frappy/frappy_psi/lakeshore.py
Markus Zolliker dc0cc590ed Merge branch 'wip' into develop
Change-Id: Ib5084b8750b31523819c688f4954c52cef4d4a0c
2023-05-31 14:06:05 +02:00

325 lines
12 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Oksana Shliakhtun <oksana.shliakhtun@psi.ch>
# *****************************************************************************
import math
from frappy.core import Readable, Parameter, IntRange, FloatRange, \
StringIO, HasIO, StringType, Property, Writable, Drivable, IDLE, ERROR, \
StructOf, WARN, Done, BoolType, Enum
from frappy.errors import RangeError
from frappy_psi.convergence import HasConvergence
from frappy.mixins import HasOutputModule, HasControlledBy
class Ls340IO(StringIO):
"""communication with 340CT"""
end_of_line = '\r'
wait_before = 0.05
identification = [('*IDN?', r'LSCI,MODEL340,.*')]
class LakeShore(HasIO):
def set_par(self, cmd, *args):
head = ','.join([cmd] + [a if isinstance(a, str) else f'{a:g}' for a in args])
tail = cmd.replace(' ', '? ')
reply = self.communicate(f'{head};{tail}')
result = []
for num in reply.split(','):
try:
result.append(float(num))
except ValueError:
result.append(num)
if len(result) == 1:
return result[0]
return result
def get_par(self, cmd):
reply = self.communicate(cmd)
result = []
for num in reply.split(','):
try:
result.append(float(num))
except ValueError:
result.append(num)
if len(result) == 1:
return result[0]
return result
class Sensor340(LakeShore, Readable):
"""A channel of 340TC"""
# define the communication class to create the IO module
ioClass = Ls340IO
channel = Property('lakeshore channel', StringType())
alarm = Parameter('alarm limit', FloatRange(unit='K'), readonly=False)
# define or alter the parameters
# as Readable.value exists already, we give only the modified property 'unit'
value = Parameter(unit='K')
def read_value(self):
return self.get_par(f'KRDG? {self.channel}')
def read_status(self):
c = int(self.get_par(f'RDGST? {self.channel}'))
if c >= 128:
return ERROR, 'units overrange'
if c >= 64:
return ERROR, 'units zero'
if c >= 32:
return ERROR, 'temperature overrange'
if c >= 16:
return ERROR, 'temperature underrange'
# do not check for old reading -> this happens regularly on NTCs with T comp
if c % 2:
return ERROR, 'invalid reading'
# ask for high alarm status and return warning
if 1 in self.get_par(f'ALARMST? {self.channel}'):
return WARN, 'alarm triggered'
return IDLE, ''
def write_alarm(self, alarm):
return self.set_par(f'ALARM {self.channel}', 1, 1, alarm, 0, 0, 2)[2]
def read_alarm(self):
return self.get_par(f'ALARM? {self.channel}')[2]
class HeaterOutput(LakeShore, HasControlledBy, HasIO, Writable):
max_power = Parameter('max heater power', datatype=FloatRange(0, 100), unit='W', readonly=False)
value = Parameter('heater output', datatype=FloatRange(0, 100), unit='W')
target = Parameter('manual heater output', datatype=FloatRange(0, 100), unit='W')
loop = Property('lakeshore loop', IntRange(1, 2), default=1) # output
channel = Property('attached channel', StringType()) # input
resistance = Property('heater resistance', datatype=FloatRange(10, 100))
_range = 0
_max_power = 50
MAXCURRENTS = {1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0}
RANGES = {1: 1e4, 2: 1e3, 3: 1e2, 4: 1e1, 5: 1}
SETPOINTLIMS = 999
STATUS_MAP = {
0: (IDLE, ''),
1: (ERROR, 'Power supply over voltage'),
2: (ERROR, 'Power supply under voltage'),
3: (ERROR, 'Output digital-to-analog Converter error'),
4: (ERROR, 'Current limit digital-to-analog converter error'),
5: (ERROR, 'Open heater load'),
6: (ERROR, 'Heater load less than 10 ohms')
}
def earlyInit(self):
super().earlyInit()
self.CHOICES = sorted([(maxcurrent ** 2 * factor, icurrent, irange)
for irange, factor in self.RANGES.items()
for icurrent, maxcurrent in self.MAXCURRENTS.items()])
def write_max_power(self, max_power):
prev = 0
for i, (factor, icurrent, irange) in enumerate(self.CHOICES):
power = min(factor * self.resistance, 2500 / self.resistance)
if power >= max_power:
if prev >= max_power * 0.9 or prev == power:
icurrent, irange = self.CHOICES[i - 1][1:3]
break
prev = power
self._range = irange
self.set_par(f'CLIMIT {self.loop}', self.SETPOINTLIMS, 0, 0, icurrent, irange)
self.set_par(f'RANGE {irange}')
self.set_par(f'CDISP {self.loop}', 1, self.resistance, 1, 0)
def read_max_power(self):
setplimit, _, _, icurrent, irange = self.get_par(f'CLIMIT? {self.loop}')
# max_power from codes disregarding voltage limit:
self._max_power = self.MAXCURRENTS[icurrent] ** 2 * self.RANGES[irange] * self.resistance
# voltage limit = 50V:
max_power = min(self._max_power, 2500 / self.resistance)
return max_power
def set_range(self):
self.set_par('RANGE ', self._range)
def percent_to_power(self, percent):
return min((percent / 100) ** 2 * self._max_power,
2500 / self.resistance)
def power_to_percent(self, power):
return (power / self._max_power) ** (1 / 2) * 100 # limit
def read_status(self):
return self.STATUS_MAP[self.get_par(f'HTRST?')]
def write_target(self, target):
self.self_controlled()
self.write_max_power(self.max_power)
self.set_heater_mode(3) # 3=open loop
self.set_range()
percent = self.power_to_percent(target)
reply = self.set_par(f'MOUT {self.loop}', percent)
return self.percent_to_power(reply)
def set_heater_mode(self, mode):
self.set_par(f'CSET {self.loop}', self.channel, 1, 1, 0)
self.set_par(f'CMODE {self.loop}', int(mode))
return self.get_par(f'RANGE?')
def read_value(self):
return self.percent_to_power(self.get_par(f'HTR?{self.loop}'))
class HeaterOutput340(HeaterOutput):
resistance = Property('heater resistance', datatype=FloatRange(10, 100))
MAXCURRENTS = {1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0}
RANGES = {1: 1e4, 2: 1e3, 3: 1e2, 4: 1e1, 5: 1}
STATUS_MAP = {
0: (IDLE, ''),
1: (ERROR, 'Power supply over voltage'),
2: (ERROR, 'Power supply under voltage'),
3: (ERROR, 'Output digital-to-analog Converter error'),
4: (ERROR, 'Current limit digital-to-analog converter error'),
5: (ERROR, 'Open heater load'),
6: (ERROR, 'Heater load less than 10 ohms')
}
def read_value(self):
return self.percent_to_power(self.get_par(f'HTR?')) # no loop to be given on 340
class HeaterOutput336(HeaterOutput):
power = 20
STATUS_MAP = {
0: (IDLE, ''),
1: (ERROR, 'Open heater load'),
2: (ERROR, 'Heater short')
}
def write_max_power(self, max_power):
max_current = min(math.sqrt(self.power / self.resistance), 2500 / self.resistance)
if self.loop == 1:
max_current_limit = 2
else:
max_current_limit = 1.414
if max_current > max_current_limit:
raise RangeError('max_power above limit')
if max_current >= max_current_limit / math.sqrt(10):
self._range = 3
user_current = max_current
elif max_current >= max_current_limit / 10:
self._range = 2
user_current = max_current * math.sqrt(10)
else:
self._range = 1
user_current = max_current * math.sqrt(100)
self.set_par(f'HTRSET {self.loop}', 1 if self.resistance < 50 else 2, 0, user_current, 1)
max_power = max_current ** 2 * self.resistance
self._max_power = max_power
self.set_range()
return max_power
class TemperatureLoop340(HasConvergence, HasOutputModule, Sensor340, Drivable, LakeShore):
Status = Enum(
Drivable.Status,
RAMPING=370,
STABILIZING=380,
)
target = Parameter(unit='K')
ctrlpars = Parameter('PID parameters',
StructOf(p=FloatRange(0, 1000), i=FloatRange(0, 1000), d=FloatRange(0, 1000)),
readonly=False)
loop = Property('lakeshore loop', IntRange(1, 2), default=1)
ramp = Parameter('ramp rate', FloatRange(min=0, max=100), unit='K/min', readonly=False)
ramp_used = Parameter('whether ramp is used or not', BoolType(), readonly=False)
setpoint = Parameter('setpoint', datatype=FloatRange, unit='K')
def write_target(self, target):
out = self.output_module
if not self.control_active:
if self.ramp_used:
self.set_par(f'RAMP {self.loop}', 0, self.ramp)
self.set_par(f'SETP {self.loop}', self.value)
self.set_par(f'RAMP {self.loop}', 1, self.ramp)
out.write_target(0)
out.write_max_power(out.max_power)
out.set_heater_mode(1) # closed loop
self.activate_output()
self.start_state() # start the convergence check
out.set_range()
self.set_par(f'SETP {self.loop}', target)
return target
def read_setpoint(self):
setpoint = self.get_par(f'SETP?{self.loop}')
status = self.get_par(f'RAMPST? {self.loop}')
if status == 0:
self.target = setpoint
return setpoint
def write_ctrlpars(self, ctrlpars):
p, i, d = self.set_par(f'PID {self.loop}', ctrlpars['p'], ctrlpars['i'], ctrlpars['d'])
return {'p': p, 'i': i, 'd': d}
def read_ctrlpars(self):
p, i, d = self.get_par(f'PID? {self.loop}')
return {'p': p, 'i': i, 'd': d}
def read_ramp(self):
self.ramp_used, rate = self.get_par(f'RAMP? {self.loop}')
return rate
def write_ramp(self, ramp):
self.ramp_used = True
ramp = self.set_par(f'RAMP {self.loop}', self.ramp_used, ramp)[1]
# if self.control:
# self.ramp = ramp
# self.write_target(self.target)
# return Done
return ramp
def write_ramp_used(self, ramp_used):
ramp_used = self.set_par(f'RAMP {self.loop}', ramp_used, self.ramp)[0]
if self.ramp_used and not ramp_used:
self.write_target(self.target)
return ramp_used
def read_status(self):
statuscode, statustext = self.status
if self.ramp_used:
if self.read_setpoint() == self.target:
statuscode = self.Status.STABILIZING
else:
statuscode = self.Status.RAMPING
statustext = 'ramping'
if statuscode != ERROR:
return Done
if self.convergence_state.is_active:
self.stop_machine((statuscode, statustext))
return ERROR, statustext