frappy/secop_psi/ips_mercury.py
camea 1a6aa893e4 move persistent_field parameter from magnet.py to ips_magnet.py
'persistent_field' is in principle the same as 'value'.
however, on IPS it might be different, at least it is a seperate
HW parameter
2022-12-19 16:03:44 +01:00

312 lines
12 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# *****************************************************************************
"""oxford instruments mercury IPS power supply"""
import time
from secop.core import Parameter, EnumType, FloatRange, BoolType, IntRange, StringType, Property, BUSY
from secop.lib.enum import Enum
from secop.errors import BadValueError, HardwareError
from secop_psi.magfield import Magfield, SimpleMagfield, Status
from secop_psi.mercury import MercuryChannel, off_on, Mapped
from secop.states import Retry
Action = Enum(hold=0, run_to_set=1, run_to_zero=2, clamped=3)
hold_rtoz_rtos_clmp = Mapped(HOLD=Action.hold, RTOS=Action.run_to_set,
RTOZ=Action.run_to_zero, CLMP=Action.clamped)
CURRENT_CHECK_SIZE = 2
class SimpleField(MercuryChannel, SimpleMagfield):
nunits = Property('number of IPS subunits', IntRange(1, 6), default=1)
action = Parameter('action', EnumType(Action), readonly=False)
setpoint = Parameter('field setpoint', FloatRange(unit='T'), default=0)
voltage = Parameter('leads voltage', FloatRange(unit='V'), default=0)
atob = Parameter('field to amp', FloatRange(0, unit='A/T'), default=0)
working_ramp = Parameter('effective ramp', FloatRange(0, unit='T/min'), default=0)
channel_type = 'PSU'
slave_currents = None
classdict = {}
def __new__(cls, name, logger, cfgdict, srv):
base = cls.__bases__[1]
nunits = cfgdict.get('nunits', 1)
if nunits == 1:
obj = object.__new__(cls)
return obj
classname = cls.__name__ + str(nunits)
newclass = cls.classdict.get(classname)
if not newclass:
# create individual current and voltage parameters dynamically
attrs = {}
for i in range(1, nunits + 1):
attrs['I%d' % i] = Parameter('slave %s current' % i, FloatRange(unit='A'), default=0)
attrs['V%d' % i] = Parameter('slave %s voltage' % i, FloatRange(unit='V'), default=0)
newclass = type(classname, (cls,), attrs)
cls.classdict[classname] = newclass
obj = object.__new__(newclass)
return obj
def initModule(self):
super().initModule()
try:
self.write_action(Action.hold)
except Exception as e:
self.log.error('can not set to hold %r', e)
def read_value(self):
return self.query('PSU:SIG:FLD')
def read_ramp(self):
return self.query('PSU:SIG:RFST')
def write_ramp(self, value):
return self.change('PSU:SIG:RFST', value)
def read_action(self):
return self.query('PSU:ACTN', hold_rtoz_rtos_clmp)
def write_action(self, value):
return self.change('PSU:ACTN', value, hold_rtoz_rtos_clmp)
def read_atob(self):
return self.query('PSU:ATOB')
def read_voltage(self):
return self.query('PSU:SIG:VOLT')
def read_working_ramp(self):
return self.query('PSU:SIG:RFLD')
def read_setpoint(self):
return self.query('PSU:SIG:FSET')
def set_and_go(self, value):
self.setpoint = self.change('PSU:SIG:FSET', value)
assert self.write_action(Action.hold) == Action.hold
assert self.write_action(Action.run_to_set) == Action.run_to_set
def start_ramp_to_target(self, sm):
# if self.action != Action.hold:
# assert self.write_action(Action.hold) == Action.hold
# return Retry
self.set_and_go(sm.target)
sm.try_cnt = 5
return self.ramp_to_target
def ramp_to_target(self, sm):
try:
return super().ramp_to_target(sm)
except HardwareError:
sm.try_cnt -= 1
if sm.try_cnt < 0:
raise
self.set_and_go(sm.target)
return Retry
def final_status(self, *args, **kwds):
self.write_action(Action.hold)
return super().final_status(*args, **kwds)
def on_restart(self, sm):
self.write_action(Action.hold)
return super().on_restart(sm)
class Field(SimpleField, Magfield):
persistent_field = Parameter(
'persistent field', FloatRange(unit='$'), readonly=False)
wait_switch_on = Parameter(
'wait time to ensure switch is on', FloatRange(0, unit='s'), readonly=True, default=60)
wait_switch_off = Parameter(
'wait time to ensure switch is off', FloatRange(0, unit='s'), readonly=True, default=60)
forced_persistent_field = Parameter(
'manual indication that persistent field is bad', BoolType(), readonly=False, default=False)
_field_mismatch = None
__init = True
__switch_fixed_until = 0
def doPoll(self):
super().doPoll()
self.read_current()
def startModule(self, start_events):
# on restart, assume switch is changed long time ago, if not, the mercury
# will complain and this will be handled in start_ramp_to_field
self.switch_on_time = 0
self.switch_off_time = 0
self.switch_heater = self.query('PSU:SIG:SWHT', off_on)
super().startModule(start_events)
def read_value(self):
current = self.query('PSU:SIG:FLD')
pf = self.query('PSU:SIG:PFLD')
if self.__init:
self.__init = False
self.persistent_field = pf
if self.switch_heater == self.switch_heater.on or self._field_mismatch is None:
self.forced_persistent_field = False
self._field_mismatch = False
return current
self._field_mismatch = abs(self.persistent_field - pf) > self.tolerance
return pf
def read_current(self):
if self.slave_currents is None:
self.slave_currents = [[] for _ in range(self.nunits + 1)]
if self.nunits > 1:
for i in range(1, self.nunits + 1):
curri = self.query('DEV:PSU.M%d:PSU:SIG:CURR' % i)
volti = self.query('DEV:PSU.M%d:PSU:SIG:VOLT' % i)
setattr(self, 'I%d' % i, curri)
setattr(self, 'V%d' % i, volti)
self.slave_currents[i].append(curri)
current = self.query('PSU:SIG:CURR')
self.slave_currents[0].append(current)
min_ = min(self.slave_currents[0]) / self.nunits
max_ = max(self.slave_currents[0]) / self.nunits
# keep one element more for the total current (first and last measurement is a total)
self.slave_currents[0] = self.slave_currents[0][-CURRENT_CHECK_SIZE-1:]
for i in range(1, self.nunits + 1):
min_i = min(self.slave_currents[i])
max_i = max(self.slave_currents[i])
if len(self.slave_currents[i]) > CURRENT_CHECK_SIZE:
self.slave_currents[i] = self.slave_currents[i][-CURRENT_CHECK_SIZE:]
if min_i - 0.1 > max_ or min_ > max_i + 0.1: # use an arbitrary 0.1 A tolerance
self.log.warning('individual currents mismatch %r', self.slave_currents)
else:
current = self.query('PSU:SIG:CURR')
if self.atob:
return current / self.atob
return 0
def write_persistent_field(self, value):
if self.forced_persistent_field:
self._field_mismatch = False
return value
raise BadValueError('changing persistent field needs forced_persistent_field=True')
def write_target(self, target):
if self._field_mismatch:
self.forced_persistent_field = True
raise BadValueError('persistent field does not match - set persistent field to guessed value first')
return super().write_target(target)
def read_switch_heater(self):
value = self.query('PSU:SIG:SWHT', off_on)
now = time.time()
if value != self.switch_heater:
if now < self.__switch_fixed_until:
self.log.debug('correct fixed switch time')
# probably switch heater was changed, but IPS reply is not yet updated
if self.switch_heater:
self.switch_on_time = time.time()
else:
self.switch_off_time = time.time()
return self.switch_heater
return value
def read_wait_switch_on(self):
return self.query('PSU:SWONT') * 0.001
def read_wait_switch_off(self):
return self.query('PSU:SWOFT') * 0.001
def write_switch_heater(self, value):
if value == self.read_switch_heater():
self.log.info('switch heater already %r', value)
# we do not want to restart the timer
return value
self.__switch_fixed_until = time.time() + 10
self.log.debug('switch time fixed for 10 sec')
result = self.change('PSU:SIG:SWHT', value, off_on, n_retry=0) # no readback check
return result
def start_ramp_to_field(self, sm):
if abs(self.current - self.persistent_field) <= self.tolerance:
self.log.info('leads %g are already at %g', self.current, self.persistent_field)
return self.ramp_to_field
try:
self.set_and_go(self.persistent_field)
except (HardwareError, AssertionError) as e:
if self.switch_heater:
self.log.warn('switch is already on!')
return self.ramp_to_field
self.log.warn('wait first for switch off current=%g pf=%g %r', self.current, self.persistent_field, e)
sm.after_wait = self.ramp_to_field
return self.wait_for_switch
return self.ramp_to_field
def start_ramp_to_target(self, sm):
sm.try_cnt = 5
try:
self.set_and_go(sm.target)
except (HardwareError, AssertionError) as e:
self.log.warn('switch not yet ready %r', e)
self.status = Status.PREPARING, 'wait for switch on'
sm.after_wait = self.ramp_to_target
return self.wait_for_switch
return self.ramp_to_target
def ramp_to_field(self, sm):
try:
return super().ramp_to_field(sm)
except HardwareError:
sm.try_cnt -= 1
if sm.try_cnt < 0:
raise
self.set_and_go(sm.persistent_field)
return Retry
def wait_for_switch(self, sm):
if not sm.delta(10):
return Retry
try:
self.log.warn('try again')
# try again
self.set_and_go(self.persistent_field)
except (HardwareError, AssertionError) as e:
return Retry
return sm.after_wait
def start_ramp_to_zero(self, sm):
try:
assert self.write_action(Action.hold) == Action.hold
assert self.write_action(Action.run_to_zero) == Action.run_to_zero
except (HardwareError, AssertionError) as e:
self.log.warn('switch not yet ready %r', e)
self.status = Status.PREPARING, 'wait for switch off'
sm.after_wait = self.ramp_to_zero
return self.wait_for_switch
return self.ramp_to_zero
def ramp_to_zero(self, sm):
try:
return super().ramp_to_zero(sm)
except HardwareError:
sm.try_cnt -= 1
if sm.try_cnt < 0:
raise
assert self.write_action(Action.hold) == Action.hold
assert self.write_action(Action.run_to_zero) == Action.run_to_zero
return Retry