Files
frappy/frappy_psi/oiclassic.py

716 lines
24 KiB
Python

#!/usr/bin/env python
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# Anik Stark <anik.stark@psi.ch>
# *****************************************************************************
"""oxford instruments old (classic) devices (ILM, IGH, IPS)"""
import time
import re
from frappy.core import Parameter, Property, EnumType, FloatRange, BoolType, \
StringIO, HasIO, Readable, Writable, Drivable, IDLE, BUSY, WARN, ERROR, Attached
from frappy.lib import formatStatusBits
from frappy.lib.enum import Enum
from frappy.errors import BadValueError, HardwareError, CommunicationFailedError
from frappy_psi.magfield import Magfield, Status
from frappy.states import Retry
def bit(x, pos):
"""Check if the bit at a certain position is set"""
return bool(x & (1 << pos))
class OxBase(HasIO):
def query(self, cmd, scale=None):
reply = self.communicate(cmd)
if reply[0] != cmd[0]:
raise CommunicationFailedError(f'bad reply: {reply} to command {cmd}')
if scale is None:
return int(reply[1:])
return float(reply[1:]) * scale
def change(self, cmd, value, scale=None):
try:
self.communicate('C3')
reply = self.communicate(f'{cmd}{round(value / scale)}')
if reply[0] != cmd[0]:
raise CommunicationFailedError(f'bad reply: {reply}')
finally:
self.communicate('C0')
def command(self, *cmds):
try:
self.communicate('C3')
for cmd in cmds:
self.communicate(cmd)
finally:
self.communicate('C0')
class IPS_IO(StringIO):
"""oxford instruments power supply IPS120-10"""
end_of_line = '\r'
identification = [('V', r'IPS120-10.*')] # instrument type and software version
default_settings = {'baudrate': 9600}
Action = Enum(hold=0, run_to_set=1, run_to_zero=2, clamped=4)
status_map = {'0': (IDLE, ''),
'1': (ERROR, 'quenched'),
'2': (ERROR, 'overheated'),
'4': (WARN, 'warming up'),
'8': (ERROR, '')
}
limit_map = {'0': (IDLE, ''),
'1': (WARN, 'on positive voltage limit'),
'2': (WARN, 'on negative voltage limit'),
'4': (ERROR, 'outside negative current limit'),
'8': (ERROR, 'outside positive current limit')
}
class Field(OxBase, Magfield):
""" read commands:
R1 measured power supply voltage (V)
R7 demand field (output field) (T)
R8 setpoint (target field) (T)
R9 sweep field rate (T/min)
R18 persistent field (T)
X Status
control commands:
A set activity
T set field sweep rate
H set switch heater
J set target field """
ioClass = IPS_IO
action = Parameter('action', EnumType(Action), readonly=False)
setpoint = Parameter('field setpoint', FloatRange(unit='T'), default=0)
voltage = Parameter('leads voltage', FloatRange(unit='V'), default=0)
persistent_field = Parameter(
'persistent field at last switch off', FloatRange(unit='T'), readonly=False)
wait_switch_on = Parameter(default=15)
wait_switch_off = Parameter(default=15)
wait_stable_field = Parameter(default=10)
forced_persistent_field = Parameter(
'manual indication that persistent field is bad', BoolType(), readonly=False, default=False)
switch_heater = Parameter('turn switch heater on/off', EnumType(off=0, on=1, forced=2), default=0)
_field_mismatch = None
__persistent_field = None # internal value of persistent field
_status = '00'
def initModule(self):
super().initModule()
try:
self.write_action(Action.hold)
except Exception as e:
self.log.error('can not set to hold %r', e)
def doPoll(self):
super().doPoll()
self.read_current()
def initialReads(self):
# on restart, assume switch is changed long time ago, if not, the mercury
# will complain and this will be handled in start_ramp_to_field
self.switch_on_time = 0
self.switch_off_time = 0
super().initialReads()
def read_value(self):
if self.switch_heater:
self.__persistent_field = self.query('R7')
self.forced_persistent_field = False
self._field_mismatch = False
return self.__persistent_field
pf = self.query('R18')
if self.__persistent_field is None:
self.__persistent_field = pf
self._field_mismatch = False
else:
self._field_mismatch = abs(self.__persistent_field - pf) > self.tolerance * 10
self.persistent_field = self.__persistent_field
return self.__persistent_field
def read_ramp(self):
return self.query('R9')
def write_ramp(self, value):
self.change('T', value)
return self.read_ramp()
def write_action(self, value):
self.change('A', int(value))
self.read_status()
def read_voltage(self):
return self.query('R1')
def read_setpoint(self):
return self.query('R8')
def read_current(self):
return self.query('R7')
def write_persistent_field(self, value):
if self.forced_persistent_field or abs(self.__persistent_field - value) <= self.tolerance * 10:
self._field_mismatch = False
self.__persistent_field = value
return value
raise BadValueError('changing persistent field needs forced_persistent_field=True')
def write_target(self, target):
if self._field_mismatch:
self.forced_persistent_field = True
raise BadValueError('persistent field does not match - set persistent field to guessed value first')
return super().write_target(target)
def read_switch_heater(self):
self.read_status()
return self.switch_heater
def read_status(self):
status = self.communicate('X')
match = re.match(r'X(\d\d)A(\d)C\dH(\d)M\d\dP\d\d', status)
if match is None:
raise CommunicationFailedError(f'unexpected status: {status}')
self._status = match.group(1)
self.action = int(match.group(2))
self.switch_heater = match.group(3) == '1'
if self._status[0] != '0':
self._state_machine.stop()
return status_map.get(self._status[0], (ERROR, f'bad status: {self._status}'))
if self._status[1] != '0':
return limit_map.get(self._status[1], (ERROR, f'bad status: {self._status}')) # need to stop sm too?
return super().read_status()
def write_switch_heater(self, value):
if value == self.read_switch_heater():
self.log.info('switch heater already %r', value)
# we do not want to restart the timer
return value
self.log.debug('switch time fixed for 10 sec')
self.change('H', int(value))
#return result
return int(value)
def set_and_go(self, value):
self.change('J', value)
self.setpoint = self.read_current()
assert self.write_action(Action.hold) == Action.hold
assert self.write_action(Action.run_to_set) == Action.run_to_set
def ramp_to_target(self, sm):
try:
return super().ramp_to_target(sm)
except HardwareError:
sm.try_cnt -= 1
if sm.try_cnt < 0:
raise
self.set_and_go(sm.target)
return Retry
def final_status(self, *args, **kwds):
self.write_action(Action.hold)
return super().final_status(*args, **kwds)
def on_restart(self, sm):
self.write_action(Action.hold)
return super().on_restart(sm)
def start_ramp_to_field(self, sm):
if abs(self.current - self.__persistent_field) <= self.tolerance:
self.log.info('leads %g are already at %g', self.current, self.__persistent_field)
return self.ramp_to_field
try:
self.set_and_go(self.__persistent_field)
except (HardwareError, AssertionError) as e:
if self.switch_heater:
self.log.warn('switch is already on!')
return self.ramp_to_field
self.log.warn('wait first for switch off current=%g pf=%g %r', self.current, self.__persistent_field, e)
sm.after_wait = self.ramp_to_field
return self.wait_for_switch
return self.ramp_to_field
def start_ramp_to_target(self, sm):
sm.try_cnt = 5
try:
self.set_and_go(sm.target)
except (HardwareError, AssertionError) as e:
self.log.warn('switch not yet ready %r', e)
self.status = Status.PREPARING, 'wait for switch on'
sm.after_wait = self.ramp_to_target
return self.wait_for_switch
return self.ramp_to_target
def ramp_to_field(self, sm):
try:
return super().ramp_to_field(sm)
except HardwareError:
sm.try_cnt -= 1
if sm.try_cnt < 0:
raise
self.set_and_go(self.__persistent_field)
return Retry
def wait_for_switch(self, sm):
if not sm.delta(10):
return Retry
try:
self.log.warn('try again')
# try again
self.set_and_go(self.__persistent_field)
except (HardwareError, AssertionError):
return Retry
return sm.after_wait
def wait_for_switch_on(self, sm):
self.read_switch_heater() # trigger switch_on/off_time
if self.switch_heater == self.switch_heater.off:
if sm.init: # avoid too many states chained
return Retry
self.log.warning('switch turned off manually?')
return self.start_switch_on
return super().wait_for_switch_on(sm)
def wait_for_switch_off(self, sm):
self.read_switch_heater()
if self.switch_heater == self.switch_heater.on:
if sm.init: # avoid too many states chained
return Retry
self.log.warning('switch turned on manually?')
return self.start_switch_off
return super().wait_for_switch_off(sm)
def start_ramp_to_zero(self, sm):
pf = self.query('R18')
if abs(pf - self.value) > self.tolerance * 10:
self.log.warning('persistent field %g does not match %g after switch off', pf, self.value)
try:
assert self.write_action(Action.hold) == Action.hold
assert self.write_action(Action.run_to_zero) == Action.run_to_zero
except (HardwareError, AssertionError) as e:
self.log.warn('switch not yet ready %r', e)
self.status = Status.PREPARING, 'wait for switch off'
sm.after_wait = self.ramp_to_zero
return self.wait_for_switch
return self.ramp_to_zero
def ramp_to_zero(self, sm):
try:
return super().ramp_to_zero(sm)
except HardwareError:
sm.try_cnt -= 1
if sm.try_cnt < 0:
raise
assert self.write_action(Action.hold) == Action.hold
assert self.write_action(Action.run_to_zero) == Action.run_to_zero
return Retry
def write_trainmode(self, value):
self.change('M', '5' if value == 'off' else '1')
class ILM_IO(StringIO):
"""oxford instruments level meter ILM200"""
end_of_line = '\r'
identification = [('V', r'ILM200.*')] # instrument type and software version
default_settings = {'baudrate': 9600}
timeout = 5
class Level(OxBase, Readable):
""" X code: XcccSuuvvwwRzz
c: position corresponds to channel 1, 2, 3
possible values in each position are 0, 1, 2, 3, 9
vv, uu, ww: channel status for channel 1, 2, 3 respectively, 2 bits each
zz: relay status """
ioClass = ILM_IO
value = Parameter('level', datatype=FloatRange(unit='%'))
fast = Parameter('fast reading', datatype=BoolType())
CHANNEL = None
X_PATTERN = re.compile(r'X(\d)(\d)(\d)S([0-9A-F]{2})([0-9A-F]{2})([0-9A-F]{2})R\d\d$')
MEDIUM = None
_statusbits = None
def read_value(self):
return self.query(f'R{self.CHANNEL}', 0.1)
def write_fast(self, fast):
self.command(f'T{self.CHANNEL}' if fast else f'S{self.CHANNEL}')
def get_status(self):
reply = self.communicate('X')
match = self.X_PATTERN.match(reply)
if match:
statuslist = match.groups()
if statuslist[self.CHANNEL] == '9':
return ERROR, f'error on {self.MEDIUM} level channel (not connected?)'
if (statuslist[self.CHANNEL] == '1') != (self.MEDIUM == 'N2'):
# '1': channel is used for N2
return ERROR, f'{self.MEDIUM} level channel not configured properly'
self._statusbits = int(statuslist[self.CHANNEL + 3], 16)
return None
return ERROR, f'bad status message {reply}'
class HeLevel(Level):
value = Parameter('He level', FloatRange(unit='%'))
fast = Parameter('switching fast/slow', datatype=BoolType(), readonly=False)
CHANNEL = 1
MEDIUM = 'He'
def read_status(self):
status = self.get_status()
if status is not None:
return status
return IDLE, formatStatusBits(self._statusbits, ['meas', 'fast', 'slow'])
class N2Level(Level):
ioClass = ILM_IO
value = Parameter('N2 level', FloatRange(unit='%'))
CHANNEL = 2
MEDIUM = 'N2'
def read_status(self):
status = self.get_status()
if status is not None:
return status
return IDLE, ''
VALVE_MAP = {'V9': 1,
'V8': 2,
'V7': 3,
'V11A': 4,
'V13A': 5,
'V13B': 6,
'V11B': 7,
'V12B': 8,
'rotary_pump_He4': 9,
'V1': 10,
'V5': 11,
'V4': 12,
'V3': 13,
'V14' : 14,
'V10': 15,
'V2': 16,
'V2A_He4': 17,
'V1A_He4': 18,
'V5A_He4': 19,
'V4A_He4': 20,
'V3A_He4': 21,
'roots_pump': 22,
'unlabeled_pump': 23,
'rotary_pump_He3': 24,
}
class IGH_IO(StringIO):
""" oxford instruments dilution gas handling Kelvinox IGH
X code: XxAaCcPpppSsOoEe
x motorized valves are still initializing
a mix heater activity
c control status (0, 1, 2, 3)
pppp 4 hex numbers (two digits each), state of solenoid valves and pumps
s hex digit, state of the 3 motorized valves
o still and sorb heater information
e mix heater power range """
end_of_line = '\r'
identification = [('V', r'IGH.*')]
default_settings = {'baudrate': 9600}
X_PATTERN = re.compile(r'X(\d)A(\d)C\dP([0-9A-F]{8})S([0-9A-F])O(\d)E(\d)$')
_ini_valves = 0 # ini status of motorized valves
_mix_status = 0
_valves = 0 # status of solenoid valves and pumps
_motor_status = 0
_heater_status = 0
_heater_range = 0
def doPoll(self):
reply = self.communicate('X')
match = self.X_PATTERN.match(reply)
if match:
ini_valves, mix_status, valves, motor_status, heater_status, heater_range = match.groups()
self._ini_valves = int(ini_valves, 16)
self._mix_status = int(mix_status)
self._valves = int(valves, 16)
self._motor_status = int(motor_status, 16)
self._heater_status = int(heater_status)
self._heater_range = int(heater_range)
class Valve(OxBase, Writable):
ioClass = IGH_IO
value = Parameter('state of valve (open or close)', datatype=EnumType(open=1, close=0))
target = Parameter('open or close valve', datatype=EnumType(open=1, close=0))
addr = Property('valve name', datatype=EnumType(VALVE_MAP))
def read_value(self):
# hex -> int -> check if bit in bin(integer) is set at the addr position
return bit(self.io._valves, self.addr.value - 1)
def write_target(self, target):
# open: 2N, close: 2N + 1
self.change('P', (2 * self.addr.value + 1 - int(target)), 1)
class PulsedValve(Valve):
delay = Parameter('delay (time valve is open)', FloatRange(unit='s'), readonly=False)
_start = 0
def write_target(self, target):
if target:
self._start = time.time()
self.setFastPoll(True, 0.01)
else:
self.setFastPoll(False)
self.change('P', (2 * self.addr.value + 1 - int(target)), 1)
def doPoll(self):
super().doPoll()
if self._start:
if time.time() > self._start + self.delay:
self.write_target(0)
self._start = 0
class MotorValve(OxBase, Writable):
ioClass = IGH_IO
target = Parameter('target of motor valve', datatype=FloatRange(0, 100, unit='%'))
value = Parameter('position of fast valve', datatype=FloatRange(0, 100, unit='%'))
def write_target(self, target):
self.change('H', target, 0.1) # valve V12A
self.value = target
def read_value(self):
return self.target
def read_status(self):
if bit(self.io._ini_valves, 1):
self.value = 0
return BUSY, 'valve V12A is initializing'
return IDLE, ''
class SlowMotorValve(OxBase, Drivable):
ioClass = IGH_IO
target = Parameter('target of slow motor valve', datatype=FloatRange(0, 100, unit='%', fmtstr='%.1f'))
value = Parameter('position of slow valve', datatype=FloatRange(0, 100, unit='%', fmtstr='%.1f'))
_prev_time = 0
def read_target(self):
return self.query('R7', 0.1)
def write_target(self, target):
self.change('G', target, 0.1) # valve V6
self.read_status()
def read_status(self):
if bit(self.io._ini_valves, 0):
self.value = 0
return BUSY, 'valve V6 is initializing'
now = time.time()
if self._prev_time == 0:
self.value = self.read_target()
delta_t = 0
else:
delta_t = now - self._prev_time
self._prev_time = now
if (self.io._motor_status >> 0) & 1:
if self.target > self.value:
self.value = min(self.target, self.value + delta_t / 300 * 100)
else:
self.value = max(self.target, self.value - delta_t / 300 * 100)
return BUSY, 'valve V6 is moving'
self.value = self.target
return IDLE, ''
def stop(self):
"""stop moving"""
self.write_target(self.value)
GAUGE_MAP = {'G1': 14,
'G2': 15,
'G3': 16,
'P1': 20,
'P2': 21,
}
class Pressure(OxBase, Readable):
addr = Property('pressure gauge address', datatype=EnumType(GAUGE_MAP))
def read_value(self):
nr = self.addr.value
if self.addr.name.startswith('G'):
return self.query(f'R{nr}', 0.1)
return self.query(f'R{nr}', 1)
class MixPower(OxBase, Writable):
ioClass = IGH_IO
target = Parameter('mix power', datatype=FloatRange(0, 0.02, unit='W'))
value = Parameter('mix power', datatype=FloatRange(0, 0.02, unit='W'))
def read_value(self):
scale = 10**-(7 - self.io._heater_range)
return self.query('R4', scale)
def write_target(self, target):
if target:
self.command('A1') # on, fixed heater power
target = min(0.01999, target)
target_nW = str(int(target * 1e9))
range_mix = max(1, len(target_nW) - 3)
if target_nW >= '2000':
range_mix += 1
scale = 10**-(10 - range_mix)
self.command(f'E{range_mix}')
self.change('M', target, scale)
else:
self.command('A0') # turn off
def read_status(self):
if self.io._mix_status:
return IDLE, 'on'
return IDLE, 'off'
class SorbPower(OxBase, Writable):
""" heater status:
bit 0 still on
bit 1 sorb in temperature control (this ctr mode is not used)
bit 2 sorb in power control """
ioClass = IGH_IO
target = Parameter('sorb power', datatype=FloatRange(0, 2, unit='W')) # Werte 0.001, 2
writecmd = 'B' # in units of 1mW (range 0000 to 1999)
scale = 1e-3
def read_value(self):
if self.io._heater_status & 6:
return self.query('R6', self.scale)
return 0
def write_target(self, target):
self.change('O', self.io._heater_status & 1 | 4 * (target > 0), 1)
self.change('B', target, self.scale)
def read_status(self):
sorb_status = self.io._heater_status & 6
if sorb_status == 2:
return WARN, 'sorb in temperature control mode'
return IDLE, ('on' if sorb_status else 'off')
class StillPower(OxBase, Writable):
""" heater status:
bit 0 still on
bit 1 sorb in temperature control (this ctr mode is not used)
bit 2 sorb in power control """
ioClass = IGH_IO
target = Parameter('still power', datatype=FloatRange(0, 0.2, unit='W'))
readcmd = 'R5'
writecmd = 'S' # in units of 0.1mW (range 0000 to 1999)
scale = 1e-4
def read_value(self):
if self.io._heater_status & 1:
return self.query('R5', self.scale)
return 0
def write_target(self, target):
self.change('O', self.io._heater_status & 6 | (target > 0), 1)
self.change('S', target, self.scale)
def read_status(self):
sorb_status = self.io._heater_status & 1
return IDLE, ('on' if sorb_status else 'off')
class N2Sensor(Readable):
value = Parameter(datatype=FloatRange(unit='K'))
class Pump(Valve):
value = Parameter('state of valve (open or close)', datatype=EnumType(on=1, off=0))
target = Parameter('open or close valve', datatype=EnumType(on=1, off=0))
upper_LN2 = Attached()
lower_LN2 = Attached()
PATTERN = re.compile(r'\?\{(\d),(\d+),(\d+)\}')
def read_value(self):
reply = self.communicate('{r}')
match = self.PATTERN.match(reply)
if match:
value, upper_LN2, lower_LN2 = match.groups()
self.upper_LN2.value = 0.1 * int(upper_LN2)
self.lower_LN2.value = 0.1 * int(lower_LN2)
return int(value)
raise CommunicationFailedError('bad reply to {r}')
def read_target(self):
# hex -> int -> check if bit in bin(integer) is set at the addr position
return bit(self.io._valves, self.addr.value - 1)
def write_target(self, target):
# open: 2 * 24, close: 2 * 24 + 1
self.change('P', 2 * self.addr.value + 1 - target, 1)
self.value = target
def read_status(self):
if self.target and not self.value:
return WARN, 'pump switched off'
return IDLE, ''