frappy/frappy_psi/lakeshore.py
Oksana Shliakhtun d6c641e67b fix set/get_par
Change-Id: I9790a667bc2e89baf2be9e35edb7473cdfc5dd31
2023-03-08 14:49:56 +01:00

241 lines
8.9 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Oksana Shliakhtun <oksana.shliakhtun@psi.ch>
# *****************************************************************************
from frappy.core import Readable, Parameter, IntRange, EnumType, FloatRange, \
StringIO, HasIO, StringType, Property, Writable, Drivable, IDLE, ERROR, \
Attached, StructOf, WARN, Done, BoolType
from frappy_psi.convergence import HasConvergence
from frappy_psi.mixins import HasOutputModule, HasControlledBy
class Ls340IO(StringIO):
"""communication with 340CT"""
end_of_line = '\r'
wait_before = 0.05
identification = [('*IDN?', r'LSCI,MODEL340,.*')]
class LakeShore(HasIO):
def set_par(self, cmd, *args):
head = ','.join([cmd] + [f'{a:g}' for a in args])
tail = cmd.replace(' ', '? ')
reply = self.communicate(f'{head};{tail}')
reply = [float(num) for num in reply.split(',')]
if len(reply) == 1:
return reply[0]
return reply
def get_par(self, cmd):
reply = self.communicate(cmd)
reply = [float(num) for num in reply.split(',')]
if len(reply) == 1:
return reply[0]
return reply
class Sensor340(LakeShore, Readable):
"""A channel of 340TC"""
# define the communication class to create the IO module
ioClass = Ls340IO
channel = Property('lakeshore channel', StringType())
alarm = Parameter('alarm limit', FloatRange(unit='K'), readonly=False)
# # define or alter the parameters
# as Readable.value exists already, we give only the modified property 'unit'
value = Parameter(unit='K')
def read_value(self):
return self.get_par(f'KRDG? {self.channel}')
def read_status(self):
c = int(self.get_par(f'RDGST? {self.channel}'))
if c >= 128:
return ERROR, 'units overrange'
if c >= 64:
return ERROR, 'units zero'
if c >= 32:
return ERROR, 'temperature overrange'
if c >= 16:
return ERROR, 'temperature underrange'
# do not check for old reading -> this happens regularly on NTCs with T comp
if c % 2:
return ERROR, 'invalid reading'
# ask for high alarm status and return warning
if 1 in self.get_par(f'ALARMST? {self.channel}'):
return WARN, 'alarm triggered'
return IDLE, ''
def write_alarm(self, alarm):
return self.set_par(f'ALARM {self.channel}', 1, 1, alarm, 0, 0, 2)[2]
def read_alarm(self):
return self.get_par(f'ALARM? {self.channel}')[2]
class HeaterOutput(LakeShore, HasControlledBy, HasIO, Writable):
max_power = Parameter('max heater power', datatype=FloatRange(0, 100), unit='W', readonly=False)
value = Parameter('heater output', datatype=FloatRange(0, 100), unit='W')
target = Parameter('manual heater output', datatype=FloatRange(0, 100), unit='W')
loop = Property('lakeshore loop', IntRange(1, 2), default=1)
channel = Property('attached channel', StringType())
resistance = Property('heater resistance', datatype=FloatRange(10, 1000))
current = Property('heater current', datatype=FloatRange(0, 2))
_range = 0
MAXCURRENTS = {1: 0.25, 2: 0.5, 3: 1.0, 4: 2.0}
RANGES = {1: 1e4, 2: 1e3, 3: 1e2, 4: 1e1, 5: 1}
SETPOINTLIMS = 999
max_current = 0
STATUS_MAP = {
0: (IDLE, ''),
1: (ERROR, 'Power supply over voltage'),
2: (ERROR, 'Power supply under voltage'),
3: (ERROR, 'Output digital-to-analog Converter error'),
4: (ERROR, 'Current limit digital-to-analog converter error'),
5: (ERROR, 'Open heater load'),
6: (ERROR, 'Heater load less than 10 ohms')
}
def earlyInit(self):
super().earlyInit()
self.CHOICES = sorted([(maxcurrent ** 2 * factor, icurrent, irange)
for irange, factor in self.RANGES.items()
for icurrent, maxcurrent in self.MAXCURRENTS.items()])
def write_max_power(self, max_power):
prev = 0
for i, (factor, icurrent, irange) in enumerate(self.CHOICES):
power = min(factor * self.resistance, 2500 / self.resistance)
if power >= max_power:
if prev >= max_power * 0.9 or prev == power:
icurrent, irange = self.CHOICES[i - 1][1:3]
break
prev = power
self._range = irange
self.set_par(f'CLIMIT {self.loop}', self.SETPOINTLIMS, 0, 0, icurrent, irange)
self.set_par(f'RANGE {irange}')
self.set_par(f'CDISP {self.loop}', 1, self.resistance, 0)
return self.read_max_power()
def read_max_power(self):
setplimit, _, _, icurrent, irange = self.get_par(f'CLIMIT? {self.loop}')
# max_power from codes disregarding voltage limit:
self._max_power = self.MAXCURRENTS[icurrent] ** 2 * self.RANGES[irange] * self.resistance
# voltage limit = 50V:
max_power = min(self._max_power, 2500 / self.resistance)
return max_power
def set_range(self):
self.set_par('RANGE ', self._range)
def percent_to_power(self, percent):
return min((percent / 100) ** 2 * self._max_power,
2500 / self.resistance)
def power_to_percent(self, power):
return (power / self._max_power) ** (1 / 2) * 100 # limit
def read_status(self):
return self.STATUS_MAP[self.get_par(f'HTRST?')]
def write_target(self, target):
self.self_controlled()
self.write_max_power(self.max_power)
self.set_heater_mode(3)
self.set_range()
percent = self.power_to_percent(target)
reply = self.set_par(f'MOUT {self.loop}', '%g' % percent)
return self.percent_to_power(reply)
def set_heater_mode(self, mode):
self.set_par(f'CSET {self.loop}', self.channel, 1, 1, 0)
self.set_par(f'CMODE {self.loop}', int(mode))
return self.get_par(f'RANGE?')
def read_value(self):
return self.percent_to_power(self.get_par(f'HTR?'))
class TemperatureLoop340(HasConvergence, HasOutputModule, Sensor340, Drivable, LakeShore):
target = Parameter(unit='K')
ctrlpars = Parameter('PID parameters',
StructOf(p=FloatRange(0, 1000), i=FloatRange(0, 1000), d=FloatRange(0, 1000)),
readonly=False)
loop = Property('lakeshore loop', IntRange(1, 2), default=1)
ramp = Parameter('ramp rate', FloatRange(min=0, max=1000), unit='K/min', readonly=False)
ramp_used = Parameter('whether ramp is used or not', BoolType(), readonly=False)
setpoint = Parameter('setpoint', datatype=FloatRange, unit='K')
def doPoll(self):
super().doPoll()
self.read_setpoint()
def write_target(self, target):
out = self.output_module
if out.controlled_by != self.name:
out.write_target(0)
out.set_heater_mode(1)
out.write_max_power(out.max_power)
self.activate_output()
out.set_range()
self.set_par(f'SETP {self.loop}', target)
return target
def read_setpoint(self):
setpoint = self.get_par(f'SETP?{self.loop}')[0]
status = self.get_par(f'RAMPST? {self.loop}')
if status == 0:
self.target = setpoint
return setpoint
def write_ctrlpars(self, ctrlpars):
p, i, d = self.set_par(f'PID {self.loop}', ctrlpars['p'], ctrlpars['i'], ctrlpars['d'])
return {'p': p, 'i': i, 'd': d}
def read_ctrlpars(self):
p, i, d = self.get_par(f'PID? {self.loop}')
return {'p': p, 'i': i, 'd': d}
def write_ramp(self, ramp):
return self.set_par(f'RAMP {self.loop}', self.ramp_used, ramp)[1]
def write_ramp_used(self, ramp_used):
return self.set_par(f'RAMP {self.loop}', ramp_used, self.ramp)[0]
def read_ramp(self):
self.ramp_used, rate = self.get_par(f'RAMP? {self.loop}')
return rate
def read_status(self):
statuscode, statustext = super().read_status()
if statuscode == IDLE:
return Done
if self.convergence_state.is_active():
self.convergence_state.stop_machine((statuscode, statustext))
return ERROR, statustext