frappy/frappy_psi/convergence.py
Markus Zolliker f2d795cfba frappy_psi.convergence: improvments
- merge_status
- empty string instead of 'approaching'
- dif <= tol

Change-Id: I6f10875f7ef5d2109c13d7448ede114b8e30d86e
2023-06-05 09:47:08 +02:00

200 lines
7.8 KiB
Python

# -*- coding: utf-8 -*-
# *****************************************************************************
#
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
#
# *****************************************************************************
from frappy.core import Parameter, FloatRange, BUSY, IDLE, WARN
from frappy.lib.statemachine import StateMachine, Retry, Stop
from frappy.lib import merge_status
class HasConvergence:
"""mixin for convergence checks
Implementation based on tolerance, settling time and timeout.
The algorithm does its best to support changes of these parameters on the
fly. However, the full history is not considered, which means for example
that the spent time inside tolerance stored already is not altered when
changing tolerance.
does not inherit from HasStates (own state machine!)
"""
tolerance = Parameter('absolute tolerance', FloatRange(0, unit='$'), readonly=False, default=0)
settling_time = Parameter(
'''settling time
total amount of time the value has to be within tolerance before switching to idle.
''', FloatRange(0, unit='sec'), readonly=False, default=60)
timeout = Parameter(
'''timeout
timeout = 0: disabled, else:
A timeout event happens, when the difference abs(<target> - <value>) drags behind
the expected difference for longer than <timeout>. The expected difference is determined
by parameters 'workingramp' or 'ramp'. If ramp is not available, an exponential decay of
the difference with <tolerance> as time constant is expected.
As soon as the value is the first time within tolerance, the timeout criterium is changed:
then the timeout event happens after this time + <settling_time> + <timeout>.
''', FloatRange(0, unit='sec'), readonly=False, default=3600)
status = Parameter() # make sure status is a parameter
convergence_state = None # the state machine
def earlyInit(self):
super().earlyInit()
self.convergence_state = StateMachine(
threaded=False, logger=self.log, cleanup=self.convergence_cleanup,
status=(IDLE, ''), spent_inside=0, stop_status=(IDLE, 'stopped'))
def convergence_cleanup(self, state):
state.default_cleanup(state)
if state.stopped:
if state.stopped is Stop: # and not Restart
self.__set_status(WARN, 'stopped')
else:
self.__set_status(WARN, repr(state.last_error))
def doPoll(self):
super().doPoll()
state = self.convergence_state
state.cycle()
def __set_status(self, *status):
if status != self.convergence_state.status:
self.convergence_state.status = status
self.read_status()
def read_status(self):
try:
return merge_status(super().read_status(), self.convergence_state.status)
except AttributeError:
return self.convergence_state.status # no super().read_status
def convergence_min_slope(self, dif):
"""calculate minimum expected slope"""
slope = getattr(self, 'workingramp', 0) or getattr(self, 'ramp', 0)
if slope or not self.timeout:
return slope
return dif / self.timeout # assume exponential decay of dif, with time constant <tolerance>
def convergence_dif(self):
"""get difference target - value and tolerance"""
tol = self.tolerance
if not tol:
tol = 0.01 * max(abs(self.target), abs(self.value))
dif = abs(self.target - self.value)
return dif, tol
def convergence_start(self):
"""to be called from write_target"""
self.__set_status(BUSY, 'changed_target')
self.convergence_state.start(self.convergence_approach)
def convergence_approach(self, state):
"""approaching, checking progress (busy)"""
state.spent_inside = 0
dif, tol = self.convergence_dif()
if dif <= tol:
state.timeout_base = state.now
return self.convergence_inside
if not self.timeout:
return Retry
if state.init:
state.timeout_base = state.now
state.dif_crit = dif # criterium for resetting timeout base
self.__set_status(BUSY, '')
state.dif_crit -= self.convergence_min_slope(dif) * state.delta()
if dif < state.dif_crit: # progress is good: reset timeout base
state.timeout_base = state.now
elif state.now > state.timeout_base + self.timeout:
self.__set_status(WARN, 'convergence timeout')
return self.convergence_instable
return Retry
def convergence_inside(self, state):
"""inside tolerance, still busy"""
dif, tol = self.convergence_dif()
if dif > tol:
return self.convergence_outside
state.spent_inside += state.delta()
if state.spent_inside > self.settling_time:
self.__set_status(IDLE, 'reached target')
return self.convergence_stable
if state.init:
self.__set_status(BUSY, 'inside tolerance')
return Retry
def convergence_outside(self, state):
"""temporarely outside tolerance, busy"""
dif, tol = self.convergence_dif()
if dif <= tol:
return self.convergence_inside
if state.now > state.timeout_base + self.settling_time + self.timeout:
self.__set_status(WARN, 'settling timeout')
return self.convergence_instable
if state.init:
self.__set_status(BUSY, 'outside tolerance')
# do not reset the settling time on occasional outliers, count backwards instead
state.spent_inside = max(0.0, state.spent_inside - state.delta())
return Retry
def convergence_stable(self, state):
"""stable, after settling_time spent within tolerance, idle"""
dif, tol = self.convergence_dif()
if dif <= tol:
return Retry
self.__set_status(WARN, 'instable')
state.spent_inside = max(self.settling_time, state.spent_inside)
return self.convergence_instable
def convergence_instable(self, state):
"""went outside tolerance from stable, warning"""
dif, tol = self.convergence_dif()
if dif <= tol:
state.spent_inside += state.delta()
if state.spent_inside > self.settling_time:
self.__set_status(IDLE, 'stable') # = recovered from instable
return self.convergence_stable
else:
state.spent_inside = max(0, state.spent_inside - state.delta())
return Retry
def convergence_interrupt(self, state):
"""stopping"""
self.__set_status(state.stop_status) # stop called
return self.convergence_instable
def stop(self):
"""set to idle when busy
does not stop control!
"""
if self.isBusy():
self.convergence_state.start(self.convergence_interrupt)
def write_settling_time(self, value):
if self.pollInfo:
self.pollInfo.trigger(True)
return value
def write_tolerance(self, value):
if self.pollInfo:
self.pollInfo.trigger(True)
return value