cWdSackcSeMGw\nY4fX/FWXDz7wfu+dO8PQoXDPPUePfdi7F1avhnXrap0utKDAe5L6X//a+NbAN9/0/omHDPFytj0O\nt6jwVeC3dvoFRcLSli31v97iYHDORQCzgAnAcOBy59yQGmUuAPqb2UDgBmB2I7a9HXjPzAYDHwB3\ntLSuATIyICfHO1GddlrDv6lWtGz7Mn7+1s955vNnKK4ohoce8m5LbejJpgAnneTdjnvzzazYvpzX\n1r9G7v7co8sVFMBdd8G0afDMM/WfxJsaDHFxXtPThg21v75ihdfxf/vtXsf288/Drl3e2XrIEK/f\np2dP6NvXG5D4gx94dzndcw+Ul+P3e11Ew4bBK694mT5xotciuHp17bssKIAf/tDrn580ybuo8vvh\nxBO9OZxCycxYvWs103OmM+LxEST+PpGoe6MY/cRoHl36KAfKimDxYq8fafRoGDgQLrrI63PKz8fn\n97E0bykPLHqAGQtmMGflHHYe1GRJoVJUXsSy7ct4bf1rfLTlI3aX1H+DS0UFfP45vP8+LFjQttPT\nFxR4NxGedFL95Vp8u6pzbgxwj5ldUL18O2Bmdv8RZWYDH5rZ/1YvrwPGA/3q2tY5tx4YZ2b5zrke\nQI6ZBQRO9TYN365aHzPvP9z991Py7JN8dUIvdh7cSX5xPlX+KpJik0iKTSIlLoW0hDS6J3YnPjq+\n8e9fUuKdyb74wrvNtGdPOOss7ywHPLLkEWZ8PIOfjf4ZOVtyOLOwM7/7w1LYvBmSkhq1i+LCXew8\nZSg5GeW8cv2ZLN+xgtN6n8b0cdMZlT4SHn0Uu/deKv/tEg5mHU/8i3MouegyIu64jeRkiKj59eCC\nC7yBdN//fuM/56ET+pVXBq73+bx+kptugqlTA1+rqvLO0iUl3lVHr17fVWbdOvjv/8a3NZeb0l/m\n8319eeopL0fAu6CYM8fLumuv9bpaUlLA/MaHz+Vx221w3hXduXtGLHFx3+3ypZfglluNN+cfoFvm\nfuKi4ugU04m4qDhcA53t+8v2s2HPBtbvXk/+wXzKqsoorSoFoEt8F7rGd6VrQle6xHehR6ce9Erq\nRVxUHGbGvrJ9fLrjU97/+n3mrZ9HWVUZU4ZO4eJhFzOm1xj85mfBqjf46vEZjHnjczJcZ6J/ehPJ\n50zyPtjatRz4x/NEvfkOrw2L5MUJGfQbO4lOMZ34et/XvL3pbbJ7ZHPJsEu4dPilpCXWPY/Gpk3e\n01X274dOnX0kZ+4iNSsPvysjMSaRxOhEkuOSSUtIIzIi8rsNy8u9K79//hM+/hi+/db7UtCvH0ya\nRMWlU9jUBdYWrGXz3s3sLfUGYSZEJ5AQnUBqfCq9k3rTO7k3GZ0yiIuKIyYyhqiIKMp95ZRUllBS\nWUKEiyAmMibgJ8K17DuszwcbN3pP4V+50jvsCgq8Lwtpad5xdfIoH+ekriTj209xX232zuDJyd7/\n1eHDvWevxcYCsHHPRt7Y8AZvbHyDT3d8yqCug+jZuSf7yvbxZf6XDOo6iIkDJnJ+v0mkVZzCZysj\nWLoUliyBVau870Ddu0NZmfflZsQIuOYar6U7IaFFH7XWz/7551635eOPe0Oi7rwTevSo+3bVYATD\nFGCCmV1fvXwlcIqZ3XxEmTeAP5jZ4url+cBteMFQ67bOuUIzSz3iPfaaWZda9t+yYAD85ufNx37B\nqXfMYm1mImvSu1HoUtkfEceB2EpiIouJtYPE+IqIKT9IckUE3XxxdIqMIyoxEX90PFURsVRZPBHW\njdiyTFJ2+umRv4re+1axpfMINnY+iQOx3Ugv28aJu//FmrTvMeOskSzKeoJzv32PFLKwiEJ+/nY6\nOQNuYVnGH6is9E6AcXHQqZP3k5TknSeO/Hlh5x3s2bOK5x7fSXFiBjln3cobLKBy58PckQO+0h5M\n9T/FNk6ia2oUg+K2Mferk7k4/i0Wlp1M167eBVTPnt773f/W8fzxhOdZUZXN7j1GQdVXFKcuIfn4\nT0jos5bI1O1ERztiI2OJi4ojMSaRq9/ZSdpB49VpZ9IpphOdYjoRExFHj78u4eRFq7jm4h/RJc1P\n7z5VpHb14fP78Nl3f1b5q6jyVwX8/cDBSk6Zs5mbvtzCHbedwNeZscRHxTOk2xCGdhvKsLRhpNkJ\n/GlGKhte/pK7EmZyev4rFEd0JiklgtgDuynv24vtA3uwKjOKNa6ALaU7KDlYRFJJFP38MaQcrCSh\npIKoKqMT0SS4GCKjY4mIiYXoaIqpoNhXRklVqfdFIT6F1LgU4qMTiIyIIspFYQ7KfWVUVJRRWVFK\nZUUZleUlVJSXEOWHKL8jxhyRKakkZPYja9BoMgeciOvWjbz1B8ld8A0D9iyl27oFuHPPZccVk7k/\ndgXPrH6OAV0G0Ce5D18Xfk1eUR7T+k7hP5c60l94FevTh11DxpHXaQjHnRDJtp1L2LJqAWVfb6K/\nL4lusV1IjIwj0kVQGgXf+KJYUBLHJ10jWTO8jILknZRE7iCiPBX/vl4kxsYTn1xMVHwxZa6QAxX7\n6Redxg+3JHDBl2Wc/EUBu/uls+ms4Xx9cn8K0zpxsGg3tn49Az9ew8TlhXzRJ5G5Y0fxRdpYXFk3\nIiMdMYnFRCeUQPweoqu+pvdXm+m/sYATt1XStdiPmXdPvS8qgqKEKArjI9gdZ+yJ9VPhfERX+Yj1\nRRJfFUW8L4oEXyTx/kg6Vzk6V0GiDyKiIrGYGKoiovG5aCpdLBUWw8HKKArLHF/5E9iZ2pniXvGU\n9IvH1yea+IgSeu4tYcjmEoas2sHwzV/xrUtjZdzJ+PuOIKl7POmRe+i5by2JW1fRueBbdqYmsiqt\nijVpcDDjVKJTJ5EaOR7fPqgs2Id/TyHRhXnElS+ji31OUuRWIiKqKI5NpyS9DweO70X5qT0pzepC\ncWUJByoOUFR2kM3bDrBpawm+nX7OiyvhTDvIwB1FpOeXEFfuwznwRUVSRgQlPkep31HmHOVEUuEc\nZl7zT6T5iTQj0gznM3w+KPU5iHZEdYokKiOaiq6xHOgcy7TZy9pdMLwH/JqmBcMeM+tay/7t6quv\npm/fvgCkpKSQnZ3N+PHjAcjJyQGoc/npV59m5uKZxA/ohP//PkjfbR9yatfNXJCZSmd/Ecvyv6bC\nH82wxH4UVSXwUeFuCiujSYrpy/6KEraWrCYxpoTjUzuREFvC1+XfUB61i+SsBJKPu5jSxPOJT0pm\n1Kjx1cmdA2WljF05h5E583hu9H+wN/tyBg76Htnz7uKz9a9x60THw+dsJi42gnXrcqishD59xnPg\nAKxalcPBg9C583j27YO1259lw3E/Z8CG9WTFpzBq522cuuNVznOVlHTL5E8ju/HOcbvZ1v0riiqK\nsG8Mh+OKIuPny+AHk7vTKSqFjMEDiPelU/7lAe58ch5zHvw5eVGbWfXFAmIjYzjzzO/R243hs1eN\nlR9344qpY7j2+jJWLl9EeVU5Y8oOctxfXuKPP5lEaVUphVE9eOfdEv7y1iz+fu5Z+Madxq78KL5c\nsIXOnSOYMGUwJ2ZHsmXVV0S6SIaNHkZURBQbP91IhIukjJE88bcoxo5Yyw8jv+DKl99h40O/4U0q\n2LZ/G5W9K1lTsIZNH33GtM8ct27z88bZo/jfHun4epaxL6OQDd9+yfHrOjOmOJUfRXUhoyKGL/aU\nEB0bT+LewWwuSiPjgn1Edk7kjBHDOegqeXf1FxSXHuCE3l2pLCth3ZYCEiPjmTBsBJ1jOrFg02Yw\nY/ygQd7xtGEDlVUwOHEgZZWRrCz4irQekZwz8ngsMpL31q3BIiI4/8SToaiInMWLobCQ0yPjWLtg\nN6/tLCG2V3f2uh+yuc85XH/7KmJjveOzpLKEOfPmUFBSwPfP+z7ZPbL5ZOEnAPTPOoPp4z4kbv9c\n+kVvp9/+ZFJ6J7F/pJ/EAcl06h/PZ7u/ZOmGrzhYUk5ieSZddsWSyS4G7i/kou0F+DMz+bhffyKH\nDeOU8yfzxY505r6xnILV+QzMM06veh+f7yO2dulHZfaZfDKyDxuK1uL3G51796OqMoJdX+7hYH4a\n+3dcTM+qXkyM/B3nFL7MuMROfDtyEh9UVlF+sIpxBw6QmbuEVcW5bHSD6dRtInk9T2Ud+RhGfOXJ\n7Pm2nH1FC8hMKmJcWjq9EvfyTdXXxHaO4uRe/SmLdCzI+4YDlZDeuS+7KyP4YvfXFFVBYkwPnBVT\nWrWJ+Ngy+qcnkRhdQkFRASmxjvO7xtG9sJj1X+XTqbCYCcVl+OJi+FdiHLt6dyHuzH4sGhTH4s3f\nsLNoN0UZRZiB72s/5o+gU4/BpBUfT+aacgbv78QPXA9671/DxsI1xPhKGdupK76kVBZFVOFSUznj\nxFOJHdCbTw9sZ1/FXjJjD1K+cS1bP/2Krnl7OcfnJ39ATz5IiCMqMprzLIKUr/JYtHs/Ozql4Ysc\nzLYevVidUEZ5dCRJib3Yv7uCffty6Z4CJ2b1pHOsn9zd24h1PoZnZOBzEazZuRM/EQzM6EVUXATf\n7NlOUqKfMQMy+HxjLm8vX0tERSVZ0VE8un5rqwbDGGC6mU2sXm5MU9J6YBxeMNS67aHmpiOakj40\ns6G17L9ZVwzlVeX8YeEfmLVsFtPH/ZZ3f/9/6JkRyezZTXsf79tOzXXGkrwlPLD4AZZtX8YdZ9zB\ntBOnERsVi5nxwpcvcOu7tzL/1McY8chL3gjmiAi44ALsgQcY+f++z6MXPMq4vuMa3P/3X/w+5x13\nHr8Y84tG1NXwWXXfgs9HxMBB7Hjyz+QOSmdX8S7yD+YT//ESzvjrW7z0t5sZ1HUQp/Y6lV5Jgf0N\nO3d67ZRLl8L//A9cfjlEFO6B445j9ceF3HlXBOvXw9+nvsXIl+/y+hiqf0lVVd4zDWfNgvXr4YYb\nvBarnj29vufly73+gB07vE7ms86q3mlOjnedffHF3kYAr7+OzZzJ/h+cR85PzmNb5AFKK0tJS0xj\ncNfBnJB+Ap1jO9f6u/D5vL79jAxvP40dsnHI/v1es9RLL3l1HjjQa3UoLPRu6rr4Yq9LZcCAo7dd\ntcrrED/jDJg509uuqspracvPh7fegujouvedmwvjx8ONN35349qBAzB7tncz29ChXpdEXJx3f8Xi\nxfCb38DPfnbE+1ZVeT34S5Z4H2DDBm/wp8/n9RcdfzwHThzH2p7nsqkghT17vH+fwkJvSvWEBIiP\n94oOGeK1snQ+9Kv2+73m0/nzveYm5yA7G8aMgeHDOVgayaZN3mctKfH+D2VmQlaW92CCo5o2w9Gu\nXV671pYt3u8rMxOOP95rY4qIoKTEa/7ZtMkr3r07DBoExx3X9GO1LvWNfMbMWvQDRAKbgSwgBvgc\nGFqjzCTgzeq/jwGWNLQtcD9wW/XfbwPuq2P/1lQfb/3YhswaYhe9dJHl7s+16dPNTj/drLy8yW/V\noBXbV9iFL15oKfel2LnPnmsD/jzA+j/S31bnr/6uUFmZ2Y4dhxdnLp5pU1+d2uB7b96z2dIeSLPS\nytLmVe73vze79trAdb/7ndmttzZq85wcszFjzLp0MTv/fLPt0Vl2apeN9sc/mpWWmtmkSWZPPlnn\n9qtXm/30p2bZ2Wbp6WZDh5pNmWL24over+QoO3Z4devZ06x/f7OpU83WrWv8562hqMhsxAiz3/7W\nzO9v3DYrVpj95CdmKSlmF19s9uqr1Z+1RjXvucesWzezK680W7rUrKLCLC/P7N57vfXPPnv0e1dV\neb+y//qvuvdfUmI2apTZfffV/np5udncuWY33WR23XVmTz1lduBA4z6bHFuqz521n9freqEpP8BE\nYAOwCbi9et0NwPVHlJlVHQJfACfWt231+i7Ae9WvvQuk1LHvRv8iCksL7YY3brCeM3vay2teNr/f\nb6++atarV8B5uVXsOLDD3tjwhq38dqX5GzgL7Tyw01LuS7ED5fX/j/71u7+2W/51S/MrlZ9vlpxs\ntnfvd+smTDD75z+b9DZ5eWavv26293v/buXPzvVWrl3rnQFLSppfvzaQl2d28slml1xi9u23tZfJ\nzzebPdsWjsUpAAAMyElEQVQrl5Xl5Wljjpd9+8xmzDAbNswsNtasa1ezyy8327q17m0KCsx69/YC\npya/3+zHP/beo7FBJlKXVg+GUP40Nhje3fyu9ZzZ02544wYrLC00s+/OXUuWNOot2tSFL15oz3z+\nTJ2vl1WWWfc/drcNuze0bEdXXeVdJZh5X1mTk8127Wree/3ud2bXX++dtcaPN3vooZbVrY2Ulpr9\n8pfeVcDkyWa//rXZXXd5VzMnneT9Si691OzNN71fUXMUF5v5fI0ru2SJWVqa2WefBa6fMcO7ujp4\nsHl1EDlSfcFwTDxdtdJXSf8/92f2hbOZNHAS4E06duqpXjvwNde0RU2b5uW1L/OX5X/hg6trn5Z0\n7uq5PLHyCd7/8fst29GmTTB2rHcvX26u1/hd13iEhmzf7g0uyMry2quXLWvcWIx2orAQ3nnHe6hs\nZaX3YNmTTvLG5VXfpdhm/vEPr//g+ee9pvnHHvOm5Fi82OuPEWmp+voYjolgePHLF3li5RN8ePWH\ngNfXc9FFXj/PrFltUMlmKK8qJ/NPmay4fgV9U/oe9fr4p8dz4+gbuWT4JS3f2bRpXqdjcbH3JNon\nn2z+e+3eDddf790o3dAoGqnXyy97g9r37PHGYD78sNfJKxIMx3QwmBkn/e0k7v3evVw46ELAGxS1\nYAG89179d3+E2o1v3kiPTj24a9xdAevX717P+KfHs+2X24iJjGn5jnJzvWHC557rPUMqI6Pl7ylB\nUVHh3aGVlRXqmki4qS8YOs51fjPlbMmhtKr0cBPSvHneEyFWrGjfoQAwNXsql71yGb856zcBo3L/\nuuKvXDvq2uCEAnj3HC5fHpz3kqCKiVEoSNsL+zuGH/zkQX415ldEuAhWr/ZugZ83z7svuL07uefJ\nxEfF887mdw6vKywt5LlVzzHtxGkhrJmIhLOwDoZ1Bev49NtPuWrkVRQWegOaZs70OhM7AuccM86e\nwa3zb6XKXwXA9JzpTBk6hX6p/UJcOxEJV2HdxzDt9Wn0Tu7N3ePuZto0byToo4+2cQVbyMw497lz\nOaffOZyaeSqXv3I5a29cS7eEbqGumoh0YMdk53P+wXyGPDaEjTdtJC0xjawsb4R+9SNuOpTVu1Zz\n5bwrKaks4a6z7uKqkVeFukoi0sEdk8Fw94d3U1BcwOMXPs62bV7zUX5+8J4zIiLSkR1zdyWVVJYw\ne8VsFl67EIBFi+D00xUKIiKNEZadz898/gxje49lUFev3WjRIu9JliIi0rCwCwa/+XloyUPcOvbW\nw+sWLlQwiIg0VtgFwxsb3iAlLoUz+nhJsH+/N0vmqFEhrpiISAcRdsHw4CcPcsvYWw6PFP7kE6/j\nOSZIg4RFRMJdWAXD0ryl5O7PZcqwKYfXqRlJRKRpwioYZn4yk1+M+QVREd/dbKWOZxGRpgmbcQzf\nFH7D6CdG881/fnN4nt+KCujSxZsmIDk5xBUVEWlH6hvHEDZXDI8sfYTrRl0XMPn7Z595k7ErFERE\nGi8sBrgVlhby7BfPsuqnqwLWL1zoDWwTEZHGC4srhr99+jcuHHQhvZJ6BaxXx7OISNOFRR9D5sxM\n3vzRm4zsMfLwejNIT4dPP/XmoRERke+EfR/D0LShAaEA3hz38fEKBRGRpgqLYLhl7C1HrVMzkohI\n84RFMEzoP+GodQoGEZHmCYtgcLU8T1t3JImINE9YBENN+fmwaxcMHx7qmoiIdDxhGQyLF8Npp0Fk\nZKhrIiLS8YRlMKh/QUSk+RQMIiISICwGuB35GYqLoXt32L3bG8cgIiJHC/sBbkdatgxOOEGhICLS\nXGEXDJp/QUSkZcIuGNS/ICLSMmHVx+DzeRPzbN4MaWkhrpiISDt2zPQxfPklZGQoFEREWqJFweCc\nS3XOveuc2+Cc+5dzrta50pxzE51z651zG51ztzW0vXPuXOfcCufcF8655c657zWmPmpGEhFpuZZe\nMdwOvGdmg4EPgDtqFnDORQCzgAnAcOBy59yQBrYvAC40s5HAVOC5xlRGHc8iIi3Xoj4G59x6YJyZ\n5TvnegA5ZjakRpkxwD1mdkH18u2Amdn9jdm+epvdQIaZVdbympkZZt7cCzk53jzPIiJSt9bsY+hu\nZvkAZrYT6F5LmUwg94jlvOp1AOkNbe+cuxhYWVsoHGnbNqiqgv79m/4hRETkO1ENFXDOzQfSj1wF\nGPCbWoq39BangO2dc8OBPwDnNbThof6FWp7ALSIiTdBgMJhZnSdl51y+cy79iKagXbUU2w70OWK5\nV/U6gJ11be+c6wXMA64ysy311XHq1KmsXt2Xrl3h4YdTyM7OZvz48QDk5OQAaFnLWtbyMb2ck5PD\n008/DUDfvn2pT0v7GO4H9lb3F9wGpJrZ7TXKRAIbgHOAHcAy4HIzW1fX9s65FCAHmG5mrzZQBzMz\nTjgB5syB0aOb/XFERI4Z9fUxtDQYugB/B3oDW4FLzWyfcy4DeMLMLqwuNxF4BK9PY46Z3dfA9nfi\n3bG0ie+ars43s9211MH27jX69IG9eyE6utkfR0TkmNFqwdAeOOfszTeNmTPh/fdDXRsRkY4h7Ec+\na2CbiEjwhE0wnH56qGshIhIewqIpKSHB2LEDkpJCXRsRkY4h7JuSBg9WKIiIBEtYBIP6F0REgkfB\nICIiAcIiGNTxLCISPGHR+dzRP4OISFsL+85nEREJHgWDiIgEUDCIiEgABYOIiARQMIiISAAFg4iI\nBFAwiIhIAAWDiIgEUDCIiEgABYOIiARQMIiISAAFg4iIBFAwiIhIAAWDiIgEUDCIiEgABYOIiARQ\nMIiISAAFg4iIBFAwiIhIAAWDiIgEUDCIiEgABYOIiARQMIiISAAFg4iIBFAwiIhIAAWDiIgEUDCI\niEgABYOIiARoUTA451Kdc+865zY45/7lnEuuo9xE59x659xG59xtjd3eOdfHOXfAOferltRTREQa\nr6VXDLcD75nZYOAD4I6aBZxzEcAsYAIwHLjcOTekkdvPBN5qYR1FRKQJWhoMk4Fnqv/+DPBvtZQ5\nBdhkZlvNrBKYW71dvds75yYDXwNrWlhHERFpgpYGQ3czywcws51A91rKZAK5RyznVa8DSK+xfTqA\nc64T8Gvgt4BrYR1FRKQJohoq4JybT/UJ+9AqwIDf1FLcWlgff/Wf9wAPmVmJc+7QPus0depU+vbt\nC0BKSgrZ2dmMHz8egJycHAAta1nLWj6ml3Nycnj66acBDp8v6+LMmn8ud86tA8abWb5zrgfwoZkN\nrVFmDDDdzCZWL98OmJndX9f2zrkFQK/qt0gFfMDdZvaXWupgLfkMIiLHIuccZlbrl+6WNiW9Dkyt\n/vvVwGu1lFkODHDOZTnnYoDLqrerc3szO8vMjjOz44CHgd/XFgoiIhJ8LQ2G+4HznHMbgHOA+wCc\ncxnOuf8HYGY+4CbgXbyO5Llmtq6+7UVEJHRa1JTUHqgpSUSk6VqzKUlERMKMgkFERAIoGEREJICC\nQUREAigYREQkgIJBREQCKBhERCSAgkFERAIoGEREJICCQUREAigYREQkgIJBREQCKBhERCSAgkHC\nzqFZq0QO0THRNAoGCTs6CUhNOiaaRsHQylr7gGzp+zdn+6Zs05iy9ZVp7mvtmY6JhsvqmAjt+ysY\nWll7+wcPxvY6CbSMjomGy+qYCO37h8UMbqGug4hIR1TXDG4dPhhERCS41JQkIiIBFAwiIhJAwSAi\nIgEUDCIiEkDBICIiAaJCXYHW4JxLAP4ClAMfmdmLIa6ShJhzrh9wJ5BkZpeGuj4Ses65ycD3gc7A\nk2Y2P8RVajfC8nZV59yVQKGZvemcm2tml4W6TtI+OOf+rmCQIznnUoA/mtm0UNelvegQTUnOuTnO\nuXzn3Koa6yc659Y75zY652474qVeQG71331tVlFpM804JiTMteCY+A3wWNvUsmPoEMEAPAVMOHKF\ncy4CmFW9fjhwuXNuSPXLuXjhAFDryD7p8Jp6TBwu1jbVkxBo8jHhnLsPeMvMPm/LirZ3HSIYzGwh\nUFhj9SnAJjPbamaVwFxgcvVr/wQuds49BrzRdjWVttLUY8I518U59ziQrSuJ8NSMY+LnwDl454rr\n27Sy7VxH7nzO5LvmIoA8vIMAMysBrg1FpSSk6jsm9gI/DUWlJKTqOyYeBR4NRaXauw5xxSAiIm2n\nIwfDdqDPEcu9qtfJsUvHhNSkY6IZOlIwOAI7DpcDA5xzWc65GOAy4PWQ1ExCRceE1KRjIgg6RDA4\n514EFgODnHPbnHPXmJkP+DnwLrAGmGtm60JZT2k7OiakJh0TwROWA9xERKT5OsQVg4iItB0Fg4iI\nBFAwiIhIAAWDiIgEUDCIiEgABYOIiARQMIiISAAFg4iIBPj/ushY7IMv93IAAAAASUVORK5CYII=\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x5617e50>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
},
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
"READ X133981.340\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c1_chan6.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c2_chan6.dat\n",
|
|
"READ /home/l_samenv/zolliker/calib_test/calib2018-10-25_c3_chan6.dat\n"
|
|
]
|
|
},
|
|
{
|
|
"data": {
|
|
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD/CAYAAAD12nFYAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4VdW5+PHvOplDhpMASSAhCYR50IiCqCARtKBVUNGf\n2FpBrZ207b2tV611vPfaovVqVXBqUeuIVUsdqhYZooIiKCACCZMMgYSMZJ5OTt7fHzuBJGQ4GU5O\ncs77eZ48sPdZ6+w3yc5+z1prr7WNiKCUUko1snk6AKWUUn2LJgallFLNaGJQSinVjCYGpZRSzWhi\nUEop1Yy/pwPoLmOM3lallFJdICKmtf1e0WIQEevroouQDz88ud0Hvu67774+/f5dqd+ZOq6Uba9M\nV15z98/c078zPSf0nOiJ92+PVySGE2JjITfX01E0k5aW1qffvyv1O1PHlbLtlenqa32ZnhMdl9Vz\nwrPvbzrKHH2dMUZOfA+33QYxMXD77Z4NSnnU/fffz/333+/pMFQfoufEqYwxiDd3JZ0QF9fnWgyq\n9/XXT43KffSc6BzvSgyxsXDsmKejUB6mFwHVkp4TndPv70pqpg+OMSilPCM5OZlDhw55OgyPS0pK\n4uDBg52qo4lBKeWVDh061OHdN77AmFaHEdrlfV1JmhiUUqpbvOuuJKcTgoOhqgr8vasxpJTqnIa7\nbjwdhse19XPwnbuS/PwgOhry8z0diVJK9VvelRhAu5OUUqqbNDEopVQfcMMNN3Dvvfeyfv16xo0b\nd2L/nj17OOOMM4iMjGTp0qW9EosmBqWU6kOmT59ORkbGie2HH36YWbNmUVJSwq233kp6ejqzZs3C\nbrczYsQIt8TgfYlBZz8rpbzIoUOHmDBhwontAQMGcNNNN/HII4+47Zjelxh09rNSqh/YunUrZ555\nJpGRkSxcuJDq6moAPvnkE4YNGwbA7NmzWbduHbfccgsRERHs27ePKVOm8MMf/pDhw4e7LTbvTAza\nYlBK9WEOh4MrrriCRYsWUVRUxNVXX83bb7994vXGSWlr1qxhxowZLFu2jNLSUkaOHNkr8Xnfzf6a\nGJRSLujChOBWdWWqxMaNG6mrq+NXv/oVAAsWLGDKlCk9E1AP0MSglPJJnpz7lp2dTXx8fLN9SUlJ\nHormVD3SlWSMmWuMyTTG7DHG3NFGmSeMMXuNMduMMamu1jXG/NYYU2+MiXYpGB18Vkr1cUOGDOHo\n0aPN9h0+fNhD0Zyq24nBGGMDlgJzgAnAtcaYsS3KXAykiMgo4KfAM67UNcYkABcBri+ROGgQFBVB\nXV13vi2llHKbc845B39/f5588knq6ur4xz/+waZNm0683t5SHiJCTU0NtbW11NfXU1NTg8Ph6NH4\neqLFMBXYKyKHRMQBrADmtygzH3gJQES+BCKNMbEu1H0M+K9ORePvD1FRUFDQpW9GKaXcLSAggH/8\n4x+88MILDBw4kDfffJMFCxaceL3piqgtV0f99NNPCQkJ4dJLLyUrK4vQ0FDmzJnTo/H1xBhDPJDV\nZPsI1gW/ozLx7dU1xswDskTk204vG9s4zhAX17l6SinVSyZPnsyWLVtafa1pt9LatWubvTZz5kzq\n6+vdGpunBp/bvdIbY0KAu7C6kTqss3jxYpKTkwGw2+2kBgaS1jDOkJ6eDpx8gpNu67Zu+862Oik9\nPZ0XX3wR4MT1si3dXnbbGDMNuF9E5jZs3wmIiDzUpMwzwDoReaNhOxOYCQxvrS7wL2A1UImVEBKA\no8BUEclrcXw55Xu47jqYMwd+9KNufW9Kqf5Ll922eGrZ7c3ASGNMkjEmEFgIvNuizLvA9Q3BTAOK\nRSS3rboiskNE4kRkhIgMx+piOqNlUmiTzn5WSqku63ZXkog4jTG3AquwEs1yEckwxvzUelmeE5EP\njDGXGGP2ARXADe3Vbe0wdND91IzOZVBKqS7zrie4Nfrb32D1anj5Zc8EpZTyOO1KsugT3Bppi0Ep\npbrMOxODzn5WSqku887EoIPPSinVZd6ZGAYPtpbFcDo9HYlSSrlEH+3pbv7+YLfrshhKqX6no0d7\nPvLII0yaNImIiAhSUlLc8iQ370wMoAPQSimv0PLRngAvv/wyxcXFfPjhhyxdupS///3vPXpM700M\nOgCtlOrDuvpoz9tuu43U1FRsNhujR49m/vz5bNiwoUdj897EoAPQSqk+qicf7fnZZ5+d0qLoLu97\nglsj7UpSSrXDPNAzz/aU+zo/ia6nHu153333ISLccMMNna7bHk0MSimf1JULek/piUd7Ll26lFde\neYX169cTEBDQk+F5eVeSJgalVB/U3Ud7Pv/88zz88MOsXbuWIUOG9HR4XpwYdPBZKdVHdefRnq++\n+iq///3v+fjjjzvdynCV9yYGHXxWSvVR3Xm05z333ENRURFTpkwhPDyciIgIfvGLX/RofN65uipA\ndjZMnqzJQSkfpaurWrqyuqr3JgaHA0JDoboa/Px6PzCllEdpYrDosttNBQRAZCQUFno6kh6hJ7hS\nqrd4b2IArxmAzizIZNhjw9hdsNvToSilfIB3JwYvGYDelb8Lpzj53ivfI6sky9PhKKW8nPcnBi9o\nMRwsPsg1E65hTsocXvv2NU+Ho5Tyct478xm8KjGMiBqBiHCw+KCnw1FKeTltMfQDB4sPkmxPJj4i\nnqNlRzuuoJRS3eDdicFLBp8bE8PQ8KFkl2V7OhyllJfz7sTgBYPPjd1HyfZk4sO1xaCUt9JHe/YW\nL+hKOl59HJuxYQ+2MzR8KDllOdRLvafDUkq5SUeP9vzzn/9MSkoKERERxMXFceONN1JeXt6jMWhi\n6OMOHD9Asj0ZgCD/ICKCIiio1GdZK+UrWj7ac/78+Xz11VeUlpaSmZnJoUOHePDBB3v0mN6dGGJi\noKAAnE5PR9Jljd1IjeIj4jlaqt1JSvV3XX205/Dhw4mKigLA6XRis9l6fOlt704MXrAsxsHigwy3\nDz+xrQPQSvV/3X205+uvv05kZCQxMTHExMSceBJcT/HuxAD9vjvplBaDDkAr1TOM6ZmvLmj6aE8/\nP79OP9rz2muvpaSkhD179rBr1y7+/Oc/dymOtmhi6OMOlrSSGLQrSanuE+mZry7oiUd7AqSkpHDn\nnXfy0ksvdSmOtmhi6OOOlB4hISLhxLZ2JSnV/3X30Z5NORwOQkNDeyKsEzQx9HEFlQUMCh10Yltn\nPyvV/3Xn0Z7Lly8nPz8fgF27drFkyZJmT3/rCd6fGOLi+vUkt8LKQgaGDjyxrS0Gpfq/7jzac8OG\nDUyaNImIiAiuvPJKFi1axH/+53/2aHzevYgeWC2GJpNF+pMqRxVOcTIgYMCJfTr4rJR3mDx5Mlu2\nbGn1tabdSmvXrm322vPPP+/WuMAXWgz9uCupsKqQgSEDm31iGDxgMCXVJdQ6az0YmVLKm2li6MMK\nKwubjS8A2IyN6JBoCiv779wMpVTf1iOJwRgz1xiTaYzZY4y5o40yTxhj9hpjthljUjuqa4x52BiT\n0VD+bWNMRJeC68+Joar5+EKjgaEDdVkMpZTbdDsxGGNswFJgDjABuNYYM7ZFmYuBFBEZBfwUeMaF\nuquACSKSCuwFftelAGNiID8f6vvfwnMFlQUMDGklMYQMpLBKWwxKKffoiRbDVGCviBwSEQewApjf\nosx84CUAEfkSiDTGxLZXV0RWi5xYRnQjkEBXBAZCRES/XBajsLKw9cQQOlC7kpRSbtMTiSEeaPqE\n+iMN+1wp40pdgBuBD7scYT/tTmqzK0lbDEopN/LU7aouLzBijPk94BCR19oqs3jxYpKTkwGw2+2k\npqaSlpYGQHp6OgQGkpabCxMnWtvQ/PU+ul1YWUj1vmrS/dKbvV6xp4LCqEKPx6fbut2Xt5OSkk6Z\nA+CLGldeTU9P58UXXwQ4cb1si2lvhp0rjDHTgPtFZG7D9p2AiMhDTco8A6wTkTcatjOBmcDw9uoa\nYxYDNwOzRKSmjeNLh9/DwoUwbx784Afd+VZ73fUrr2fW8FksTl3cbP/DGx4mryKPR773iGcCU0r1\ne8YYRKTVzNkTXUmbgZHGmCRjTCCwEHi3RZl3gesbgpkGFItIbnt1jTFzgf8C5rWVFFzWT2c/F1ad\nersqwKDQQdqVpJRym253JYmI0xhzK9ZdRDZguYhkGGN+ar0sz4nIB8aYS4wx+4AK4Ib26ja89ZNA\nIPBxQ3Nwo4j8oktB9tcxhrYGn0N08Fkp5T49MsYgIh8BY1rse7bF9q2u1m3YP6onYgOsxLB7d4+9\nXW8pqCxocx6DthiUUu7i/TOfof+2GKrabjHoBDellLtoYuij6urrKKspwx5sP+U1nceglHIn30gM\n/XDw+XjVcSKDI/Gz+Z3yWnRINMXVxdRL/5vNrZTq+3wjMfTDZTHauiMJwN/mT1hgGMXVxb0clVLK\nF/hGYggMhPBwKCrydCQua+uOpEbanaSUchffSAzQ78YZ2loOo5Eui6GUchdNDH1UWyurNtIWg1LK\nXXwnMSQkwIEDno7CZR11JensZ6WUu/hOYpg1C1at8nQULnOpK0lbDEopN/CdxHDJJVZicDg8HYlL\nOhx81jEGpZSb+E5iiIuDUaNg/XpPR+KS9m5XBX28p1LKfbwiMWzJ2eJawUsvhfffd28wPUTvSlJK\neYpXJIalm5a6VrA/JQadx6CU8hCvSAwrM1e6dpE84wwoL4c9e9wfVDe1tbJqI20xKKXcxSsSw/wx\n81m+dXnHBY2B738f/vUv9wfVDSJCUVWRthiUUh7hFYnh1qm38tTmp3DWOzsu3A+6k8pqywj0CyTI\nP6jNMtpiUEq5i1ckhrOGnsWQ8CH8a68LLYHZs2HzZigpcX9gXVRY2f7AM0BoQCgiQqWjspeiUkr5\nCq9IDAC3TrmVJzc92XHBAQNg+vQ+Pdmto1tVwXqQ96DQQdqdpJTqcV6TGK4afxXf5n5LRn5Gx4X7\neHdSR3ckNdJHfCql3MFrEkOQfxA3T76ZpzY/1XHh738fPvgAnC6MSXhAR3MYGumyGEopd/CaxADw\n07N+yqvfvkppTWn7BZOSYMgQ2LSpdwLrpI5WVm2ks5+VUu7gVYkhISKBC0dcyEvfvNRx4T7cneRy\nV5LemaSUcgOvSgxg3bq6dNNSRKT9gpdeCu+91ztBdZJ2JSmlPMnrEsOMxBkE+gWy5sCa9guefTbk\n5MChQ70TWCcUVungs1LKc7wuMRhjTrQa2uXnBxdf3CdnQRdWdny7KmhXklLKPbwuMQD8cNIPWX94\nPQeLD7ZfsI+OM7jclaTLYiil3MArE8OAwAEsOn0RT29+uv2C3/sefPYZVFT0TmAu0sFnpZQ75eW1\n/7pXJgaAn0/5Oc9ve54qR1Xbhex2mDIF1nQwHtHLOlpZtZHOfFZKdcWzz7b/utcmhpHRI5kaP5UV\nO1a0X7CPdSdVOapw1DsIDwzvsKwOPiulOksEXnut/TJemxgAfjn1lzy56cn2b11tTAwd3d7aS3LK\ncxgaPhRjTIdl7cF2ymrKqKuv64XIrMdY9NE5gUopF33zDVS105ECXp4YvpfyPcpqy/jiyBdtFxo9\nGsLCYOvW3gusHdll2QwJG+JSWZuxYQ+2U1RV5Oao4IUX4Lzz4MorYdEiqNRFXZXql15/Ha69tv0y\nXp0YbMbGLVNu6fjW1T7UnZRdls3Q8KEul++NO5PWrIH77oNPPoGMDCgqgj/8wa2HVEq5QX29lRh+\n8IP2y3l1YgBYnLqYD/d9SE5ZTtuF+lBiyCnL6VRiGBQ6yK3rJTkc8Otfw+OPw/jxEB4OTz8NzzwD\n+/a57bBKKTf4/HOIiIBJk9ov5/WJwR5sZ+GEhfxly1/aLjR9utWBfuxY7wXWhs62GOLD4zladtRt\n8Tz9tLXe4OWXn9yXkAC33w6/+Y3bDquUcoPXXuu4tQA+kBgAbpl6C89+/Sy1ztrWCwQGWnMaPvig\ndwNrRXa562MMAImRiRwuOeyWWCoqrC6jRx+1Hpfd1K9/DVu2WF9Kqb7P4YC33oKFCzsu6xOJYWLM\nRMYOGssN79zAgeMHWi/UR7qTOtticGdiWLYMZs5svdkZFAS33aZjDUr1F6tXQ0oKjBjRcdkeSQzG\nmLnGmExjzB5jzB1tlHnCGLPXGLPNGJPaUV1jTJQxZpUxZrcx5t/GmMjuxPjW1W+REpXCWX85ix+/\n++NTl8u4+GJrlLWmpjuHaVVZTRkrM1bywd4POnxGc19JDOXl8H//Zw06t+Xmm62J4zt3ntyXWZDJ\nrz78FQ+kP8DGIxs7f2CHw1q/avlyWLGiTz+b21fUSz2ZBZnsyt9FvdR7OhzVRa7cjdTIdLg8dUdv\nYIwN2APMBrKBzcBCEclsUuZi4FYR+b4x5mzgcRGZ1l5dY8xDQKGIPNyQMKJE5M5Wji+d+R6Kqop4\n7IvHeOqrp1gwbgF3zbiLZHuy9eIFF1jjDf/936f2nXRCdTW884417TxizNf87+6FJEYmUlxdzMjo\nkaxYsKLNeQr2JXYO/PoAUSFRLh1rS84WbnznRrb9bFubZdYfXs//fPo/TB06lUWpixgZPbLD9737\nbjh4EF55pf1yf/qTNaC1ciX8dctfuWvNXfzsrJ9RU1fD33f9nTPizuChCx9i1MBR7b9RdTU88YTV\nb5WSAmPHWj/ATz+1OkUfeABiYk4UdzggO9saFsrNhfx864F8xoDNZn35+UFkJCQnw4QJ4O/f4bcN\nQFYW7N5tHePcc6336MtEOj5d66We3QW72Zm/k8Ghg5kUO4nokOh26zT+rTz91dOEB4XjZ/woqiri\nutOu49dn/5qU6BTXg6yrsz6yrlgBBw5Yt8ecey5ccw1Mnuz6+6guyc21/qQyMiAuztpnjEFEWj1z\neiIxTAPuE5GLG7bvBEREHmpS5hlgnYi80bCdAaQBw9uqa4zJBGaKSK4xJg5IF5GxrRy/U4mhUWFl\nIY9ttE76q8ZdxV0z7iKpJhjmzKFuyjR2/+hBIkcMJCGhSaWiIuuezfR062v/fmumSFyc9VOfOZPP\ngy7g6j9NZcLkIMy4f7Im9GbGHljK2w9cQ+KIKs587kzuPv9ufjDp1BGgitoKBv1pEJV3Vbo0wQ2s\n5TPGLB1D4e1NblmtroajRyE/n/U7PuD5Tx7n+hGXU5J/hK8Pb2TWmLlMT7kA/7AIqiPDWFX8Ne8U\nbaAsPIjvn3kt54UvZto0ayJMfHz7x6+utr71J5bncdOWCXyy+BPGDx4PWLO4H/3iUR7b+BgXjriQ\nBeMWMCV+ChFBEYQHhhPgF2BdIFasgLvugjPOgAcftG5/apSfT+U9f8DvtZf58LQ7+bPzl+zLCiIv\nD2JjrR99bCwMHmxd+EWsr/p661pUXGzdPXX0qJX3L7sMLptVQWz+DqupU1QEDgeOoDA2Hh3Gy1+M\n5MPdIxidGgrA5s1Wnccfh0GDrBbdmzvf5Nu8bymuLiY6JJoRUSOYkTiDs4aeRVCt03pPP7+TQbWn\nstLKREeOWGUHDbLqDRxovUc73nwTnnwSNmywip91FlxxBcybZ/1MwLq4/3XLX1m2eRn+Nn8mxkyk\nsLKQHXk7mDF0DuOrbqZ46ywOH7JRUmIl1LHj6qke9zwf1vye+eMu467z7zzxYSKrJItnvnqGZ79+\nlmvGXs91iXdDVTQi1nSg+HiIjm6SqLZvh5degldfhcREuO46mDjR+gV98gk8/7x1At1xB1x4YdsZ\n7tgxyMyE48etMcGYGKteeBsrBBw/bl0Fd+2ybiwxBqKiYMwYq15KivU+Lqp0VFJWU8ag0EH42Vr5\nvRw/bp1k/v7W+wYFWb/HFscQEQqrCsktzyXYP5jI4EgigiII9Gs9lspK6+kA2dlQUGD9jIcPt8Lv\nzGfXhQutB1c+9NDJfe5ODAuAOSLyk4bt64CpIvKrJmXeA/4oIp83bH8M3IGVGFqta4w5LiJRTd6j\nSERO+YjT1cTQqLCykEe/eJRnvn6GBeMWULt9ODOWreTKgm/5PDqOgmg/4oLLSMorJb6gho2JNj4b\nbuObsVE4x40hdfg5zAwczZSiYL57ahu2z9KZ6J/JoXGDWR2WyyVTrudQZhLr19Zy/mnFpCTs4+vM\nfzM3eiq2klLkeDG1ZTXUVTvAWUuNfyUDwocSZA+F0FAYMODkv43/Dwmxrno1NZQU1LJq72vEZc3C\nXpHLUDlKOGUcDx5CZdhgDoRvZ/CAcwgckExdSDgVtjL2V62lpi6feFskUlRAcl0YQ2uDCDpehlRX\nURJgh8h4Bo8dZF2ogoNPfgy32U5+LDcGRNi3DzZmf8qoxADOjjvDiq2uzvoIX1eHIySIHX6FbCGH\n7SaPwyE12CoqOS3PxrXfClVBNv4wfyA7xw8iLDCM8KBwgm1hFGaH811mGMcLAjg3NJ//2bqB0XmF\nfHzRGHacFUveoCCCy6qIKK4k4nglQyv8GFphI6bUSXBAMAHhdkL8ggkjEL8qf0q3ZxFwYDehVYV8\nFzSOvNhJ1IYPorTSn5IjZUyMPMy4wP1EFB7ADB0Kp59ObVQM67+NZEN2MdFnf05u9X6mhowkRaII\nK6/FVnQcU1iIX3EpEeUObBgqIoIJqDeEllVTER5MoT2QnDCopg6/OidBTkNUVT1xx+sIqXFSEB1C\n0cAQjAhhpTVElNUyoKqO3AgbByLhuwgnWVGGI1F+5EYF4hcZRV1VNLWHwpmeFMt5cYMZUhxMbUY1\nZbvyseUeIjo4H2dYBWV+JYSGDCJ6QBJ+/oMpdYSSXRLK0ULBGbqbgIF7CLDVMixwOKFhg8gPrGN1\nwG72hg8iZ/+jbMuYw+QzDQkJ1mlQUQHHDlThOPQl8Yl/ZODA9cQWTGFQcQp+JTGUlgYSWlfC6OAs\nTpNtBPnVkDH9Uo5cMYOKCaGUk0+pI5/8qnyyi/PJK8hl6vo93LQ2h2o/4fFzw9k6JBwbwUzIE2Yd\nqOCivccJr3WSlRBJjT0E46glvKiChGMVFIT5sS/Wn8oACBQbsTUBJObXElLtpCAhnsP24WT4DaGi\nGkIri0muOMyIsmyGVhRzNDyMvPBg6vxsBNfVMaC2jgG1DgLr6gGhKMSP3DAhJ6yWvAH1FIYGkRNW\nQ3RNLOOKhjC62E58aRmDS/bhV++gJCweG/X4OWsJcFYTWlVIbUgkxZFhZEfUcSCkhEK/SvDzI4RQ\nTJ0TcdZgnA4MBhuBIAHgDKDeGUB9XQD1zkD8jT/+/jb8/EDqhdpaAYHICMEeBf42wboCSrMVHMQA\nxlBWacgrMCQlG8BJvbOOeqeTCz870ucSw2rgdjqXGApF5JSV5YwxsmjRIpKTkwGw2+2kpqaSlpYG\nQHp6OkCH2xOnTuTaR5/mi3XbuGBGIDMnDGHkvmK2rs1m666BjDnrYhY9MpPDB74FYMLUCWQWZPL6\n+6+zK38X3wbuxVkexeCqOhxlBdyVcA7XB5/N9sxDIMLkQSN459Mo/rk7l+opbzIl8SZKsy9l5ReZ\nxA8P5PJ551MV9yUvbryN0HX3c8Hpp3PPbyrYuWcDVFeTNnIkVFaSvmUL1NZybso43l8VyMvp+6me\n+hfumvsgqeedzSeHDpJbE0ls3Cze3bOSldvuZXrZk8TGpuF0QlZWOjU1cKAkgWL/TM5PhLRzw7jx\nxjSysuCaG/9CUeJv+eQXLzPGFkH6J59AbS1pY8dCfT3pu3aBCGmjR1vbe/ZQUlPGhwdeZXz+n5gw\n6wh+AX6kTZoE/v7866tdlOdVcV5YFHGSw/qd30BRETOHDcM5PIl/Jw+jZvQIzjhnMuW15bz6yqd8\n8nkV3x4ewagJ5SQM/pphiU4mnD0Of5s/+Ss3kPjZdi7LKSQsp5DVIYE4IsM5Kzme0uhQPq4opSgY\nkmIDcZQVs+VoIaV1FYRHVVMeF8UhsWOLGULC2FSkdCjFGSXEhA3m1pvnc1rSMD7/7HNwOklLSKB4\n06e8+OHr7Du8jfH+hvr9qUQMs5M4zk7alCkwcCDpWVkQEUHanDmUhgXw/Eevc6wil5gJMThqqij4\nYj8Dq+DS4WOJ8Atl8/7DOGyQOu10ymLsrM/YTU19LaPPHI3N2Njz9R4C/QKZcfZUYo7XsuPjDQQV\nFDMzOAg5dJD07ds5nlPOmPIABo3yZ21dGcdNLRGxTvYFV7KpvIaaqAiGjJpAaPY08rdEU1cSQkrY\neAaG1VDBZhJiall47ghihvqTvncP2ZV5VAYdoqSsgNIsB5Nqo7mqPgiTmcm6oiKq7EOYGjIQ46hl\nU0k2gVUlzBw+Er9xo/ioppx9lUcJCS/haHU+x0oCKA8AM6yerwfXsq88FD+nHdvAJBwlg6n7ro76\nCju24LMIcg5mQHU29mA741PmMqdqA5GblhBelsP5Nj+OxQ3nrfAovo0Zw+FBMziYXUPe4W1ERwQz\nYcL5TEi0MyBnHUOqjjHOnkJeSR0fH97JN7X1ZIYPIiT+IIFV3xER5kfsxBiCAwKp3l9JsC2MkSMn\nEn+slmPf7IEaJwlJI6kODmZP7lGcNj+Sho8itjqI4j37sFfXc354PCFl+XxzeCvlftWEDgti44Bv\n2VbpJDTqQk6beBtxJpX9+z6jvD6f2sRadtX8k4J9/yK+dChT6tOIyx7OsYKjBODHWPs4/EP8OVCz\nF/9gG5OGjiQguJJ95TsJDKllyqhYAoKr+PrwdzicNUxKjsFg2HYwFwykRA8hc7fhsx25xAyGS2cM\nZdBAw7aD1i33Z4yIB6ln1cajbP9GuP77sWRX5vDRtwewGRvx0XaeW7vJ7V1J94vI3IZtV7qSMoGZ\nWImh1bqN3U1NupLWici4Vo7frRZDU0lJ8NFHMK7FUcrL4f77rRbxgw/CTTdZH5jB6km65Rb46ut6\nnv77XuxRdQwNH9rmGMH+/fCbFU9x0Pk5tw1/hUsusboBAN7Y8QZvZ7zNS5f9nQcftCaRNR6vaa/C\nmjXws59ZXbOPPw7Xf/w9fnvOb5kzck6zY13y6iVcM+EaFqUuajWWvXutFv6//211Gw0bZjU5neff\nQ2ltCU9c/IRLP7c/bfgTGfl7yHn2L+Tlwdy5VvP388+tf5OSrA8yBw5Yi9nOnGl9TZlitbi/+87q\nfn7+eSjVE5VtAAAQKUlEQVQstL7fG26geTdeNzmcDnLKc8gqySK7LJujZUfJLssmuyybrNIsDhUf\nIrvMukgF+AVQWlOKzdi4dPSlXH/a9VyUchFbt9iYN88af/n5z3smrsZurw56jU547jnrnFi3zrW7\nS7qtpMT6xdXWWt0i0dEwdGirXWTOeid5FXnYjI0BgQMIDQjFZk69v8XptL460ZNzQnW11aO0cyfs\n2GGFlpdn/Q0NG2adM5MmWeeW3d6Vb9h1IsKmo5t4ZfsrrD6wmn1F+wiwBRASEMKMxBlcOvpSLht9\nGbFhsW6L4fhxa6XUpUth5EhryZpJk6wuqLfftu7j+Oc/4ZxzTq3bXlcSItKtL8AP2AckAYHANmBc\nizKXAP9q+P80YGNHdYGHgDsa/n8HsKSN40tPyM8XiYwUcTrbLrNtm8i0aSKTJ4vcc4/IXXeJjBkj\ncu21ImVlrh8rpyxH7EvsUuWoarb/0c8flV998KsT29u3i0yfLjJihMjdd4vce6/IlCnW9rvvnqx3\n0zs3yXNfPdfsvQ4VH5KoJVFSUVvhemANDhcflqglUVJW49o3dcYzZ8ia79ZIba3IqlUiv/+9yFNP\nWT+vurqT5UpKRD74QOSOO0TOPlskKEjEz08kKUnkRz8S+eij5uV7m8PpkJyyHMkqyZKS6hKpr68/\npcz+/SKjRlm/+1Zedsnu3dbvMzVVZMAAkcBAkYkTRf74R5HKyrbrLV8ukpAgsndv146r3KvaUS1l\nNWXirG/nIuImNTUib78tctNNIuefLzJ7tsjDD4vk5rZdp+Ha2fp1va0XOvMFzAV2A3uBOxv2/RT4\nSZMySxuSwDfA5PbqNuyPBlY3vLYKsLdx7B75wX70kUhaWsflnE6r7O9+Z/1xr1vXtQvE+S+cL+9k\nvtNs323/vk2WfLbklLJffGFdbO+5R+S99069eD6Q/oDcvebuZvuWfLZEfvLuTzofWIPLV1wuz371\nbIflMvIzZMgjQ6TO6cErei/LyxOZOlVk0SKRChfzbn29yKefisybJzJ4sMhvfyuyfr1IcbFIVZXI\nl1+KXHmlSGKiyCuvNP+AUl8vsmyZSHy8lVSU6gluTwye/OqpxPDgg9Yfa2958ssn5bp/XNds3yWv\nXiJv7Xyr0+/1wtYX5PqV1zfbN+W5KbJq36oux/fR3o/krOfO6rDcfevuk//48D+6fJz+qrxc5Ic/\nFElOFnnrrbZbmrW1Im+8YSWSUaNEnn66/WTy2WdW2TFjRP73f0WeeELkoousVqomBdWT2ksMPjHz\n2RVbtsCZZ/be8RaMW8D7e96nps6aUOdwOlh/eD1pyWmdfq+Wk9wOlxxm//H9XXqvRrNHzOZg8cEO\nn5v91q63uHrC1V0+Tn81YIA1x+O552DJEusO2zvvtCYRvfGGNR3juuus22mXLbPuxs3MtMaGQkPb\nft/p02HjRmt+X26uNZ/iiivgyy+tFeKV6g0uTvnxfl9/3bvLOwwJH8KkmEms2r+Ky8ZcxpdHv2Rk\n9EiXHunZ0sjokezI24HD6SDAL4CVGSuZN2aeNU+gi/xt/lwx9gre3vU2vz33t62W2Vu4l8KqQqYl\nTOvycfq7iy6ybr/fsMG6KWDlSmt/bKw1wL5kSecH0Y2xnn1x3nk9H69SrtDEgHUnTFGRNarfm64e\nfzVv7nqTy8Zcxprv1jB7+OwuvU9iZCLjB4/nnd3vcNX4q3g7421uP+/2bsd31firuHfdvW0mhpWZ\nK5k/Zn6rd574EmOsT/rTp3s6EqV6hm//RTfYssWadGvr5Z/GgvELeG/Pe1TXVbP6wGouHHFhl9/r\nZ2f+jGe+eoaVGSs5WnaUi0Zc1O34Lki+gH1F+9pci+mfmf/kirFXdPs4Sqm+RRMDVjdSb44vNBoa\nPpTLRl/GtL9OY2vOVqYndv0j55XjrmR77nZufu9mXrniFYL8g7odX4BfAJePvZwVO1ac8lpOWQ4Z\nBRlcMPyCbh9HKdW3aFcSVmK4wkMffP92+d946ZuX2JG3g9CAdkYlOxDkH8Qd592BMYZzhrUym6WL\nbki9gZvevYn/Ove/mq3f9PL2l7l87OVtrvGilOq/uj3z2dN6YubziBHWM3rGnrJEnxIRxi0bx/J5\nyzkv8bwT+0YvHc1Ll7/Uo0lIKdV72pv57PNdSUVF1qqFeitg64wx3HTGTSzfuvzEvvSD6QT7B/v0\n3UhKeTOfTwxbtkBqau8PPPcnPzr9R7yz+x125u1ERFi2eRk3T77Z5aXBlVL9i8+PMXhq4Lk/iQuL\n47E5j3HFG1cwe/hs9hbtZfm85R1XVEr1Sz7/OVkTg2uuP/16Lht9GXuL9vLp4k+JDO7jjzVTSnWZ\nzw8+p6TA+++futS2Ukp5M7c+wc3TupMYjh+3njZYXOz6evhKKeUN9K6kNjQOPGtSUEqpk3w+Mej4\nglJKNefTiUEHnpVS6lSaGDQxKKVUMz47+FxSYq2TrwPPSilfpIPPrdiyBU47TZOCUkq15LOJQbuR\nlFKqdZoYlFJKNaOJQSmlVDM+OfhcUgLx8dbAs7/PLyOolPJFOvjcwtat1sCzJgWllDqVTyYG7UZS\nSqm2aWJQSinVjCYGpZRSzfjc4HNpKQwZYg1A6xiDUspX6eBzE9u26cCzUkq1x+cSw9dfw+TJno5C\nKaX6Lp9MDDq+oJRSbdPEoJRSqhmfGnwuK4O4OGvGc0CAmwNTSqk+TAefG2zbBhMnalJQSqn2+FRi\n0G4kpZTqWLcSgzEmyhizyhiz2xjzb2NMZBvl5hpjMo0xe4wxd3RU3xhzoTHmK2PMN8aYzcaYC7oT\nZyNNDEop1bHuthjuBFaLyBhgLfC7lgWMMTZgKTAHmABca4wZ20H9fOBSETkdWAy83M04AU0MSinl\nim4NPhtjMoGZIpJrjIkD0kVkbIsy04D7ROTihu07ARGRh1yp31CnABgiIo5WXnNp8Lm8HGJjdeBZ\nKaXAvYPPMSKSCyAix4CYVsrEA1lNto807AOI7ai+MeYqYEtrSaEztm2DCRM0KSilVEc6XBjCGPMx\nENt0FyDA3a0U7+69r83qG2MmAH8ELurm+2o3klJKuajDxCAibV6UjTG5xpjYJl1Bea0UOwokNtlO\naNgHcKyt+saYBOAfwI9E5GB7MS5evJjk5GQA7HY7qamppKWlAZCeng7AN9+kMW3aye2Wr+u2buu2\nbnvzdnp6Oi+++CLAietlW7o7xvAQUNQwXnAHECUid7Yo4wfsBmYDOcAm4FoRyWirvjHGDqQD94vI\nPzuIwaUxhnnz4Mc/tv5VSilf584xhoeAi4wxjRf+JQ0HHGKMeR9ARJzArcAqYCewQkQy2qsP3AKk\nAPcaY7YaY7YYYwZ1J9DSUoiI6M47KKWUb/CZJTEmT4a//EXHGZRSCnRJDEBbDEop5SqfSQxlZZoY\nlFLKFT6TGLTFoJRSrvGJxFBbCw4HBAd7OhKllOr7fCIxNHYjmVaHWZRSSjXlU4lBKaVUx3wiMej4\nglJKuc5nEkN4uKejUEqp/sFnEoO2GJRSyjU+kRh0jEEppVznE4lBWwxKKeU6n0kMOsaglFKu8ZnE\noC0GpZRyjU8kBh1jUEop1/lEYtAWg1JKuc5nEoOOMSillGt8JjFoi0EppVzjE4lBxxiUUsp1PpEY\ntMWglFKu85nEoGMMSinlGp9IDNqVpJRSrvP6xCCiLQallOoMr08MVVUQGAgBAZ6ORCml+gevTwza\nWlBKqc7x+sSg4wtKKdU5Xp8Y9FZVpZTqHE0MSimlmvGJxKBjDEop5TqvTww6xqCUUp3j9YlBu5KU\nUqpzfCIxaFeSUkq5zicSg7YYlFLKdV6fGHSMQSmlOsfrE4O2GJRSqnN8IjHoGINSSrnOJxKDthiU\nUsp13UoMxpgoY8wqY8xuY8y/jTGRbZSba4zJNMbsMcbc4Wp9Y0yiMabMGPObrsaoYwxKKdU53W0x\n3AmsFpExwFrgdy0LGGNswFJgDjABuNYYM9bF+v8HfNCdALXFoJRSndPdxDAf+FvD//8GXN5KmanA\nXhE5JCIOYEVDvXbrG2PmA98BO7sToI4xKKVU53Q3McSISC6AiBwDYlopEw9kNdk+0rAPILZF/VgA\nY0wYcDvwAGC6E6C2GJRSqnP8OypgjPmYhgt24y5AgLtbKS7djKe+4d/7gMdEpNIY03jMNi1evJjk\n5GQA7HY7qamppKWl4XRCZWU6mzfDrFlpAKSnpwOQlqbbuq3buu072+np6bz44osAJ66XbTEiXb+W\nG2MygDQRyTXGxAHrRGRcizLTgPtFZG7D9p2AiMhDbdU3xnwKJDS8RRTgBO4VkadaiUHa+h5KSiAx\n0fpXKaXUScYYRKTVD93d7Up6F1jc8P9FwDutlNkMjDTGJBljAoGFDfXarC8i54vICBEZAfwZ+ENr\nSaEjOr6glFKd193E8BBwkTFmNzAbWAJgjBlijHkfQEScwK3AKqyB5BUiktFe/Z6it6oqpVTndasr\nqS9orytp40b4j/+w/lVKKXWSO7uS+jS9I0kppTrP6xODjjEopVTneHVi0DEGpZTqPK9ODNqVpJRS\nnaeJQSmlVDNenxh0jEEppTrHqxODjjEopVTneXVi0K4kpZTqPE0MSimlmvH6xKBjDEop1TlenRh0\njEEppTrPqxODdiUppVTnaWJQSinVjNcnBh1j8D2NT61SqpGeE53jtYmhpgZEICjI05Go3qYXAdWS\nnhOd47WJoXHg2bT7tGj3c/cJ2d3370r9ztRxpWx7Zbr6Wl+m50THZfWc8Oz7e21i6CvdSH3tF94T\n9fUi0D16TnRcVs8Jz76/VzzBzdMxKKVUf9TWE9z6fWJQSinVs7y2K0kppVTXaGJQSinVjCYGpZRS\nzWhiUEop1YwmBqWUUs34ezoAdzDGhAJPATXAJyLymodDUh5mjBkO/B6IEJH/5+l4lOcZY+YD3wfC\ngedF5GMPh9RneOXtqsaY64DjIvIvY8wKEVno6ZhU32CM+bsmBtWUMcYO/ElEbvZ0LH1Fv+hKMsYs\nN8bkGmO2t9g/1xiTaYzZY4y5o8lLCUBWw/+dvRao6jVdOCeUl+vGOXE3sKx3ouwf+kViAF4A5jTd\nYYyxAUsb9k8ArjXGjG14OQsrOQB4eLUk5SadPSdOFOud8JQHdPqcMMYsAT4QkW29GWhf1y8Sg4is\nB4632D0V2Csih0TEAawA5je8thK4yhizDHiv9yJVvaWz54QxJtoY8zSQqi0J79SFc+KXwGysa8VP\nejXYPq4/Dz7Hc7K7COAI1kmAiFQCN3oiKOVR7Z0TRcDPPRGU8qj2zokngSc9EVRf1y9aDEoppXpP\nf04MR4HEJtsJDfuU79JzQrWk50QX9KfEYGg+cLgZGGmMSTLGBAILgXc9EpnyFD0nVEt6TvSAfpEY\njDGvAZ8Do40xh40xN4iIE/glsArYCawQkQxPxql6j54TqiU9J3qOV05wU0op1XX9osWglFKq92hi\nUEop1YwmBqWUUs1oYlBKKdWMJgallFLNaGJQSinVjCYGpZRSzWhiUEop1cz/B+ozYH4VI0aDAAAA\nAElFTkSuQmCC\n",
|
|
"text/plain": [
|
|
"<matplotlib.figure.Figure at 0x512c7d0>"
|
|
]
|
|
},
|
|
"metadata": {},
|
|
"output_type": "display_data"
|
|
}
|
|
],
|
|
"source": [
|
|
"# compare calibration files from points 1,2 and 3\n",
|
|
"# with the optimized from above. To estimate the precision\n",
|
|
"# at each point the curve with the biggest difference does\n",
|
|
"# not have to be taken in to account\n",
|
|
"\n",
|
|
"config = {1: 'X133979', 2: 'X133978', 4: 'X133928', 6:'X133981'}\n",
|
|
"ref_dat_file = \"X75610.dat\"\n",
|
|
"logTemperature = False\n",
|
|
"# discrete points or tuples denoting a logspace (first, last, number of points)\n",
|
|
"t_points = (1.0, 1.2, (1.4, 310, 195), 330)\n",
|
|
"td, rd = read_curve(ref_dat_file)\n",
|
|
"\n",
|
|
"for chan, sensor in config.items():\n",
|
|
" r0, t0 = read_curve(sensor+\".340\")\n",
|
|
" plt.figure()\n",
|
|
" dif = {}\n",
|
|
" for qual in (1,2,3):\n",
|
|
" caldat_file = 'calib2018-10-25_c%d_chan%s.dat' % (qual, chan)\n",
|
|
" rt, rr = read_curve(caldat_file, 'caldat')\n",
|
|
" rc, tc = make_calib(rd, td, rt, rr, t_points)\n",
|
|
" dif[qual-1] = compare_calib(r0, t0, rc, tc)\n",
|
|
" plt.plot(t0, dif[qual-1], '-')\n",
|
|
" #n = len(dif[0])\n",
|
|
" #dd = np.zeros(n)\n",
|
|
" #for i in range(n):\n",
|
|
" # # determine second biggest absolute value\n",
|
|
" # dd[i] = sorted([abs(dif[j][i]) for j in range(3)])[1]\n",
|
|
" #plt.plot(t0, dd, '.')\n",
|
|
" plt.xscale('log')\n",
|
|
" # plt.yscale('symlog', linthreshy=0.001)\n",
|
|
" plt.grid(True, axis='y')\n",
|
|
" plt.axis([min(t0),max(t0),-0.005,0.005])\n",
|
|
" plt.legend(['dif1','dif2','dif3','est'])\n",
|
|
" plt.show()\n",
|
|
"\n",
|
|
"\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 2",
|
|
"language": "python",
|
|
"name": "python2"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 2
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython2",
|
|
"version": "2.7.5"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|