Files
frappy/frappy_psi/picontrol.py
Markus Zolliker 71629c1d3a improvements when testing leiden
- triple current source
- software loop
2025-10-30 13:45:29 +01:00

317 lines
11 KiB
Python

# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# Jael Celia Lorenzana <jael-celia.lorenzana@psi.ch>
# Marek Bartkowiak <marek.bartkowiak@psi.ch>
#
# *****************************************************************************
"""soft PI control
recipe using the PImixin:
assume you have class Sensor inheriting from Readable, you create a new class:
class SensorWithLoop(HasConvergence, PImixin, Sensor):
pass
and this is an example cfg
Mod('T_sample',
'frappy_psi.<your driver module>.SensorWithLoop',
'controlled T',
meaning=['temperature', 20],
output_module='htr_sample',
p=100,
i=60,
)
recipe using PI:
example cfg:
Mod('T_softloop',
'frappy_psi.picontrol.PI',
'softloop controlled Temperature mixing chamber',
input_module = 'ts',
output_module = 'htr_mix',
control_active = 1,
output_max = 80000,
p = 2E6,
i = 10000,
tlim = 1.0,
)
"""
import time
import math
import numpy as np
from frappy.core import Readable, Writable, Parameter, Attached, IDLE, Property
from frappy.lib import clamp, merge_status
from frappy.datatypes import LimitsType, EnumType, FloatRange
from frappy.errors import SECoPError
from frappy.ctrlby import HasOutputModule, WrapControlledBy
from frappy_psi.convergence import HasConvergence
def ext_poll_value(mobj):
prev = mobj.parameters['value'].timestamp
mobj.doPoll()
if mobj.parameters['value'].timestamp <= prev:
# value was not updated
mobj.read_value()
# disable polling for the next interval
interval = mobj.pollInfo.interval
if interval:
mobj.pollInfo.last_main = (time.time() // interval) * interval
return mobj.value
class PImixin(HasOutputModule, Writable):
value = Parameter(unit='K', update_unchanged='always')
p = Parameter('proportional term', FloatRange(0), readonly=False, default=1)
i = Parameter('integral term', FloatRange(0), readonly=False, default=1)
status = Parameter(update_unchanged='never')
itime = Parameter('integration time', FloatRange(0, unit='s'), default=60, readonly=False)
control_active = Parameter(readonly=False)
# output_module is inherited
output_range = Property('legacy output range', LimitsType(FloatRange()), default=(0, 0))
output_min = Parameter('min output', FloatRange(), default=0, readonly=False)
output_max = Parameter('max output', FloatRange(), default=0, readonly=False)
input_scale = Property('input scale', FloatRange(unit='$'), default=100)
time_scale = Property('time scale', FloatRange(unit='s'), default=60)
overflow = Parameter('overflow', FloatRange(), default=0, readonly=False)
_lastdiff = None
_lasttime = 0
_get_range = None # a function get output range from output_module
_overflow = 0
_itime_set = None # True: 'itime' was set, False: 'i' was set
_history = None
__errcnt = 0
__inside_poll = False
__cache = None
# with input units K and output units %:
# units for p: % / K
# units for i: % / K / min
def initModule(self):
self.__cache = {}
super().initModule()
if self.output_range != (0, 0): # legacy !
self.output_min, self.output_max = self.output_range
self.get_range_func()
self.addCallback('value', self.__inside, 'value')
self.addCallback('status', self.__inside, 'status')
def __inside(self, value, pname):
if self.__inside_poll is not None:
self.__cache[pname] = value
def doPoll(self):
try:
self.__inside_poll = True
self.__cache = {}
now = time.time()
value = self.read_value()
if self._history is None:
# initialize a fixed size array, with fake time axis to avoid errors in np.polyfit
self._history = np.array([(now+i, self.value) for i in range(-9,1)])
else:
# shift fixed size array, and change last point
self._history[:-1] = self._history[1:]
self._history[-1] = (now, value)
if not self.control_active:
self._lastdiff = 0
return
self.read_status()
out = self.output_module
deltat = clamp(0, now-self._lasttime, 10)
self._lasttime = now
diff = self.target - value
if self._lastdiff is None:
self._lastdiff = diff
deltadiff = diff - self._lastdiff
self._lastdiff = diff
if diff:
ref = self.itime / diff
(slope, _), cov = np.polyfit(self._history[:, 0] - now, self._history[:, 1], 1, cov=True)
slope_stddev = np.sqrt(max(0, cov[0, 0]))
if slope * ref > 1 + 2 * slope_stddev * abs(ref):
# extrapolated value will cross target in less than itime
if self._overflow:
self._overflow = 0
self.log.info('clear overflow')
output, omin, omax = self.cvt2int(out.target)
output += self._overflow + (
self.p * deltadiff +
self.i * deltat * diff / self.time_scale) / self.input_scale
if omin <= output <= omax:
self._overflow = 0
else:
# save overflow for next step
if output < omin:
self._overflow = output - omin
output = omin
else:
self._overflow = output - omax
output = omax
out.update_target(self.name, self.cvt2ext(output))
self.__errcnt = 0
except Exception as e:
if self.control_active:
self.__errcnt += 1
if self.__errcnt > 5:
self.__errcnt = 0
self.log.warning('too many errors - switch control off')
self.write_control_active(False)
raise
finally:
self.__inside_poll = False
self.__cache = {}
self.overflow = self._overflow
def write_overflow(self, value):
self._overflow = value
def internal_poll(self):
super().doPoll()
def internal_read_value(self):
return super().read_value()
def internal_read_status(self):
return super().read_status()
def read_value(self):
try:
return self.__cache['value']
except KeyError:
return self.internal_read_value()
def read_status(self):
try:
return self.__cache['status']
except KeyError:
pass
status = IDLE, 'controlling' if self.control_active else 'inactive'
if hasattr(super(), 'read_status'):
status = merge_status(self.internal_read_status(), status)
return status
def get_range_func(self):
out = self.output_module
if hasattr(out, 'max_target'):
if hasattr(self, 'min_target'):
self._get_range = lambda o=out: (o.read_min_target(), o.read_max_target())
else:
self._get_range = lambda o=out: (0, o.read_max_target())
elif hasattr(out, 'limit'): # mercury.HeaterOutput
self._get_range = lambda o=out: (0, o.read_limit())
else:
if self.output_min == self.output_max == 0:
self.output_max = 1
self._get_range = lambda o=self: (o.output_min, o.output_max)
if self.output_min == self.output_max == 0:
self.output_min, self.output_max = self._get_range()
def cvt2int(self, output):
return (clamp(x, *self._get_range()) for x in (output, self.output_min, self.output_max))
def cvt2ext(self, output):
return output
def calc_itime(self, prop, integ):
return prop * self.time_scale / integ
def write_p(self, value):
if self._itime_set:
self.i = value * self.time_scale / self.itime
elif self._itime_set is False: # means also not None
self.itime = value * self.time_scale / self.i
def write_i(self, value):
self._itime_set = False
self.itime = self.p * self.time_scale / value
def write_itime(self, value):
self._itime_set = True
self.i = self.p * self.time_scale / value
def set_target(self, value):
if not self.control_active:
self.activate_control()
self.target = value
self.doPoll()
class PImixinSquare(PImixin):
"""unchecked: use square as output function"""
def cvt2int(self, output):
return (math.sqrt(max(0, 100 * clamp(x, *self._get_range())))
for x in (output, self.output_min, self.output_max))
def cvt2ext(self, output):
return output ** 2 / 100
class PI(HasConvergence, PImixin):
input_module = Attached(Readable, 'the input module')
def internal_poll(self):
inp = self.input_module
inp.doPoll()
interval = inp.pollInfo.interval
if interval > 0:
# disable next internal poll
inp.pollInfo.last_main = (time.time() // interval) * interval
self.read_value()
self.read_status()
def internal_read_value(self):
return self.input_module.read_value()
def internal_read_status(self):
return self.input_module.read_status()
def write_target(self, target):
super().write_target(target)
self.convergence_start()
# unchecked!
class PI2(PI):
maxovershoot = Parameter('max. overshoot', FloatRange(0, 100, unit='%'), readonly=False, default=20)
def doPoll(self):
self.output_max = self.target * (1 + 0.01 * self.maxovershoot)
self.output_min = self.target * (1 - 0.01 * self.maxovershoot)
super().doPoll()
def write_target(self, target):
if not self.control_active:
self.output.write_target(target)
super().write_target(target)
class PIctrl(WrapControlledBy, PI):
"""a pi controller which is controlled by another loop"""