295 lines
12 KiB
Python
295 lines
12 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
Created on Tue Nov 26 15:42:43 2019
|
|
|
|
@author: tartarotti_d-adm
|
|
"""
|
|
|
|
|
|
import numpy as np
|
|
import ctypes as ct
|
|
import time
|
|
from numpy import sqrt, arctan2, sin, cos
|
|
|
|
#from pylab import *
|
|
|
|
from scipy import signal
|
|
|
|
#ADQAPI = ct.cdll.LoadLibrary("ADQAPI.dll")
|
|
ADQAPI = ct.cdll.LoadLibrary("libadq.so.0")
|
|
|
|
#For different trigger modes
|
|
SW_TRIG = 1
|
|
EXT_TRIG_1 = 2 #This external trigger does not work if the level of the trigger is very close to 0.5V. Now we have it close to 3V, and it works
|
|
EXT_TRIG_2 = 7
|
|
EXT_TRIG_3 = 8
|
|
LVL_TRIG = 3
|
|
INT_TRIG = 4
|
|
LVL_FALLING = 0
|
|
LVL_RISING = 1
|
|
|
|
#samples_per_record=16384
|
|
ADQ_TRANSFER_MODE_NORMAL = 0x00
|
|
ADQ_CHANNELS_MASK = 0x3
|
|
|
|
#f_LO = 40
|
|
|
|
def butter_lowpass(cutoff, sr, order=5):
|
|
nyq = 0.5 * sr
|
|
normal_cutoff = cutoff / nyq
|
|
b, a = signal.butter(order, normal_cutoff, btype = 'low', analog = False)
|
|
return b, a
|
|
|
|
|
|
class Adq(object):
|
|
max_number_of_channels = 2
|
|
samp_freq = 2
|
|
#ndecimate = 50 # decimation ratio (2GHz / 40 MHz)
|
|
ndecimate = 50
|
|
|
|
def __init__(self, number_of_records, samples_per_record, bw_cutoff):
|
|
self.number_of_records = number_of_records
|
|
self.samples_per_record = samples_per_record
|
|
self.bw_cutoff = bw_cutoff
|
|
ADQAPI.ADQAPI_GetRevision()
|
|
|
|
# Manually set return type from some ADQAPI functions
|
|
ADQAPI.CreateADQControlUnit.restype = ct.c_void_p
|
|
ADQAPI.ADQ_GetRevision.restype = ct.c_void_p
|
|
ADQAPI.ADQ_GetPtrStream.restype = ct.POINTER(ct.c_int16)
|
|
ADQAPI.ADQControlUnit_FindDevices.argtypes = [ct.c_void_p]
|
|
# Create ADQControlUnit
|
|
self.adq_cu = ct.c_void_p(ADQAPI.CreateADQControlUnit())
|
|
ADQAPI.ADQControlUnit_EnableErrorTrace(self.adq_cu, 3, '.')
|
|
self.adq_num = 1
|
|
|
|
# Find ADQ devices
|
|
ADQAPI.ADQControlUnit_FindDevices(self.adq_cu)
|
|
n_of_ADQ = ADQAPI.ADQControlUnit_NofADQ(self.adq_cu)
|
|
if n_of_ADQ != 1:
|
|
raise ValueError('number of ADQs must be 1, not %d' % n_of_ADQ)
|
|
|
|
rev = ADQAPI.ADQ_GetRevision(self.adq_cu, self.adq_num)
|
|
revision = ct.cast(rev,ct.POINTER(ct.c_int))
|
|
print('\nConnected to ADQ #1')
|
|
# Print revision information
|
|
print('FPGA Revision: {}'.format(revision[0]))
|
|
if (revision[1]):
|
|
print('Local copy')
|
|
else :
|
|
print('SVN Managed')
|
|
if (revision[2]):
|
|
print('Mixed Revision')
|
|
else :
|
|
print('SVN Updated')
|
|
print('')
|
|
|
|
ADQ_CLOCK_INT_INTREF = 0 #internal clock source
|
|
ADQ_CLOCK_EXT_REF = 1 #internal clock source, external reference
|
|
ADQ_CLOCK_EXT_CLOCK = 2 #External clock source
|
|
ADQAPI.ADQ_SetClockSource(self.adq_cu, self.adq_num, ADQ_CLOCK_EXT_REF);
|
|
|
|
##########################
|
|
# Test pattern
|
|
#ADQAPI.ADQ_SetTestPatternMode(self.adq_cu, self.adq_num, 4)
|
|
##########################
|
|
# Sample skip
|
|
#ADQAPI.ADQ_SetSampleSkip(self.adq_cu, self.adq_num, 1)
|
|
##########################
|
|
|
|
# Set trig mode
|
|
self.trigger = EXT_TRIG_1
|
|
#trigger = LVL_TRIG
|
|
success = ADQAPI.ADQ_SetTriggerMode(self.adq_cu, self.adq_num, self.trigger)
|
|
if (success == 0):
|
|
print('ADQ_SetTriggerMode failed.')
|
|
if (self.trigger == LVL_TRIG):
|
|
success = ADQAPI.ADQ_SetLvlTrigLevel(self.adq_cu, self.adq_num, -100)
|
|
if (success == 0):
|
|
print('ADQ_SetLvlTrigLevel failed.')
|
|
success = ADQAPI.ADQ_SetTrigLevelResetValue(self.adq_cu, self.adq_num, 1000)
|
|
if (success == 0):
|
|
print('ADQ_SetTrigLevelResetValue failed.')
|
|
success = ADQAPI.ADQ_SetLvlTrigChannel(self.adq_cu, self.adq_num, 1)
|
|
if (success == 0):
|
|
print('ADQ_SetLvlTrigChannel failed.')
|
|
success = ADQAPI.ADQ_SetLvlTrigEdge(self.adq_cu, self.adq_num, LVL_RISING)
|
|
if (success == 0):
|
|
print('ADQ_SetLvlTrigEdge failed.')
|
|
elif (self.trigger == EXT_TRIG_1) :
|
|
success = ADQAPI.ADQ_SetExternTrigEdge(self.adq_cu, self.adq_num,2)
|
|
if (success == 0):
|
|
print('ADQ_SetLvlTrigEdge failed.')
|
|
# success = ADQAPI.ADQ_SetTriggerThresholdVoltage(self.adq_cu, self.adq_num, trigger, ct.c_double(0.2))
|
|
# if (success == 0):
|
|
# print('SetTriggerThresholdVoltage failed.')
|
|
print("CHANNEL:"+str(ct.c_int(ADQAPI.ADQ_GetLvlTrigChannel(self.adq_cu, self.adq_num))))
|
|
self.setup_target_buffers()
|
|
|
|
def setup_target_buffers(self):
|
|
# Setup target buffers for data
|
|
self.target_buffers=(ct.POINTER(ct.c_int16 * self.samples_per_record * self.number_of_records)
|
|
* self.max_number_of_channels)()
|
|
for bufp in self.target_buffers:
|
|
bufp.contents = (ct.c_int16 * self.samples_per_record * self.number_of_records)()
|
|
|
|
def deletecu(self):
|
|
# Only disarm trigger after data is collected
|
|
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
|
ADQAPI.ADQ_MultiRecordClose(self.adq_cu, self.adq_num);
|
|
# Delete ADQControlunit
|
|
ADQAPI.DeleteADQControlUnit(self.adq_cu)
|
|
|
|
def start(self):
|
|
"""start datat acquisition"""
|
|
# samples_per_records = samples_per_record/number_of_records
|
|
# Change number of pulses to be acquired acording to how many records are taken
|
|
# Start acquisition
|
|
ADQAPI.ADQ_MultiRecordSetup(self.adq_cu, self.adq_num,
|
|
self.number_of_records,
|
|
self.samples_per_record)
|
|
|
|
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
|
ADQAPI.ADQ_ArmTrigger(self.adq_cu, self.adq_num)
|
|
|
|
def getdata(self):
|
|
"""wait for aquisition to be finished and get data"""
|
|
#start = time.time()
|
|
while(ADQAPI.ADQ_GetAcquiredAll(self.adq_cu,self.adq_num) == 0):
|
|
time.sleep(0.001)
|
|
#if (self.trigger == SW_TRIG):
|
|
# ADQAPI.ADQ_SWTrig(self.adq_cu, self.adq_num)
|
|
#mid = time.time()
|
|
status = ADQAPI.ADQ_GetData(self.adq_cu, self.adq_num, self.target_buffers,
|
|
self.samples_per_record * self.number_of_records, 2,
|
|
0, self.number_of_records, ADQ_CHANNELS_MASK,
|
|
0, self.samples_per_record, ADQ_TRANSFER_MODE_NORMAL);
|
|
#print(time.time()-mid,mid-start)
|
|
if not status:
|
|
raise ValueError('no succesS from ADQ_GetDATA')
|
|
# Now this is an array with all records, but the time is artificial
|
|
data = []
|
|
for ch in range(2):
|
|
onedim = np.frombuffer(self.target_buffers[ch].contents, dtype=np.int16)
|
|
data.append(onedim.reshape(self.number_of_records, self.samples_per_record) / float(2**14)) # 14 bits ADC
|
|
return data
|
|
|
|
def acquire(self):
|
|
self.start()
|
|
return self.getdata()
|
|
'''
|
|
def average(self, data):
|
|
#Average over records
|
|
return [data[ch].sum(axis=0) / self.number_of_records for ch in range(2)]
|
|
|
|
def iq(self, channel, f_LO):
|
|
newx = np.linspace(0, self.samples_per_record /2, self.samples_per_record)
|
|
s0 = channel /((2**16)/2)*0.5*np.exp(1j*2*np.pi*f_LO/(1e3)*newx)
|
|
I0 = s0.real
|
|
Q0 = s0.imag
|
|
return I0, Q0
|
|
|
|
|
|
def fitting(self, data, f_LO, ti, tf):
|
|
# As long as data[0] is the pulse
|
|
si = 2*ti #Those are for fitting the pulse
|
|
sf = 2*tf
|
|
phase = np.zeros(self.number_of_records)
|
|
amplitude = np.zeros(self.number_of_records)
|
|
offset = np.zeros(self.number_of_records)
|
|
|
|
for i in range(self.number_of_records):
|
|
phase[i], amplitude[i] = sineW(data[0][i][si:sf],f_LO*1e-9,ti,tf)
|
|
offset[i] = np.average(data[0][i][si:sf])
|
|
return phase, amplitude, offset
|
|
|
|
|
|
def waveIQ(self, channel,ti,f_LO):
|
|
#channel is not the sample data
|
|
t = np.linspace(0, self.samples_per_record /2, self.samples_per_record + 1)[:-1]
|
|
si = 2*ti # Again that is where the wave pulse starts
|
|
cwi = np.zeros((self.number_of_records,self.samples_per_record))
|
|
cwq = np.zeros((self.number_of_records,self.samples_per_record))
|
|
iq = np.zeros((self.number_of_records,self.samples_per_record))
|
|
q = np.zeros((self.number_of_records,self.samples_per_record))
|
|
for i in range(self.number_of_records):
|
|
cwi[i] = np.zeros(self.samples_per_record)
|
|
cwq[i] = np.zeros(self.samples_per_record)
|
|
cwi[i] = amplitude[i]*sin(t[si:]*f_LO*1e-9*2*np.pi+phase[i]*np.pi/180)+bias[i]
|
|
cwq[i] = amplitude[i]*sin(t[si:]*f_LO*1e-9*(2*np.pi+(phase[i]+90)*np.pi/180))+bias[i]
|
|
|
|
iq[i] = channel[i]*cwi[i]
|
|
q[i] = channel[i]*cwq[i]
|
|
|
|
return iq,q
|
|
'''
|
|
def sinW(self,sig,freq,ti,tf):
|
|
# sig: signal array
|
|
# freq
|
|
# ti, tf: initial and end time
|
|
si = int(ti * self.samp_freq)
|
|
nperiods = freq * (tf - ti)
|
|
n = int(round(max(2, int(nperiods)) / nperiods * (tf-ti) * self.samp_freq))
|
|
self.nperiods = n
|
|
t = np.arange(si, len(sig)) / self.samp_freq
|
|
t = t[:n]
|
|
self.pulselen = n / self.samp_freq
|
|
sig = sig[si:si+n]
|
|
a = 2*np.sum(sig*np.cos(2*np.pi*freq*t))/len(sig)
|
|
b = 2*np.sum(sig*np.sin(2*np.pi*freq*t))/len(sig)
|
|
return a, b
|
|
|
|
def mix(self, sigin, sigout, freq, ti, tf):
|
|
# sigin, sigout: signal array, incomping, output
|
|
# freq
|
|
# ti, tf: initial and end time if sigin
|
|
a, b = self.sinW(sigin, freq, ti, tf)
|
|
phase = arctan2(a,b) * 180 / np.pi
|
|
amp = sqrt(a**2 + b**2)
|
|
a, b = a/amp, b/amp
|
|
#si = int(ti * self.samp_freq)
|
|
t = np.arange(len(sigout)) / self.samp_freq
|
|
wave1 = sigout * (a * cos(2*np.pi*freq*t) + b * sin(2*np.pi*freq*t))
|
|
wave2 = sigout * (a * sin(2*np.pi*freq*t) - b * cos(2*np.pi*freq*t))
|
|
return wave1, wave2
|
|
|
|
def averageiq(self, data, freq, ti, tf):
|
|
'''Average over records'''
|
|
iorq = np.array([self.mix(data[0][i], data[1][i], freq, ti, tf) for i in range(self.number_of_records)])
|
|
# iorq = np.array([self.mix(data[0][:], data[1][:], freq, ti, tf)])
|
|
return iorq.sum(axis=0) / self.number_of_records
|
|
|
|
def filtro(self, iorq, cutoff):
|
|
b, a = butter_lowpass(cutoff, self.samp_freq*1e9)
|
|
|
|
#ifi = np.array(signal.filtfilt(b,a,iorq[0]))
|
|
#qf = np.array(signal.filtfilt(b,a,iorq[1]))
|
|
iqf = [signal.filtfilt(b,a,iorq[i]) for i in np.arange(len(iorq))]
|
|
|
|
return iqf
|
|
|
|
def box(self, iorq, ti, tf):
|
|
si = int(self.samp_freq * ti)
|
|
sf = int(self.samp_freq * tf)
|
|
bxa = [sum(iorq[i][si:sf])/(sf-si) for i in np.arange(len(iorq))]
|
|
return bxa
|
|
|
|
def gates_and_curves(self, data, freq, pulse, roi):
|
|
"""return iq values of rois and prepare plottable curves for iq"""
|
|
times = []
|
|
times.append(('aviq', time.time()))
|
|
iq = self.averageiq(data,freq*1e-9,*pulse)
|
|
times.append(('filtro', time.time()))
|
|
iqf = self.filtro(iq,self.bw_cutoff)
|
|
m = len(iqf[0]) // self.ndecimate
|
|
times.append(('iqdec', time.time()))
|
|
iqd = np.average(np.resize(iqf, (2, m, self.ndecimate)), axis=2)
|
|
t_axis = np.arange(m) * self.ndecimate / self.samp_freq
|
|
pulsig = np.abs(data[0][0])
|
|
times.append(('pulsig', time.time()))
|
|
pulsig = np.average(np.resize(pulsig, (m, self.ndecimate)), axis=1)
|
|
self.curves = (t_axis, iqd[0], iqd[1], pulsig)
|
|
#print(times)
|
|
return [self.box(iqf,*r) for r in roi]
|
|
|