frappy/frappy_psi/picontrol.py
Markus Zolliker f5667a9267 frappy_psi.picontrol: software control loop
example usage: use a temperature controller without changing
the calibration setting:
reading the raw sensor, calibrate by software and use 'manual'
heater output

Change-Id: I3dbcf37e7726b48a0516d7aa30758be52b80fe58
Reviewed-on: https://forge.frm2.tum.de/review/c/secop/frappy/+/33910
Tested-by: Jenkins Automated Tests <pedersen+jenkins@frm2.tum.de>
Reviewed-by: Markus Zolliker <markus.zolliker@psi.ch>
2024-06-17 15:20:21 +02:00

87 lines
3.4 KiB
Python

# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# Jael Celia Lorenzana <jael-celia.lorenzana@psi.ch>
#
# *****************************************************************************
"""soft PI control"""
import time
import math
from frappy.core import Writable, Parameter, FloatRange, IDLE
from frappy.lib import clamp
from frappy.datatypes import LimitsType, EnumType
from frappy.mixins import HasOutputModule
class PImixin(HasOutputModule, Writable):
p = Parameter('proportional term', FloatRange(0), readonly=False)
i = Parameter('integral term', FloatRange(0), readonly=False)
output_range = Parameter('min output',
LimitsType(FloatRange()), default=(0, 0), readonly=False)
output_func = Parameter('output function',
EnumType(lin=0, square=1), readonly=False, default=0)
value = Parameter(unit='K')
_lastdiff = None
_lasttime = 0
_clamp_limits = None
def doPoll(self):
super().doPoll()
if self._clamp_limits is None:
out = self.output_module
if hasattr(out, 'max_target'):
if hasattr(self, 'min_target'):
self._clamp_limits = lambda v, o=out: clamp(v, o.read_min_target(), o.read_max_target())
else:
self._clamp_limits = lambda v, o=out: clamp(v, 0, o.read_max_target())
elif hasattr(out, 'limit'): # mercury.HeaterOutput
self._clamp_limits = lambda v, o=out: clamp(v, 0, o.read_limit())
else:
self._clamp_limits = lambda v: v
if self.output_range == (0.0, 0.0):
self.output_range = (0, self._clamp_limits(float('inf')))
if not self.control_active:
return
self.status = IDLE, 'controlling'
now = time.time()
deltat = clamp(0, now-self._lasttime, 10)
self._lasttime = now
diff = self.target - self.value
if self._lastdiff is None:
self._lastdiff = diff
deltadiff = diff - self._lastdiff
self._lastdiff = diff
out = self.output_module
output = out.target
if self.output_func == 'square':
output = math.sqrt(max(0, output))
output += self.p * deltadiff + self.i * deltat * diff
if self.output_func == 'square':
output = output ** 2
output = self._clamp_limits(output)
out.update_target(self.name, clamp(output, *self.output_range))
def write_control_active(self, value):
if not value:
self.output_module.write_target(0)
def write_target(self, _):
if not self.control_active:
self.activate_control()