frappy/secop_psi/FG_Lecroy_3000.py
l_samenv 2fb05b37f8 [WIP] driver for FG_Lecroy_3000
not yet working
2020-11-10 08:09:39 +01:00

222 lines
7.3 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Daniel Margineda <daniel.margineda@psi.ch>
# *****************************************************************************
"""WAVE FUNCTION LECROY XX: SIGNAL GENERATOR"""
from secop.core import Readable, Parameter, Override, Command, FloatRange, TupleOf, \
HasIodev, StringIO, Done, Attached, IntRange, BoolType, EnumType,StringType
#class SR7270(StringIO):
# end_of_line = b'\x00'
class StringIO(secop.stringio.StringIO):
identification = [('*IDN?', 'WST,WaveStation 3000,.*')]
wait_before = 0.05
# to update....
# def do_communicate(self, command): #remove dash from terminator
# reply = StringIO.do_communicate(self, command)
# status = self._conn.readbytes(2, 0.1) # get the 2 status bytes
# print('comm=',command,'reply=',reply,'status=',status)
# return reply + ';%d;%d' % tuple(status)
class channels(HasIodev, Readable):
properties = {
'out1_arg': Attached(),
'freq1_arg': Attached(),
'amp1_arg': Attached(),
'off1_arg': Attached(),
'out2_arg': Attached(),
'freq2_arg': Attached(),
'amp2_arg': Attached(),
'off2_arg': Attached(),
}
parameters = {
'value': Parameter('channel status',StringType, poll=False,initwrite=False),
'channel':Parameter('choose channel to manipulate',IntRange(1,2), poll=True,initwrite=False,default=1),
'freq': Parameter('exc_freq_int',
FloatRange(1e-6,20e6,unit='Hz'),
poll=True, readonly=False, initwrite=True, default=1000),
'amp': Parameter('exc_volt_int',
FloatRange(0.00,5,unit='Vrms'),
poll=True, readonly=False, initwrite=True, default=0.1),
'offset': Parameter('offset_volt_int',
FloatRange(0.00,10,unit='V'),
'wave': Parameter ('type of wavefunction', StringType=('SINE','SQUARE','RAMP','PULSE','NOISE','ARB','DC'), poll=True, readonly=False, default='SINE'),
poll=True, readonly=False, initwrite=True, default=0.0),
'phase': Parameter('signal phase', FloatRange(0,360,unit='deg'), poll=True, readonly=False, initwrite=True, default=0),
'enabled': Parameter('enable output channel', datatype=StringType('OFF','ON'),readonly=False, default='OFF'),
'symm': Parameter('wavefunction symmetry', FloatRange(0,100, unit=''), poll=True, readonly =False, default=0),
}
pollerClass = Poller
ioidevClass = StringIO
# def comm(self, command):
# reply, status, overload = self.sendRecv(command).split(';')
# if overload != '0':
# self.status = self.Status.WARN, 'overload %s' % overload
# else:
# self.status = self.Status.IDLE, ''
# return reply
#update instruments values
def read_value(self):
#response type: self._freq1_arg.value = self.freq(1) C1:BSWV TYPE', 'SINE', 'FRQ', '1000', 'AMP', '3', 'OFST', '3
# channel 1 status
reply=self.sendRecv('C1:BSWV?').split(',')
out=self.sendRecv('C1:OUTP?').split(',') #C1:OUTP ON,LOAD,HZ
self._freq1_arg.value = reply[3]
self._amp1_arg.value = reply[5]
self._off1_arg.value = reply[7]
self._out1_arg.value = out.split('')[1]
reply2=self.sendRecv('C2:BSWV?').split(',')
out2=self.sendRecv('C1:OUTP?').split(',')
self._freq2_arg.value = reply[3]
self._amp2_arg.value = reply[5]
self._off2_arg.value = reply[7]
self._out2_arg.value = out2.split('')[1]
return reply, out, reply2, out2
#signal channel parameter
def read_channel(self):
reply=self.channel()
return reply
def write_channel(self,value):
return value
#signal wavefunction parameter
def read_wave(self):
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV WVTP?')
return reply
def write_wave(self,value): #string value
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV WVTP, %g' % value)
return reply
#signal freq parameter
def read_freq(self):
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV FRQ?')
return reply
def write_freq(self,value):
ch=str(self.channel)
self.sendRecv('C'+ch+':BSWV FRQ, %g' % str(value)+'Hz')
return value
#signal amplitude parameter
def read_amp(self):
ch=str(self.channel)
reply = self.sendRecv'C'+ch+':BSWV AMP?')
return reply
def write_amp(self,value):
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV AMP, %g' % str(value))
return value
#offset value parameter
def read_offset(self):
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV OFST?')
return reply
def write_offset(self,ch,value):
ch=str(self.channel)
self.sendRecv('C'+ch+':BSWV OFST %g' % str(value))
return value
# channel symmetry
def read_symm(self):
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV SYM?')
return reply
def write_symm(self,ch,value):
ch=str(self.channel)
self.comm('C'+ch+':BSWV SYM %g' % str(value))
return value
# wave phase parameter
def read_phase(self):
ch=str(self.channel)
reply = self.sendRecv('C'+ch+':BSWV PHSE?')
return reply
def write_phase(self,value):
ch=str(self.channel)
self.sendRecv('C'+ch+':BSWV PHSE %g' % str(value))
return value
# dis/enable output channel
def read_enabled(self):
ch=str(self.channel)
reply=self.sendRecv('C'+ch+': OUTP?')
return reply
def write_enabled(self,ch,value):
self.sendRecv('C'+ch+': OUTP %g' % str(value))
# devices are defined as arg less output enable what is defined as arg2
class arg(Readable):
pollerClass = None
parameters = {
'value': Override(datatype=FloatRange(unit='')),
}
class arg2(Readable):
pollerClass = None
parameters = {
'value': Override(datatype=BoolType(unit='')),
}