frappy/frappy_psi/ccu4.py
Markus Zolliker d231e9ce06 [WIP] ccracks / ccu4: split ccu() into nv(), he() and flow()
Change-Id: I346330a5f350bf03eefe86c8e890b59afaaaa231
2025-03-31 17:30:29 +02:00

724 lines
25 KiB
Python

# *****************************************************************************
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
#
# *****************************************************************************
"""drivers for CCU4, the cryostat control unit at SINQ"""
import time
import math
import numpy as np
from frappy.lib.enum import Enum
from frappy.lib import clamp, formatExtendedTraceback
from frappy.lib.interpolation import Interpolation
# the most common Frappy classes can be imported from frappy.core
from frappy.core import HasIO, Parameter, Command, Readable, Writable, Drivable, \
Property, StringIO, BUSY, IDLE, WARN, ERROR, DISABLED, Attached, nopoll
from frappy.datatypes import BoolType, EnumType, FloatRange, StructOf, \
StatusType, IntRange, StringType, TupleOf, ArrayOf
from frappy.errors import CommunicationFailedError
from frappy.states import HasStates, status_code, Retry
M = Enum(idle=0, opening=1, closing=2, opened=3, closed=4, no_motor=5)
A = Enum(disabled=0, manual=1, auto=2)
class IO(StringIO):
"""communication with CCU4"""
# for completeness: (not needed, as it is the default)
end_of_line = '\n'
# on connect, we send 'cid' and expect a reply starting with 'CCU4'
identification = [('cid', r'cid=CCU4.*')]
class Base(HasIO):
ioClass = IO
def command(self, **kwds):
"""send a command and get the response
:param kwds: <parameter>=<value> for changing a parameter <parameter>=<type> for querying a parameter
:returns: the (new) values of the parameters
"""
types = {}
cmds = []
for key, value in kwds.items():
if isinstance(value, type):
types[key] = value
cmds.append(key)
elif isinstance(value, str):
types[key] = str
cmds.append(f'{key}={value}')
else:
types[key] = float
cmds.append(f'{key}={value:g}')
reply = self.io.communicate(' '.join(cmds)).split()
if len(reply) != len(types):
raise CommunicationFailedError('number of reply items does not match')
result = []
for (given, typ), res in zip(types.items(), reply):
name, txtvalue = res.split('=')
if given != name:
raise CommunicationFailedError('result keys do not match given keys')
result.append(typ(txtvalue))
if len(kwds) == 1:
return result[0]
return result
class HeLevel(Base, Readable):
"""He Level channel of CCU4"""
value = Parameter(unit='%')
empty_length = Parameter('warm length when empty', FloatRange(0, 2000, unit='mm'),
readonly=False)
full_length = Parameter('warm length when full', FloatRange(0, 2000, unit='mm'),
readonly=False)
sample_rate = Parameter('sample rate', EnumType(slow=0, fast=1), readonly=False)
status = Parameter(datatype=StatusType(Readable, 'DISABLED'))
# conversion of the code from the CCU4 parameter 'hsf'
STATUS_MAP = {
0: (IDLE, 'sensor ok'),
1: (ERROR, 'sensor warm'),
2: (ERROR, 'no sensor'),
3: (ERROR, 'timeout'),
4: (ERROR, 'not yet read'),
5: (DISABLED, 'disabled'),
}
def read_value(self):
return self.command(h=float)
def read_status(self):
return self.STATUS_MAP[int(self.command(hsf=int))]
def read_sample_rate(self):
value, self.empty_length, self.full_length = self.command(hf=int, hem=float, hfu=float)
return value
def write_sample_rate(self, value):
return self.command(hf=value)
def write_empty_length(self, value):
return self.command(hem=value)
def write_full_length(self, value):
return self.command(hfu=value)
class Valve(Base, Writable):
value = Parameter('relay state', BoolType())
target = Parameter('relay target', BoolType())
ioClass = IO
STATE_MAP = {0: (0, (IDLE, 'off')),
1: (1, (IDLE, 'on')),
2: (0, (ERROR, 'no valve')),
3: (0, (WARN, 'timeout')), # timeout in filling process (takes too long to fill)
4: (0, (WARN, 'timeout1')), # timeout in filling process (takes too long to start)
5: (1, (IDLE, 'boost')),
}
_open_command = None
_close_command = None
_query_state = None
def write_target(self, target):
if target:
self.command(**self._open_command)
else:
self.command(**self._close_command)
def read_status(self):
state = int(self.command(**self._query_state))
self.value, status = self.STATE_MAP[state]
return status
class HeFillValve(Valve):
_open_command = {'hcd': 1, 'hf': 1}
_close_command = {'hcd': 0, 'hf': 0}
_query_state = {'hv': int}
class N2FillValve(Valve):
_open_command = {'nc': 1}
_close_command = {'nc': 0}
_query_state = {'nv': int}
class AuxValve(Valve):
channel = Property('valve number', IntRange(1, 12))
def initModule(self):
self._open_command = {f'vc{self.channel}': 1}
self._close_command = {f'vc{self.channel}': 0}
self._query_state = {f'v{self.channel}': int}
class N2TempSensor(Readable):
value = Parameter('LN2 T sensor', FloatRange(unit='K'), default=0)
class N2Level(Base, Readable):
valve = Attached(Writable, mandatory=False)
lower = Attached(Readable, mandatory=False)
upper = Attached(Readable, mandatory=False)
value = Parameter('vessel state', EnumType(empty=0, ok=1, full=2))
status = Parameter(datatype=StatusType(Readable, 'DISABLED', 'BUSY'))
mode = Parameter('auto mode', EnumType(A), readonly=False, default=A.manual)
threshold = Parameter('threshold triggering start/stop filling',
FloatRange(unit='K'), readonly=False)
cool_delay = Parameter('max. minutes needed to cool the lower sensor',
FloatRange(unit='s'), readonly=False)
fill_timeout = Parameter('max. minutes needed to fill',
FloatRange(unit='s'), readonly=False)
names = Property('''names of attached modules
configure members as empty strings to disable the creation
''',
StructOf(valve=StringType(), lower=StringType(), upper=StringType()),
default={'valve': '$_valve', 'lower': '$_lower', 'upper': '$_upper'})
# conversion of the code from the CCU4 parameter 'ns'
STATUS_MAP = {
0: (IDLE, 'sensor ok'),
1: (ERROR, 'no sensor'),
2: (ERROR, 'short circuit'),
3: (ERROR, 'upside down'),
4: (ERROR, 'sensor warm'),
5: (WARN, 'empty'),
}
def initialReads(self):
self.command(nav=1) # tell CCU4 to activate LN2 sensor readings
super().initialReads()
def read_status(self):
auto, nstate = self.command(na=int, ns=int)
if not self.valve or not auto:
if self.mode == A.auto:
# no valve assigned
self.mode = A.manual
if self.mode == A.disabled:
return DISABLED, ''
status = self.STATUS_MAP[nstate]
if status[0] // 100 != IDLE // 100:
return status
if self.mode == A.manual:
return IDLE, ''
vstatus = self.valve.status
if vstatus[0] // 100 == WARN // 100:
return ERROR, vstatus[1]
if vstatus[0] // 100 != IDLE // 100:
return vstatus
if self.valve.value:
return BUSY, 'filling'
return IDLE, 'watching'
def read_value(self):
# read sensors
lower, upper = self.command(nl=float, nu=float)
if self.lower:
self.lower.value = lower
if self.upper:
self.upper.value = upper
if upper < self.threshold:
return 'full'
if lower < self.threshold:
return 'ok'
return 'empty'
def write_mode(self, mode):
if mode == A.auto:
if self.isBusy():
return mode
# set to watching
self.command(nc=3)
else:
# set to off
self.command(nc=2)
return mode
def read_threshold(self):
value, self.cool_delay, self.fill_timeout = self.command(nth=float, ntc=float, ntm=float)
return value
def write_threshold(self, value):
return self.command(nth=value)
def write_cool_delay(self, value):
return self.command(ntc=value)
def write_fill_timeout(self, value):
return self.command(ntm=value)
@Command()
def fill(self):
"""start filling"""
self.mode = A.auto
self.command(nc=1)
@Command()
def stop(self):
"""stop filling"""
if self.mode == A.auto:
# set to watching
self.command(nc=3)
else:
# set to off
self.command(nc=0)
class HasFilter:
__value1 = None
__value = None
__last = None
def filter(self, filter_time, value):
now = time.time()
if self.__value is None:
self.__last = now
self.__value1 = value
self.__value = value
weight = (now - self.__last) / filter_time
self.__value1 += weight * (value - self.__value)
self.__value += weight * (self.__value1 - self.__value)
self.__last = now
return self.__value
class Pressure(HasFilter, Base, Readable):
value = Parameter(unit='mbar')
mbar_offset = Parameter('offset in mbar', FloatRange(unit='mbar'), default=0.8, readonly=False)
filter_time = Parameter('filter time', FloatRange(unit='sec'), readonly=False, default=3)
pollinterval = Parameter(default=0.25)
def read_value(self):
return self.filter(self.filter_time, self.command(f=float)) - self.mbar_offset
def Table(miny=None, maxy=None):
return ArrayOf(TupleOf(FloatRange(), FloatRange(miny, maxy)))
class NeedleValveFlow(HasStates, Base, Drivable):
flow_sensor = Attached(Readable, mandatory=False)
pressure = Attached(Pressure, mandatory=False)
use_pressure = Parameter('flag (use pressure instead of flow meter)', BoolType(),
readonly=False, default=False)
lnm_per_mbar = Parameter('scale factor', FloatRange(unit='lnm/mbar'), readonly=False, default=0.6)
value = Parameter(unit='ln/min')
target = Parameter(unit='ln/min')
motor_state = Parameter('motor_state', EnumType(M), default=0)
speed = Parameter('speed moving time / passed time', FloatRange())
tolerance = Parameter('tolerance', Table(0), value=[(2,0.1),(4,0.4)], readonly=False)
prop_open = Parameter('proportional term for opening', Table(0), readonly=False, value=[(1,0.05)])
prop_close = Parameter('proportional term for closing', Table(0), readonly=False, value=[(1,0.02)])
deriv = Parameter('min progress time constant', FloatRange(unit='s'),
default=30, readonly=False)
control_active = Parameter('control active flag', BoolType(), readonly=False, default=1)
min_open_pulse = Parameter('minimal open step', FloatRange(0, unit='s'), readonly=False, default=0.02)
min_close_pulse = Parameter('minimal close step', FloatRange(0, unit='s'), readonly=False, default=0.0)
# raw_open_step = Parameter('step after direction change', FloatRange(unit='s'), readonly=False, default=0.12)
# raw_close_step = Parameter('step after direction change', FloatRange(unit='s'), readonly=False, default=0.04)
pollinterval = Parameter(datatype=FloatRange(1, unit='s'), default=5)
_last_dirchange = 0
_ref_time = 0
_ref_dif = 0
_dir = 0
_rawdir = 0
_step = 0
_speed_sum = 0
_last_era = 0
_value = None
def doPoll(self):
# poll at least every sec, but update value only
# every pollinterval and status when changed
if not self.pollInfo.fast_flag:
self.pollInfo.interval = min(1, self.pollinterval) # reduce internal poll interval
self._value = self.get_value()
self._last.append(self._value)
del self._last[0:-300]
self.read_motor_state()
era = time.time() // self.pollinterval
if era != self._last_era:
self.speed = self._speed_sum / self.pollinterval
self._speed_sum = 0
self.value = self._value
self._last_era = era
self.read_status()
self.cycle_machine()
def get_value(self):
p = self.pressure.read_value() * self.lnm_per_mbar
f = self.flow_sensor.read_value()
return p if self.use_pressure else f
def initModule(self):
self._last = []
if self.pressure:
self.pressure.addCallback('value', self.update_from_pressure)
if self.flow_sensor:
self.flow_sensor.addCallback('value', self.update_from_flow)
super().initModule()
def update_from_flow(self, value):
if not self.use_pressure:
self._value = value
def update_from_pressure(self, value):
if self.use_pressure:
self._value = value * self.lnm_per_mbar
# self.cycle_machine()
def read_value(self):
self._value = self.get_value()
return self._value
def read_use_pressure(self):
if self.pressure:
if self.flow_sensor:
return self.use_pressure
return True
return False
def write_target(self, value):
self.log.info('change target')
self.target = value
self.start_machine(self.change_target)
def write_prop_open(self, value):
self._prop_open = Interpolation(value)
return self._prop_open
def write_prop_close(self, value):
self._prop_close = Interpolation(value)
return self._prop_close
def write_tolerance(self, value):
self._tolerance = Interpolation(value)
return self._tolerance
@status_code(BUSY)
def change_target(self, sm):
sm.last_progress = sm.now
sm.ref_time = 0
sm.ref_dif = 0
sm.last_pulse_time = 0
sm.no_progress_pulse = (0.1, -0.05)
self.log.info('target %s value %s', self.target, self._value)
if abs(self.target - self._value) < self._tolerance(self._value):
self.log.info('go to at_target')
return self.at_target
self.log.info('go to controlling')
return self.controlling
def filtered(self, n=60, m=5, nsigma=2):
"""return mean and tolerance, augmented by noise"""
# TODO: better idea: use median over last minute and last value and treat them both
n = len(self._last[-n:])
mean = np.median(self._last[-m:])
tol = self._tolerance(mean)
span = 0
if len(self._last) >= n + m:
# get span over the last n points
span = max(self._last[-n:]) - min(self._last[-n:])
slope = mean - np.median(self._last[-n-m:-n])
# in case there is a slope, subtract it
tol = math.sqrt(tol ** 2 + max(0, span-abs(slope)) ** 2)
self.log.info('filt %d %d %d %g %g', len(self._last), n, m, self._value, span)
m = min(m, n)
narr = np.array(self._last[-n:])
mdif = np.median(np.abs(narr[1:-1] - 0.5 * (narr[:-2] + narr[2:])))
return mean, tol
@status_code(BUSY)
def controlling(self, sm):
tol = self._tolerance(self.target)
dif = np.array([self.target - np.median(self._last[-m:]) for m in (1,5,60)])
if sm.init:
self.log.info('restart controlling')
direction = math.copysign(1, dif[1])
if direction != self._dir:
self.log.info('new dir %g dif=%g', direction, dif[1])
self._dir = direction
self._last_dirchange = sm.now
sm.ref_dif = abs(dif[1])
sm.ref_time = sm.now
difdir = dif * self._dir # negative when overshoot happend
# difdif = dif - self._prev_dif
# self._prev_dif = dif
expected_dif = sm.ref_dif * math.exp((sm.ref_time - sm.now) / self.deriv)
if np.all(difdir < tol):
if np.all(difdir < -tol):
self.log.info('overshoot %r', dif)
return self.controlling
# within tolerance
self.log.info('at target %r tol %g', dif, tol)
return self.at_target
if np.all(difdir > expected_dif):
# not enough progress
if sm.now > sm.last_progress + self.deriv:
if sm.no_progress_pulse:
pulse = abs(sm.no_progress_pulse[self._dir < 0]) * self._dir
self.log.info('not enough progress %g', pulse)
self.pulse(pulse)
sm.last_progress = sm.now
if sm.now < sm.last_pulse_time + 2.5:
return Retry
# TODO: check motor state for closed / opened ?
difd = min(difdir[:2])
sm.last_pulse_time = sm.now
if self._dir > 0:
minstep = self.min_open_pulse
prop = self._prop_open(self._value)
else:
minstep = self.min_close_pulse
prop = self._prop_close(self._value)
if difd > 0:
if prop * tol > minstep:
# step outside tol is already minstep
step = difd * prop
else:
if difd > tol:
step = (minstep + (difd - tol) * prop)
else:
step = minstep * difd / tol
step *= self._dir
self.log.info('MP %g dif=%g tol=%g', step, difd * self._dir, tol)
self.command(mp=step)
self._speed_sum += step
return Retry
# still approaching
difmax = max(difdir)
if difmax < expected_dif:
sm.ref_time = sm.now
sm.ref_dif = difmax
# self.log.info('new ref %g', sm.ref_dif)
sm.last_progress = sm.now
return Retry # progressing: no pulse needed
@status_code(IDLE)
def at_target(self, sm):
tol = self._tolerance(self.target)
dif = np.array([self.target - np.median(self._last[-m:]) for m in (1,5,60)])
if np.all(dif > tol) or np.all(dif < -tol):
return self.unstable
return Retry
@status_code(IDLE, 'unstable')
def unstable(self, sm):
sm.no_progress_pulse = None
return self.controlling(sm)
def read_motor_state(self):
return self.command(fm=int)
@Command
def close(self):
"""close valve fully"""
self.command(mp=-60)
self.motor_state = self.command(fm=int)
self.start_machine(self.closing, fast_poll=0.1)
@status_code(BUSY)
def closing(self, sm):
if sm.init:
sm.start_time = sm.now
self._speed_sum -= sm.delta()
self.read_motor_state()
if self.motor_state == M.closing:
return Retry
if self.motor_state == M.closed:
return self.final_status(IDLE, 'closed')
if sm.now < sm.start_time + 1:
return Retry
return self.final_status(IDLE, 'fixed')
@Command
def open(self):
"""open valve fully"""
self.command(mp=60)
self.read_motor_state()
self.start_machine(self.opening, threshold=None)
@status_code(BUSY)
def opening(self, sm):
if sm.init:
sm.start_time = sm.now
self._speed_sum += sm.dleta()
self.read_motor_state()
if self.motor_state == M.opening:
return Retry
if self.motor_state == M.opened:
return self.final_status(IDLE, 'opened')
if sm.now < sm.start_time + 1:
return Retry
return self.final_status(IDLE, 'fixed')
@Command
def lim_pulse(self):
"""try to open until pressure increases"""
p = self.command(f=float)
self.start_machine(self.lim_open, threshold=0.5,
prev=[p], ref=p, fast_poll=0.1, cnt=0)
@status_code(BUSY)
def lim_open(self, sm):
self.read_motor_state()
if self.motor_state == M.opening:
return Retry
if self.motor_state == M.opened:
return self.final_status(IDLE, 'opened')
press, measured = self.command(f=float, mmp=float)
sm.prev.append(press)
if press > sm.ref + 0.2:
sm.cnt += 1
if sm.cnt > 5 or press > sm.ref + 0.5:
self.log.info('flow increased %g', press)
return self.final_status(IDLE, 'flow increased')
self.log.info('wait count %g', press)
return Retry
sm.cnt = 0
last5 = sm.prev[-5:]
median = sorted(last5)[len(last5) // 2]
if press > median:
# avoid to pulse again after an even small increase
self.log.info('wait %g', press)
return Retry
sm.ref = min(sm.prev[0], median)
if measured:
self._speed_sum += measured
if measured < 0.1:
sm.threshold = round(sm.threshold * 1.1, 2)
elif measured > 0.3:
sm.threshold = round(sm.threshold * 0.9, 2)
self.log.info('measured %g new threshold %g press %g', measured, sm.threshold, press)
else:
self._speed_sum += 1
self.log.info('full pulse')
sm.cnt = 0
self.command(mft=sm.ref + sm.threshold, mp=1)
return Retry
@Command(FloatRange())
def pulse(self, value):
"""perform a motor pulse"""
self.command(mp=value)
self._speed_sum += value
if value > 0:
self.motor_state = M.opening
return self.opening
self.motor_state = M.closing
return self.closing
@Command()
def autopar(self):
"""adjust automatically needle valve parameters"""
self.close()
self.start_machine(self.auto_wait, open_pulse=0.1, close_pulse=0.05,
minflow=self.read_value(), last=None)
return self.auto_wait
def is_stable(self, sm, n, tol=0.01):
"""wait for a stable flow
n: size of buffer
tol: a tolerance
"""
if sm.last is None:
sm.last = []
sm.cnt = 0
v = self.read_value()
sm.last.append(v)
del sm.last[:-n]
dif = v - sm.last[0]
if dif < -tol:
sm.cnt -= 1
elif dif > tol:
sm.cnt += 1
else:
sm.cnt -= clamp(-1, sm.cnt, 1)
if len(sm.last) < n:
return False
return abs(sm.cnt) < n // 2
def is_unstable(self, sm, n, tol=0.01):
"""wait for a stable flow
return 0, -1 or 1
"""
if sm.last is None:
sm.last = []
sm.cnt = 0
v = self.read_value()
prevmax = max(sm.last)
prevmin = min(sm.last)
sm.last.append(v)
del sm.last[:-n]
self.log.info('unstable %g >? %g <? %g', v, prevmax, prevmin)
if v > prevmax + tol:
return 1
if v < prevmin - tol:
return -1
return 0
@status_code(BUSY)
def auto_wait(self, sm):
stable = self.is_stable(sm, 5, 0.01)
if self._value < sm.minflow:
sm.minflow = self._value
if self.read_motor_state() == M.closing or not stable:
return Retry
return self.auto_open
@status_code(BUSY)
def auto_open(self, sm):
stable = self.is_unstable(sm, 5, 0.1)
if stable > 0:
sm.start_time = sm.now
sm.flow_before = sm.last[-1]
self.pulse(sm.open_pulse)
return self.auto_close
if sm.delta(sm.open_pulse * 2) is not None:
self.pulse(sm.open_pulse)
return Retry
@status_code(BUSY)
def auto_open_stable(self, sm):
if self.is_stable(sm, 5, 0.01):
return Retry
return self.auto_close
@status_code(BUSY)
def auto_close(self, sm):
if not self.is_stable(sm, 10, 0.01):
return Retry
self.log.info('before %g pulse %g, flowstep %g', sm.flow_before, sm.open_pulse, sm.last[-1] - sm.flow_before)
self.close()
return self.final_status(IDLE, '')