325 lines
12 KiB
Python
325 lines
12 KiB
Python
#!/usr/bin/env python
|
|
# -*- coding: utf-8 -*-
|
|
# *****************************************************************************
|
|
# This program is free software; you can redistribute it and/or modify it under
|
|
# the terms of the GNU General Public License as published by the Free Software
|
|
# Foundation; either version 2 of the License, or (at your option) any later
|
|
# version.
|
|
#
|
|
# This program is distributed in the hope that it will be useful, but WITHOUT
|
|
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
|
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
|
# details.
|
|
#
|
|
# You should have received a copy of the GNU General Public License along with
|
|
# this program; if not, write to the Free Software Foundation, Inc.,
|
|
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
#
|
|
# Module authors:
|
|
# Oksana Shliakhtun <oksana.shliakhtun@psi.ch>
|
|
# *****************************************************************************
|
|
import math
|
|
|
|
from frappy.core import Readable, Parameter, IntRange, FloatRange, \
|
|
StringIO, HasIO, StringType, Property, Writable, Drivable, IDLE, ERROR, \
|
|
StructOf, WARN, Done, BoolType, Enum
|
|
from frappy.errors import RangeError
|
|
from frappy_psi.convergence import HasConvergence
|
|
from frappy.mixins import HasOutputModule, HasControlledBy
|
|
|
|
|
|
class Ls340IO(StringIO):
|
|
"""communication with 340CT"""
|
|
end_of_line = '\r'
|
|
wait_before = 0.05
|
|
identification = [('*IDN?', r'LSCI,MODEL340,.*')]
|
|
|
|
|
|
class LakeShore(HasIO):
|
|
def set_par(self, cmd, *args):
|
|
head = ','.join([cmd] + [a if isinstance(a, str) else f'{a:g}' for a in args])
|
|
tail = cmd.replace(' ', '? ')
|
|
reply = self.communicate(f'{head};{tail}')
|
|
result = []
|
|
for num in reply.split(','):
|
|
try:
|
|
result.append(float(num))
|
|
except ValueError:
|
|
result.append(num)
|
|
if len(result) == 1:
|
|
return result[0]
|
|
return result
|
|
|
|
def get_par(self, cmd):
|
|
reply = self.communicate(cmd)
|
|
result = []
|
|
for num in reply.split(','):
|
|
try:
|
|
result.append(float(num))
|
|
except ValueError:
|
|
result.append(num)
|
|
if len(result) == 1:
|
|
return result[0]
|
|
return result
|
|
|
|
|
|
class Sensor340(LakeShore, Readable):
|
|
"""A channel of 340TC"""
|
|
|
|
# define the communication class to create the IO module
|
|
ioClass = Ls340IO
|
|
channel = Property('lakeshore channel', StringType())
|
|
alarm = Parameter('alarm limit', FloatRange(unit='K'), readonly=False)
|
|
# define or alter the parameters
|
|
# as Readable.value exists already, we give only the modified property 'unit'
|
|
value = Parameter(unit='K')
|
|
|
|
def read_value(self):
|
|
return self.get_par(f'KRDG? {self.channel}')
|
|
|
|
def read_status(self):
|
|
c = int(self.get_par(f'RDGST? {self.channel}'))
|
|
if c >= 128:
|
|
return ERROR, 'units overrange'
|
|
if c >= 64:
|
|
return ERROR, 'units zero'
|
|
if c >= 32:
|
|
return ERROR, 'temperature overrange'
|
|
if c >= 16:
|
|
return ERROR, 'temperature underrange'
|
|
# do not check for old reading -> this happens regularly on NTCs with T comp
|
|
if c % 2:
|
|
return ERROR, 'invalid reading'
|
|
# ask for high alarm status and return warning
|
|
if 1 in self.get_par(f'ALARMST? {self.channel}'):
|
|
return WARN, 'alarm triggered'
|
|
return IDLE, ''
|
|
|
|
def write_alarm(self, alarm):
|
|
return self.set_par(f'ALARM {self.channel}', 1, 1, alarm, 0, 0, 2)[2]
|
|
|
|
def read_alarm(self):
|
|
return self.get_par(f'ALARM? {self.channel}')[2]
|
|
|
|
|
|
class HeaterOutput(LakeShore, HasControlledBy, HasIO, Writable):
|
|
max_power = Parameter('max heater power', datatype=FloatRange(0, 100), unit='W', readonly=False)
|
|
value = Parameter('heater output', datatype=FloatRange(0, 100), unit='W')
|
|
target = Parameter('manual heater output', datatype=FloatRange(0, 100), unit='W')
|
|
loop = Property('lakeshore loop', IntRange(1, 2), default=1) # output
|
|
channel = Property('attached channel', StringType()) # input
|
|
resistance = Property('heater resistance', datatype=FloatRange(10, 100))
|
|
_range = 0
|
|
_max_power = 50
|
|
|
|
MAXCURRENTS = {1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0}
|
|
RANGES = {1: 1e4, 2: 1e3, 3: 1e2, 4: 1e1, 5: 1}
|
|
|
|
SETPOINTLIMS = 999
|
|
|
|
STATUS_MAP = {
|
|
0: (IDLE, ''),
|
|
1: (ERROR, 'Power supply over voltage'),
|
|
2: (ERROR, 'Power supply under voltage'),
|
|
3: (ERROR, 'Output digital-to-analog Converter error'),
|
|
4: (ERROR, 'Current limit digital-to-analog converter error'),
|
|
5: (ERROR, 'Open heater load'),
|
|
6: (ERROR, 'Heater load less than 10 ohms')
|
|
}
|
|
|
|
def earlyInit(self):
|
|
super().earlyInit()
|
|
self.CHOICES = sorted([(maxcurrent ** 2 * factor, icurrent, irange)
|
|
for irange, factor in self.RANGES.items()
|
|
for icurrent, maxcurrent in self.MAXCURRENTS.items()])
|
|
|
|
def write_max_power(self, max_power):
|
|
prev = 0
|
|
for i, (factor, icurrent, irange) in enumerate(self.CHOICES):
|
|
power = min(factor * self.resistance, 2500 / self.resistance)
|
|
if power >= max_power:
|
|
if prev >= max_power * 0.9 or prev == power:
|
|
icurrent, irange = self.CHOICES[i - 1][1:3]
|
|
break
|
|
prev = power
|
|
self._range = irange
|
|
self.set_par(f'CLIMIT {self.loop}', self.SETPOINTLIMS, 0, 0, icurrent, irange)
|
|
self.set_par(f'RANGE {irange}')
|
|
self.set_par(f'CDISP {self.loop}', 1, self.resistance, 1, 0)
|
|
|
|
def read_max_power(self):
|
|
setplimit, _, _, icurrent, irange = self.get_par(f'CLIMIT? {self.loop}')
|
|
# max_power from codes disregarding voltage limit:
|
|
self._max_power = self.MAXCURRENTS[icurrent] ** 2 * self.RANGES[irange] * self.resistance
|
|
# voltage limit = 50V:
|
|
max_power = min(self._max_power, 2500 / self.resistance)
|
|
return max_power
|
|
|
|
def set_range(self):
|
|
self.set_par('RANGE ', self._range)
|
|
|
|
def percent_to_power(self, percent):
|
|
return min((percent / 100) ** 2 * self._max_power,
|
|
2500 / self.resistance)
|
|
|
|
def power_to_percent(self, power):
|
|
return (power / self._max_power) ** (1 / 2) * 100 # limit
|
|
|
|
def read_status(self):
|
|
return self.STATUS_MAP[self.get_par(f'HTRST?')]
|
|
|
|
def write_target(self, target):
|
|
self.self_controlled()
|
|
self.write_max_power(self.max_power)
|
|
self.set_heater_mode(3) # 3=open loop
|
|
self.set_range()
|
|
percent = self.power_to_percent(target)
|
|
reply = self.set_par(f'MOUT {self.loop}', percent)
|
|
return self.percent_to_power(reply)
|
|
|
|
def set_heater_mode(self, mode):
|
|
self.set_par(f'CSET {self.loop}', self.channel, 1, 1, 0)
|
|
self.set_par(f'CMODE {self.loop}', int(mode))
|
|
return self.get_par(f'RANGE?')
|
|
|
|
def read_value(self):
|
|
return self.percent_to_power(self.get_par(f'HTR?{self.loop}'))
|
|
|
|
|
|
class HeaterOutput340(HeaterOutput):
|
|
resistance = Property('heater resistance', datatype=FloatRange(10, 100))
|
|
|
|
MAXCURRENTS = {1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0}
|
|
RANGES = {1: 1e4, 2: 1e3, 3: 1e2, 4: 1e1, 5: 1}
|
|
|
|
STATUS_MAP = {
|
|
0: (IDLE, ''),
|
|
1: (ERROR, 'Power supply over voltage'),
|
|
2: (ERROR, 'Power supply under voltage'),
|
|
3: (ERROR, 'Output digital-to-analog Converter error'),
|
|
4: (ERROR, 'Current limit digital-to-analog converter error'),
|
|
5: (ERROR, 'Open heater load'),
|
|
6: (ERROR, 'Heater load less than 10 ohms')
|
|
}
|
|
|
|
def read_value(self):
|
|
return self.percent_to_power(self.get_par(f'HTR?')) # no loop to be given on 340
|
|
|
|
|
|
class HeaterOutput336(HeaterOutput):
|
|
|
|
power = 20
|
|
|
|
STATUS_MAP = {
|
|
0: (IDLE, ''),
|
|
1: (ERROR, 'Open heater load'),
|
|
2: (ERROR, 'Heater short')
|
|
}
|
|
|
|
def write_max_power(self, max_power):
|
|
max_current = min(math.sqrt(self.power / self.resistance), 2500 / self.resistance)
|
|
if self.loop == 1:
|
|
max_current_limit = 2
|
|
else:
|
|
max_current_limit = 1.414
|
|
if max_current > max_current_limit:
|
|
raise RangeError('max_power above limit')
|
|
if max_current >= max_current_limit / math.sqrt(10):
|
|
self._range = 3
|
|
user_current = max_current
|
|
elif max_current >= max_current_limit / 10:
|
|
self._range = 2
|
|
user_current = max_current * math.sqrt(10)
|
|
else:
|
|
self._range = 1
|
|
user_current = max_current * math.sqrt(100)
|
|
self.set_par(f'HTRSET {self.loop}', 1 if self.resistance < 50 else 2, 0, user_current, 1)
|
|
max_power = max_current ** 2 * self.resistance
|
|
self._max_power = max_power
|
|
self.set_range()
|
|
return max_power
|
|
|
|
|
|
class TemperatureLoop340(HasConvergence, HasOutputModule, Sensor340, Drivable, LakeShore):
|
|
Status = Enum(
|
|
Drivable.Status,
|
|
RAMPING=370,
|
|
STABILIZING=380,
|
|
)
|
|
|
|
target = Parameter(unit='K')
|
|
ctrlpars = Parameter('PID parameters',
|
|
StructOf(p=FloatRange(0, 1000), i=FloatRange(0, 1000), d=FloatRange(0, 1000)),
|
|
readonly=False)
|
|
loop = Property('lakeshore loop', IntRange(1, 2), default=1)
|
|
ramp = Parameter('ramp rate', FloatRange(min=0, max=100), unit='K/min', readonly=False)
|
|
ramp_used = Parameter('whether ramp is used or not', BoolType(), readonly=False)
|
|
setpoint = Parameter('setpoint', datatype=FloatRange, unit='K')
|
|
|
|
def write_target(self, target):
|
|
out = self.output_module
|
|
if not self.control_active:
|
|
if self.ramp_used:
|
|
self.set_par(f'RAMP {self.loop}', 0, self.ramp)
|
|
self.set_par(f'SETP {self.loop}', self.value)
|
|
self.set_par(f'RAMP {self.loop}', 1, self.ramp)
|
|
out.write_target(0)
|
|
out.write_max_power(out.max_power)
|
|
out.set_heater_mode(1) # closed loop
|
|
self.activate_output()
|
|
self.start_state() # start the convergence check
|
|
out.set_range()
|
|
self.set_par(f'SETP {self.loop}', target)
|
|
return target
|
|
|
|
def read_setpoint(self):
|
|
setpoint = self.get_par(f'SETP?{self.loop}')
|
|
status = self.get_par(f'RAMPST? {self.loop}')
|
|
if status == 0:
|
|
self.target = setpoint
|
|
return setpoint
|
|
|
|
def write_ctrlpars(self, ctrlpars):
|
|
p, i, d = self.set_par(f'PID {self.loop}', ctrlpars['p'], ctrlpars['i'], ctrlpars['d'])
|
|
return {'p': p, 'i': i, 'd': d}
|
|
|
|
def read_ctrlpars(self):
|
|
p, i, d = self.get_par(f'PID? {self.loop}')
|
|
return {'p': p, 'i': i, 'd': d}
|
|
|
|
def read_ramp(self):
|
|
self.ramp_used, rate = self.get_par(f'RAMP? {self.loop}')
|
|
return rate
|
|
|
|
def write_ramp(self, ramp):
|
|
self.ramp_used = True
|
|
ramp = self.set_par(f'RAMP {self.loop}', self.ramp_used, ramp)[1]
|
|
# if self.control:
|
|
# self.ramp = ramp
|
|
# self.write_target(self.target)
|
|
# return Done
|
|
return ramp
|
|
|
|
def write_ramp_used(self, ramp_used):
|
|
ramp_used = self.set_par(f'RAMP {self.loop}', ramp_used, self.ramp)[0]
|
|
if self.ramp_used and not ramp_used:
|
|
self.write_target(self.target)
|
|
return ramp_used
|
|
|
|
def read_status(self):
|
|
statuscode, statustext = self.status
|
|
if self.ramp_used:
|
|
if self.read_setpoint() == self.target:
|
|
statuscode = self.Status.STABILIZING
|
|
else:
|
|
statuscode = self.Status.RAMPING
|
|
statustext = 'ramping'
|
|
if statuscode != ERROR:
|
|
return Done
|
|
if self.convergence_state.is_active:
|
|
self.stop_machine((statuscode, statustext))
|
|
return ERROR, statustext
|
|
|
|
|
|
|