frappy/secop_psi/mercury.py
Markus Zolliker 903e17a6e5 mercury, as of 2022-02-01
Change-Id: Ifdbb2afc827b894874edaec50e82b645023beda9
2022-02-02 09:55:43 +01:00

437 lines
16 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# *****************************************************************************
"""oxford instruments mercury family"""
import math
import re
import time
from secop.core import Drivable, HasIodev, \
Parameter, Property, Readable, StringIO
from secop.datatypes import EnumType, FloatRange, StringType, StructOf
from secop.errors import HardwareError
from secop.lib.statemachine import StateMachine
class MercuryIO(StringIO):
identification = [('*IDN?', r'IDN:OXFORD INSTRUMENTS:MERCURY*')]
VALUE_UNIT = re.compile(r'(.*\d)([A-Za-z]*)$')
def make_map(**kwds):
"""create a dict converting internal names to values and vice versa"""
kwds.update({v: k for k, v in kwds.items()})
return kwds
MODE_MAP = make_map(OFF=0, ON=1)
SAMPLE_RATE = make_map(OFF=1, ON=0) # invert the codes used by OI
class MercuryChannel(HasIodev):
slots = Property('''slot uids
example: DB6.T1,DB1.H1
slot ids for sensor (and control output)''',
StringType())
channel_name = Parameter('mercury nick name', StringType())
channel_type = '' #: channel type(s) for sensor (and control)
def query(self, adr, value=None):
"""get or set a parameter in mercury syntax
:param adr: for example "TEMP:SIG:TEMP"
:param value: if given and not None, a write command is executed
:return: the value
remark: the DEV:<slot> is added automatically, when adr starts with the channel type
in addition, when addr starts with '0:' or '1:', the channel type is added
"""
for i, (channel_type, slot) in enumerate(zip(self.channel_type.split(','), self.slots.split(','))):
if adr.startswith('%d:' % i):
adr = 'DEV:%s:%s:%s' % (slot, channel_type, adr[2:]) # assume i <= 9
break
if adr.startswith(channel_type + ':'):
adr = 'DEV:%s:%s' % (slot, adr)
break
if value is not None:
try:
value = '%g' % value # this works for float, integers and enums
except ValueError:
value = str(value) # this alone would not work for enums, and not be nice for floats
cmd = 'SET:%s:%s' % (adr, value)
reply = self._iodev.communicate(cmd)
if reply != 'STAT:%s:VALID' % cmd:
raise HardwareError('bad response %r to %r' % (reply, cmd))
# chain a read command anyway
cmd = 'READ:%s' % adr
reply = self._iodev.communicate(cmd)
head, _, result = reply.rpartition(':')
if head != 'STAT:%s' % adr:
raise HardwareError('bad response %r to %r' % (reply, cmd))
match = VALUE_UNIT.match(result)
if match: # result can be interpreted as a float with optional units
return float(match.group(1))
return result
def read_channel_name(self):
return self.query('')
class TemperatureSensor(MercuryChannel, Readable):
channel_type = 'TEMP'
value = Parameter(unit='K')
raw = Parameter('raw value', FloatRange())
def read_value(self):
return self.query('TEMP:SIG:TEMP')
def read_raw(self):
return self.query('TEMP:SIG:RES')
class HasProgressCheck:
"""mixin for progress checks
Implements progress checks based on tolerance, settling time and timeout.
The algorithm does its best to support changes of these parameters on the
fly. However, the full history is not considered, which means for example
that the spent time inside tolerance stored already is not altered when
changing tolerance.
"""
tolerance = Parameter('absolute tolerance', FloatRange(0), readonly=False, default=0)
min_slope = Parameter('minimal abs(slope)', FloatRange(0), readonly=False, default=0)
settling_time = Parameter(
'''settling time
total amount of time the value has to be within tolerance before switching to idle.
''', FloatRange(0), readonly=False, default=0)
timeout = Parameter(
'''timeout
timeout = 0: disabled, else:
A timeout event happens, when the difference (target - value) is not improved by
at least min_slope * timeout over any interval (t, t + timeout).
As soon as the value is the first time within tolerance, the criterium is changed:
then the timeout event happens after this time + settling_time + timeout.
''', FloatRange(0, unit='sec'), readonly=False, default=3600)
status = Parameter('status determined from progress check')
value = Parameter()
target = Parameter()
def earlyInit(self):
super().earlyInit()
self.__state = StateMachine()
def prepare_state(self, state):
tol = self.tolerance
if not tol:
tol = 0.01 * max(abs(self.target), abs(self.value))
dif = abs(self.target - self.value)
return dif, tol, state.now, state.delta(0)
def state_approaching(self, state):
if self.init():
self.status = 'BUSY', 'approaching'
dif, tol, now, delta = self.prepare_state(state)
if dif < tol:
state.timeout_base = now
state.next_step(self.state_inside)
return
if not self.timeout:
return
if state.init():
state.timeout_base = now
state.dif_crit = dif
return
min_slope = getattr(self, 'ramp', 0) or getattr('min_slope', 0)
state.dif_crit -= min_slope * delta
if dif < state.dif_crit:
state.timeout_base = now
elif now > state.timeout_base:
self.status = 'WARNING', 'convergence timeout'
state.next_action(self.state_idle)
def state_inside(self, state):
if state.init():
self.status = 'BUSY', 'inside tolerance'
dif, tol, now, delta = self.prepare_state(state)
if dif > tol:
state.next_action(self.state_outside)
state.spent_inside += delta
if state.spent_inside > self.settling_time:
self.status = 'IDLE', 'reached target'
state.next_action(self.state_idle)
def state_outside(self, state, now, dif, tol, delta):
if state.init():
self.status = 'BUSY', 'outside tolerance'
dif, tol, now, delta = self.prepare_state(state)
if dif < tol:
state.next_action(self.state_inside)
elif now > self.timeout_base + self.settling_time + self.timeout:
self.status = 'WARNING', 'settling timeout'
state.next_action(self.state_idle)
def start_state(self):
"""must be called from write_target, whenever the target changes"""
self.__state.start(self.state_approach)
def poll(self):
super().poll()
self.__state.poll()
def read_status(self):
if self.status[0] == 'IDLE':
# do not change when idle already
return self.status
return self.check_progress(self.value, self.target)
def write_target(self, value):
raise NotImplementedError()
class Loop(HasProgressCheck, MercuryChannel):
"""common base class for loops"""
mode = Parameter('control mode', EnumType(manual=0, pid=1), readonly=False)
ctrlpars = Parameter(
'pid (proportional nad, integral time, differential time',
StructOf(p=FloatRange(0, unit='$'), i=FloatRange(0, unit='min'), d=FloatRange(0, unit='min')),
readonly=False, poll=True
)
"""pid = Parameter('control parameters', StructOf(p=FloatRange(), i=FloatRange(), d=FloatRange()),readonly=False)"""
pid_table_mode = Parameter('', EnumType(off=0, on=1), readonly=False)
def read_ctrlpars(self):
return self.query('0:LOOP:P')
def read_integ(self):
return self.query('0:LOOP:I')
def read_deriv(self):
return self.query('0:LOOP:D')
def write_prop(self, value):
return self.query('0:LOOP:P', value)
def write_integ(self, value):
return self.query('0:LOOP:I', value)
def write_deriv(self, value):
return self.query('0:LOOP:D', value)
def read_enable_pid_table(self):
return self.query('0:LOOP:PIDT').lower()
def write_enable_pid_table(self, value):
return self.query('0:LOOP:PIDT', value.upper()).lower()
def read_mode(self):
return MODE_MAP[self.query('0:LOOP:ENAB')]
def write_mode(self, value):
if value == 'manual':
self.status = 'IDLE', 'manual mode'
elif self.status[0] == 'IDLE':
self.status = 'IDLE', ''
return MODE_MAP[self.query('0:LOOP:ENAB', value)]
def write_target(self, value):
raise NotImplementedError
# def read_pid(self):
# # read all in one go, in order to reduce comm. traffic
# cmd = 'READ:DEV:%s:TEMP:LOOP:P:I:D' % self.slots.split(',')[0]
# reply = self._iodev.communicate(cmd)
# result = list(reply.split(':'))
# pid = result[6::2]
# del result[6::2]
# if ':'.join(result) != cmd:
# raise HardwareError('bad response %r to %r' % (reply, cmd))
# return dict(zip('pid', pid))
#
# def write_pid(self, value):
# # for simplicity use single writes
# return {k: self.query('LOOP:%s' % k.upper(), value[k]) for k in 'pid'}
class TemperatureLoop(Loop, TemperatureSensor, Drivable):
channel_type = 'TEMP,HTR'
heater_limit = Parameter('heater output limit', FloatRange(0, 100, unit='W'), readonly=False)
heater_resistivity = Parameter('heater resistivity', FloatRange(10, 1000, unit='Ohm'), readonly=False)
ramp = Parameter('ramp rate', FloatRange(0, unit='K/min'), readonly=False)
enable_ramp = Parameter('enable ramp rate', EnumType(off=0, on=1), readonly=False)
auto_flow = Parameter('enable auto flow', EnumType(off=0, on=1), readonly=False)
heater_output = Parameter('heater output', FloatRange(0, 100, unit='W'), readonly=False)
def read_heater_limit(self):
return self.query('HTR:VLIM') ** 2 / self.heater_resistivity
def write_heater_limit(self, value):
result = self.query('HTR:VLIM', math.sqrt(value * self.heater_resistivity))
return result ** 2 / self.heater_resistivity
def read_heater_resistivity(self):
value = self.query('HTR:RES')
if value:
return value
return self.heater_resistivity
def write_heater_resistivity(self, value):
return self.query('HTR:RES', value)
def read_enable_ramp(self):
return self.query('TEMP:LOOP:RENA').lower()
def write_enable_ramp(self, value):
return self.query('TEMP:LOOP:RENA', EnumType(off=0, on=1)(value).name).lower()
def read_auto_flow(self):
return self.query('TEMP:LOOP:FAUT').lower()
def write_auto_flow(self, value):
return self.query('TEMP:LOOP:FAUT', EnumType(off=0, on=1)(value).name).lower()
def read_ramp(self):
return self.query('TEMP:LOOP:RSET')
def write_ramp(self, value):
if not value:
self.write_enable_ramp(0)
return 0
if value:
self.write_enable_ramp(1)
return self.query('TEMP:LOOP:RSET', value)
def read_target(self):
# TODO: check about working setpoint
return self.query('TEMP:LOOP:TSET')
def write_target(self, value):
if self.mode != 'pid':
self.log.warning('switch to pid loop mode')
self.write_mode('pid')
self.reset_progress(self.value, value)
return self.query('TEMP:LOOP:TSET', value)
def read_heater_output(self):
# TODO: check that this really works, else next line
return self.query('HTR:SIG:POWR')
# return self.query('HTR:SIG:VOLT') ** 2 / self.heater_resistivity
def write_heater_output(self, value):
if self.mode != 'manual':
self.log.warning('switch to manual heater mode')
self.write_mode('manual')
return self.query('HTR:SIG:VOLT', math.sqrt(value * self.heater_resistivity))
class PressureSensor(MercuryChannel, Readable):
channel_type = 'PRES'
value = Parameter(unit='mbar')
def read_value(self):
return self.query('PRES:SIG:PRES')
class PressureLoop(Loop, PressureSensor, Drivable):
channel_type = 'PRES,AUX'
valve_pos = Parameter('valve position', FloatRange(0, 100, unit='%'), readonly=False)
def read_valve_pos(self):
return self.query('AUX:SIG:PERC')
def write_valve_pos(self, value):
if self.mode != 'manual':
self.log.warning('switch to manual valve mode')
self.write_mode('manual')
return self.query('AUX:SIG:PERC', value)
def write_target(self, value):
self.reset_progress(self.value, value)
return self.query('PRES:LOOP:PRST', value)
class HeLevel(MercuryChannel, Readable):
channel_type = 'LVL'
sample_rate = Parameter('_', EnumType(slow=0, fast=1), readonly=False, poll=True)
hysteresis = Parameter('hysteresis for detection of increase', FloatRange(0, 100, unit='%'), readonly=False)
fast_timeout = Parameter('timeout for switching to slow', FloatRange(0, unit='sec'), readonly=False)
_min_level = 200
_max_level = -100
_last_increase = None # None when in slow mode, last increase time in fast mode
def check_rate(self, sample_rate):
"""check changes in rate
:param sample_rate: (int or enum) 0: slow, 1: fast
initialize affected attributes
"""
if sample_rate != 0: # fast
if not self._last_increase:
self._last_increase = time.time()
self._max_level = -100
elif self._last_increase:
self._last_increase = None
self._min_level = 200
return sample_rate
def read_sample_rate(self):
return self.check_rate(SAMPLE_RATE[self.query('LVL:HEL:PULS:SLOW')])
def write_sample_rate(self, value):
self.check_rate(value)
return SAMPLE_RATE[self.query('LVL:HEL:PULS:SLOW', SAMPLE_RATE[value])]
def read_value(self):
level = self.query('LVL:SIG:HEL:LEV')
# handle automatic switching depending on increase
now = time.time()
if self._last_increase: # fast mode
if level > self._max_level:
self._last_increase = now
self._max_level = level
elif now > self._last_increase + self.fast_timeout:
# no increase since fast timeout -> slow
self.write_sample_rate('slow')
else:
if level > self._min_level + self.hysteresis:
# substantial increase -> fast
self.write_sample_rate('fast')
else:
self._min_level = min(self._min_level, level)
return level
class N2Level(MercuryChannel, Readable):
channel_type = 'LVL'
def read_value(self):
return self.query('LVL:SIG:NIT:LEV')
class MagnetOutput(MercuryChannel, Drivable):
pass