frappy/frappy_psi/ppms.py
Markus Zolliker 0d265b9752 make return value 'Done' unneccessary
'Done' was introduced in order to suppress unneccessary
duplicate updates. However, since super calls on access methods are
allowed, it is not nice when such a method returns Done, as this
is not automagically replaced by the current parameter value.
As a consequence:

- using Done is discouraged, but not (yet) removed in all code
- the 'omit_unchanged_within' property is moved from Module to an
  internal Parameter property 'update_unchanged'
- its default is moved from a SEC node property to generalConfig
- the 'update_unchanged' parameter property may be set to
  'never' for parameters where duplicate updates make no sense
- this property might be set to 'always', for measurements, where
  even unchanged values taken from HW should be transmitted

Change-Id: I2847c983ca09c2c4098e402edd08d0c96c3913f4
Reviewed-on: https://forge.frm2.tum.de/review/c/secop/frappy/+/30672
Tested-by: Jenkins Automated Tests <pedersen+jenkins@frm2.tum.de>
Reviewed-by: Markus Zolliker <markus.zolliker@psi.ch>
2023-04-21 16:17:30 +02:00

744 lines
30 KiB
Python

#!/usr/bin/env python
# -*- coding: utf-8 -*-
# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# *****************************************************************************
"""PPMS driver
The PPMS hardware has some special requirements:
- the communication to the hardware happens through windows COM
- all measured data including state are handled by one request/reply pair GETDAT?<mask>
- for each channel, the settings are handled through a single request/reply pair,
needing a mechanism to treat a single parameter change correctly.
Polling of value and status is done commonly for all modules. For each registered module
<module>.update_value_status() is called in order to update their value and status.
"""
import threading
import time
from ast import literal_eval # convert string as comma separated numbers into tuple
from frappy.datatypes import BoolType, EnumType, \
FloatRange, IntRange, StatusType, StringType
from frappy.errors import HardwareError
from frappy.lib import clamp
from frappy.lib.enum import Enum
from frappy.modules import Communicator, \
Drivable, Parameter, Property, Readable
from frappy.io import HasIO
from frappy.rwhandler import CommonReadHandler, CommonWriteHandler
try:
import frappy_psi.ppmswindows as ppmshw
except ImportError:
print('use simulation instead')
import frappy_psi.ppmssim as ppmshw
class Main(Communicator):
"""ppms communicator module"""
pollinterval = Parameter('poll interval', FloatRange(), readonly=False, default=2)
data = Parameter('internal', StringType(), export=True, # export for test only
default="", readonly=True)
class_id = Property('Quantum Design class id', StringType(), export=False)
_channel_names = [
'packed_status', 'temp', 'field', 'position', 'r1', 'i1', 'r2', 'i2',
'r3', 'i3', 'r4', 'i4', 'v1', 'v2', 'digital', 'cur1', 'pow1', 'cur2', 'pow2',
'p', 'u20', 'u21', 'u22', 'ts', 'u24', 'u25', 'u26', 'u27', 'u28', 'u29']
assert len(_channel_names) == 30
_channel_to_index = dict(((channel, i) for i, channel in enumerate(_channel_names)))
_status_bitpos = {'temp': 0, 'field': 4, 'chamber': 8, 'position': 12}
def earlyInit(self):
super().earlyInit()
self.modules = {}
self._ppms_device = ppmshw.QDevice(self.class_id)
self.lock = threading.Lock()
def register(self, other):
self.modules[other.channel] = other
def communicate(self, command):
"""GPIB command"""
with self.lock:
self.comLog('> %s' % command)
reply = self._ppms_device.send(command)
self.comLog("< %s", reply)
return reply
def doPoll(self):
self.read_data()
def read_data(self):
mask = 1 # always get packed_status
for channelname, channel in self.modules.items():
if channel.enabled:
mask |= 1 << self._channel_to_index.get(channelname, 0)
# send, read and convert to floats and ints
data = self.communicate('GETDAT? %d' % mask)
reply = data.split(',')
mask = int(reply.pop(0))
reply.pop(0) # pop timestamp
result = {}
for bitpos, channelname in enumerate(self._channel_names):
if mask & (1 << bitpos):
result[channelname] = float(reply.pop(0))
if 'temp' in result:
result['tv'] = result['temp']
if 'ts' in result:
result['temp'] = result['ts']
packed_status = int(result['packed_status'])
result['chamber'] = None # 'chamber' must be in result for status, but value is ignored
for channelname, channel in self.modules.items():
channel.update_value_status(result.get(channelname, None), packed_status)
return data # return data as string
class PpmsBase(HasIO, Readable):
"""common base for all ppms modules"""
value = Parameter(needscfg=False)
status = Parameter(needscfg=False)
enabled = True # default, if no parameter enable is defined
_last_settings = None # used by several modules
slow_pollfactor = 1
# as this pollinterval affects only the polling of settings
# it would be confusing to export it.
pollinterval = Parameter(export=False)
def initModule(self):
super().initModule()
self.io.register(self)
def doPoll(self):
# polling is done by the main module
# and PPMS does not deliver really more fresh values when polled more often
pass
def update_value_status(self, value, packed_status):
# update value and status
# to be reimplemented for modules looking at packed_status
if not self.enabled:
self.status = (self.Status.DISABLED, 'disabled')
return
if value is None:
self.status = (self.Status.ERROR, 'invalid value')
else:
self.value = value
self.status = (self.Status.IDLE, '')
def comm_write(self, command):
"""write command and check if result is OK"""
reply = self.communicate(command)
if reply != 'OK':
raise HardwareError('bad reply %r to command %r' % (reply, command))
class PpmsDrivable(Drivable, PpmsBase):
pass
class Channel(PpmsBase):
"""channel base class"""
value = Parameter('main value of channels')
enabled = Parameter('is this channel used?', readonly=False,
datatype=BoolType(), default=False)
channel = Property('channel name',
datatype=StringType(), export=False, default='')
no = Property('channel number',
datatype=IntRange(1, 4), export=False)
def earlyInit(self):
super().earlyInit()
if not self.channel:
self.channel = self.name
class UserChannel(Channel):
"""user channel"""
no = Property('channel number',
datatype=IntRange(0, 0), export=False, default=0)
linkenable = Property('name of linked channel for enabling',
datatype=StringType(), export=False, default='')
def write_enabled(self, enabled):
other = self.io.modules.get(self.linkenable, None)
if other:
other.enabled = enabled
return enabled
class DriverChannel(Channel):
"""driver channel"""
current = Parameter('driver current', readonly=False,
datatype=FloatRange(0., 5000., unit='uA'))
powerlimit = Parameter('power limit', readonly=False,
datatype=FloatRange(0., 1000., unit='uW'))
param_names = 'current', 'powerlimit'
@CommonReadHandler(param_names)
def read_params(self):
no, self.current, self.powerlimit = literal_eval(
self.communicate('DRVOUT? %d' % self.no))
if self.no != no:
raise HardwareError('DRVOUT command: channel number in reply does not match')
@CommonWriteHandler(param_names)
def write_params(self, values):
"""write parameters
:param values: a dict like object containing the parameters to be written
"""
self.read_params() # make sure parameters are up to date
self.comm_write('DRVOUT %(no)d,%(current)g,%(powerlimit)g' % values)
self.read_params() # read back
class BridgeChannel(Channel):
"""bridge channel"""
excitation = Parameter('excitation current', readonly=False,
datatype=FloatRange(0.01, 5000., unit='uA'))
powerlimit = Parameter('power limit', readonly=False,
datatype=FloatRange(0.001, 1000., unit='uW'))
dcflag = Parameter('True when excitation is DC (else AC)', readonly=False,
datatype=BoolType())
readingmode = Parameter('reading mode', readonly=False,
datatype=EnumType(standard=0, fast=1, highres=2))
voltagelimit = Parameter('voltage limit', readonly=False,
datatype=FloatRange(0.0001, 100., unit='mV'))
param_names = 'enabled', 'enabled', 'powerlimit', 'dcflag', 'readingmode', 'voltagelimit'
@CommonReadHandler(param_names)
def read_params(self):
no, excitation, powerlimit, self.dcflag, self.readingmode, voltagelimit = literal_eval(
self.communicate('BRIDGE? %d' % self.no))
if self.no != no:
raise HardwareError('DRVOUT command: channel number in reply does not match')
self.enabled = excitation != 0 and powerlimit != 0 and voltagelimit != 0
if excitation:
self.excitation = excitation
if powerlimit:
self.powerlimit = powerlimit
if voltagelimit:
self.voltagelimit = voltagelimit
@CommonWriteHandler(param_names)
def write_params(self, values):
"""write parameters
:param values: a dict like object containing the parameters to be written
"""
self.read_params() # make sure parameters are up to date
if not values['enabled']:
values['excitation'] = 0
values['powerlimit'] = 0
values['voltagelimit'] = 0
self.comm_write('BRIDGE %(no)d,%(enabled)g,%(powerlimit)g,%(dcflag)d,'
'%(readingmode)d,%(voltagelimit)g' % values)
self.read_params() # read back
class Level(PpmsBase):
"""helium level"""
value = Parameter(datatype=FloatRange(unit='%'))
channel = 'level'
def doPoll(self):
self.read_value()
def update_value_status(self, value, packed_status):
pass
# must be a no-op
# when called from Main.read_data, value is always None
# value and status is polled via settings
def read_value(self):
# ignore 'old reading' state of the flag, as this happens only for a short time
return literal_eval(self.communicate('LEVEL?'))[0]
class Chamber(PpmsDrivable):
"""sample chamber handling
value is an Enum, which is redundant with the status text
"""
Status = Drivable.Status
code_table = [
# valuecode, status, statusname, opcode, targetname
(0, Status.IDLE, 'unknown', 10, 'noop'),
(1, Status.IDLE, 'purged_and_sealed', 1, 'purge_and_seal'),
(2, Status.IDLE, 'vented_and_sealed', 2, 'vent_and_seal'),
(3, Status.WARN, 'sealed_unknown', 0, 'seal_immediately'),
(4, Status.BUSY, 'purge_and_seal', None, None),
(5, Status.BUSY, 'vent_and_seal', None, None),
(6, Status.BUSY, 'pumping_down', None, None),
(8, Status.IDLE, 'pumping_continuously', 3, 'pump_continuously'),
(9, Status.IDLE, 'venting_continuously', 4, 'vent_continuously'),
(15, Status.ERROR, 'general_failure', None, None),
]
value_codes = {k: v for v, _, k, _, _ in code_table}
target_codes = {k: v for v, _, _, _, k in code_table if k}
name2opcode = {k: v for _, _, _, v, k in code_table if k}
opcode2name = {v: k for _, _, _, v, k in code_table if k}
status_map = {v: (c, k.replace('_', ' ')) for v, c, k, _, _ in code_table}
value = Parameter(description='chamber state', datatype=EnumType(**value_codes), default=0)
target = Parameter(description='chamber command', datatype=EnumType(**target_codes), default='noop')
channel = 'chamber'
def update_value_status(self, value, packed_status):
status_code = (packed_status >> 8) & 0xf
if status_code in self.status_map:
self.value = status_code
self.status = self.status_map[status_code]
else:
self.value = self.value_map['unknown']
self.status = (self.Status.ERROR, 'unknown status code %d' % status_code)
def read_target(self):
opcode = int(self.communicate('CHAMBER?'))
return self.opcode2name[opcode]
def write_target(self, value):
if value == self.target.noop:
return self.target.noop
opcode = self.name2opcode[self.target.enum(value).name]
assert self.communicate('CHAMBER %d' % opcode) == 'OK'
return self.read_target()
class Temp(PpmsDrivable):
"""temperature"""
Status = Enum(
Drivable.Status,
RAMPING=370,
STABILIZING=380,
)
value = Parameter(datatype=FloatRange(unit='K'))
status = Parameter(datatype=StatusType(Status))
target = Parameter(datatype=FloatRange(1.7, 402.0, unit='K'), needscfg=False)
setpoint = Parameter('intermediate set point',
datatype=FloatRange(1.7, 402.0, unit='K'))
ramp = Parameter('ramping speed', readonly=False, default=0,
datatype=FloatRange(0, 20, unit='K/min'))
workingramp = Parameter('intermediate ramp value',
datatype=FloatRange(0, 20, unit='K/min'), default=0)
approachmode = Parameter('how to approach target!', readonly=False,
datatype=EnumType(fast_settle=0, no_overshoot=1), default=0)
timeout = Parameter('drive timeout, in addition to ramp time', readonly=False,
datatype=FloatRange(0, unit='sec'), default=3600)
general_stop = Property('respect general stop', datatype=BoolType(),
default=True, value=False)
STATUS_MAP = {
1: (Status.IDLE, 'stable at target'),
2: (Status.RAMPING, 'ramping'),
5: (Status.STABILIZING, 'within tolerance'),
6: (Status.STABILIZING, 'outside tolerance'),
7: (Status.STABILIZING, 'filling/emptying reservoir'),
10: (Status.WARN, 'standby'),
13: (Status.WARN, 'control disabled'),
14: (Status.ERROR, 'can not complete'),
15: (Status.ERROR, 'general failure'),
}
channel = 'temp'
_stopped = False
_expected_target_time = 0
_last_change = 0 # 0 means no target change is pending
_last_target = None # last reached target
_cool_deadline = 0
_wait_at10 = False
_ramp_at_limit = False
param_names = 'setpoint', 'workingramp', 'approachmode'
@CommonReadHandler(param_names)
def read_params(self):
settings = literal_eval(self.communicate('TEMP?'))
if settings == self._last_settings:
# update parameters only on change, as 'ramp' and 'approachmode' are
# not always sent to the hardware
return
self.setpoint, self.workingramp, self.approachmode = self._last_settings = settings
if self.setpoint != 10 or not self._wait_at10:
self.log.debug('read back target %g %r' % (self.setpoint, self._wait_at10))
self.target = self.setpoint
if self.workingramp != 2 or not self._ramp_at_limit:
self.log.debug('read back ramp %g %r' % (self.workingramp, self._ramp_at_limit))
self.ramp = self.workingramp
def _write_params(self, setpoint, ramp, approachmode):
wait_at10 = False
ramp_at_limit = False
if self.value > 11:
if setpoint <= 10:
wait_at10 = True
setpoint = 10
elif self.value > setpoint:
if ramp >= 2:
ramp = 2
ramp_at_limit = True
self._wait_at10 = wait_at10
self._ramp_at_limit = ramp_at_limit
self.calc_expected(setpoint, ramp)
self.log.debug(
'change_temp v %r s %r r %r w %r l %r' % (self.value, setpoint, ramp, wait_at10, ramp_at_limit))
self.comm_write('TEMP %g,%g,%d' % (setpoint, ramp, approachmode))
self.read_params()
def update_value_status(self, value, packed_status):
if value is None:
self.status = (self.Status.ERROR, 'invalid value')
return
self.value = value
status_code = packed_status & 0xf
status = self.STATUS_MAP.get(status_code, (self.Status.ERROR, 'unknown status code %d' % status_code))
now = time.time()
if value > 11:
# when starting from T > 50, this will be 15 min.
# when starting from lower T, it will be less
# when ramping with 2 K/min or less, the deadline is now
self._cool_deadline = max(self._cool_deadline, now + min(40, value - 10) * 30) # 30 sec / K
elif self._wait_at10:
if now > self._cool_deadline:
self._wait_at10 = False
self._last_change = now
self._write_params(self.target, self.ramp, self.approachmode)
status = (self.Status.STABILIZING, 'waiting at 10 K')
if self._last_change: # there was a change, which is not yet confirmed by hw
if now > self._last_change + 5:
self._last_change = 0 # give up waiting for busy
elif self.isDriving(status) and status != self._status_before_change:
self.log.debug('time needed to change to busy: %.3g', now - self._last_change)
self._last_change = 0
else:
status = (self.Status.BUSY, 'changed target')
if abs(self.value - self.target) < self.target * 0.01:
self._last_target = self.target
elif self._last_target is None:
self._last_target = self.value
if self._stopped:
# combine 'stopped' with current status text
if status[0] == self.Status.IDLE:
status = (status[0], 'stopped')
else:
status = (status[0], 'stopping (%s)' % status[1])
if self._expected_target_time:
# handle timeout
if self.isDriving(status):
if now > self._expected_target_time + self.timeout:
status = (self.Status.WARN, 'timeout while %s' % status[1])
else:
self._expected_target_time = 0
self.status = status
def write_target(self, target):
self._stopped = False
if abs(self.target - self.value) <= 2e-5 * target and target == self.target:
return None
self._status_before_change = self.status
self.status = (self.Status.BUSY, 'changed target')
self._last_change = time.time()
self._write_params(target, self.ramp, self.approachmode)
self.log.debug('write_target %s' % repr((self.setpoint, target, self._wait_at10)))
return target
def write_approachmode(self, value):
if self.isDriving():
self._write_params(self.setpoint, self.ramp, value)
return self.approachmode
return value # do not execute TEMP command, as this would trigger an unnecessary T change
def write_ramp(self, value):
if self.isDriving():
self._write_params(self.setpoint, value, self.approachmode)
return self.ramp
return value # do not execute TEMP command, as this would trigger an unnecessary T change
def calc_expected(self, target, ramp):
self._expected_target_time = time.time() + abs(target - self.value) * 60.0 / max(0.1, ramp)
def stop(self):
if not self.isDriving():
return
if self.status[0] != self.Status.STABILIZING:
# we are not near target
newtarget = clamp(self._last_target, self.value, self.target)
if newtarget != self.target:
self.log.debug('stop at %s K', newtarget)
self.write_target(newtarget)
self.status = self.status[0], 'stopping (%s)' % self.status[1]
self._stopped = True
class Field(PpmsDrivable):
"""magnetic field"""
Status = Enum(
Drivable.Status,
PREPARED=150,
PREPARING=340,
RAMPING=370,
STABILIZING=380,
FINALIZING=390,
)
value = Parameter(datatype=FloatRange(unit='T'))
status = Parameter(datatype=StatusType(Status))
target = Parameter(datatype=FloatRange(-15, 15, unit='T')) # poll only one parameter
ramp = Parameter('ramping speed', readonly=False,
datatype=FloatRange(0.064, 1.19, unit='T/min'), default=0.19)
approachmode = Parameter('how to approach target', readonly=False,
datatype=EnumType(linear=0, no_overshoot=1, oscillate=2), default=0)
persistentmode = Parameter('what to do after changing field', readonly=False,
datatype=EnumType(persistent=0, driven=1), default=0)
STATUS_MAP = {
1: (Status.IDLE, 'persistent mode'),
2: (Status.PREPARING, 'switch warming'),
3: (Status.FINALIZING, 'switch cooling'),
4: (Status.IDLE, 'driven stable'),
5: (Status.STABILIZING, 'driven final'),
6: (Status.RAMPING, 'charging'),
7: (Status.RAMPING, 'discharging'),
8: (Status.ERROR, 'current error'),
11: (Status.ERROR, 'probably quenched'),
15: (Status.ERROR, 'general failure'),
}
channel = 'field'
_stopped = False
_last_target = None # last reached target
_last_change = 0 # means no target change is pending
param_names = 'target', 'ramp', 'approachmode', 'persistentmode'
@CommonReadHandler(param_names)
def read_params(self):
settings = literal_eval(self.communicate('FIELD?'))
# print('last_settings tt %s' % repr(self._last_settings))
if settings == self._last_settings:
# we update parameters only on change, as 'ramp' and 'approachmode' are
# not always sent to the hardware
return
target, ramp, self.approachmode, self.persistentmode = self._last_settings = settings
self.target = round(target * 1e-4, 7)
self.ramp = ramp * 6e-3
def _write_params(self, target, ramp, approachmode, persistentmode):
self.comm_write('FIELD %g,%g,%d,%d' % (
target * 1e+4, ramp / 6e-3, approachmode, persistentmode))
self.read_params()
def update_value_status(self, value, packed_status):
if value is None:
self.status = (self.Status.ERROR, 'invalid value')
return
self.value = round(value * 1e-4, 7)
status_code = (packed_status >> 4) & 0xf
status = self.STATUS_MAP.get(status_code, (self.Status.ERROR, 'unknown status code %d' % status_code))
now = time.time()
if self._last_change: # there was a change, which is not yet confirmed by hw
if status_code == 1: # persistent mode
# leads are ramping (ppms has no extra status code for this!)
if now < self._last_change + 30:
status = (self.Status.PREPARING, 'ramping leads')
else:
status = (self.Status.WARN, 'timeout when ramping leads')
elif now > self._last_change + 5:
self._last_change = 0 # give up waiting for driving
elif self.isDriving(status) and status != self._status_before_change:
self._last_change = 0
self.log.debug('time needed to change to busy: %.3g', now - self._last_change)
else:
status = (self.Status.BUSY, 'changed target')
if abs(self.target - self.value) <= 1e-4:
self._last_target = self.target
elif self._last_target is None:
self._last_target = self.value
if self._stopped:
# combine 'stopped' with current status text
if status[0] == self.Status.IDLE:
status = (status[0], 'stopped')
else:
status = (status[0], 'stopping (%s)' % status[1])
self.status = status
def write_target(self, target):
if abs(self.target - self.value) <= 2e-5 and target == self.target:
self.target = target
return None # avoid ramping leads
self._status_before_change = self.status
self._stopped = False
self._last_change = time.time()
self.status = (self.Status.BUSY, 'changed target')
self._write_params(target, self.ramp, self.approachmode, self.persistentmode)
return self.target
def write_persistentmode(self, mode):
if abs(self.target - self.value) <= 2e-5 and mode == self.persistentmode:
self.persistentmode = mode
return None # avoid ramping leads
self._last_change = time.time()
self._status_before_change = self.status
self._stopped = False
self.status = (self.Status.BUSY, 'changed persistent mode')
self._write_params(self.target, self.ramp, self.approachmode, mode)
return self.persistentmode
def write_ramp(self, value):
if self.isDriving():
self._write_params(self.target, value, self.approachmode, self.persistentmode)
return self.ramp
return value # do not execute FIELD command, as this would trigger a ramp up of leads current
def write_approachmode(self, value):
if self.isDriving():
self._write_params(self.target, self.ramp, value, self.persistentmode)
# do not execute FIELD command, as this would trigger a ramp up of leads current
def stop(self):
if not self.isDriving():
return
newtarget = clamp(self._last_target, self.value, self.target)
if newtarget != self.target:
self.log.debug('stop at %s T', newtarget)
self.write_target(newtarget)
self.status = (self.status[0], 'stopping (%s)' % self.status[1])
self._stopped = True
class Position(PpmsDrivable):
"""rotator position"""
Status = Drivable.Status
value = Parameter(datatype=FloatRange(unit='deg'))
target = Parameter(datatype=FloatRange(-720., 720., unit='deg'))
enabled = Parameter('is this channel used?', readonly=False,
datatype=BoolType(), default=True)
speed = Parameter('motor speed', readonly=False, default=12,
datatype=FloatRange(0.8, 12, unit='deg/sec'))
STATUS_MAP = {
1: (Status.IDLE, 'at target'),
5: (Status.BUSY, 'moving'),
8: (Status.IDLE, 'at limit'),
9: (Status.IDLE, 'at index'),
15: (Status.ERROR, 'general failure'),
}
channel = 'position'
_stopped = False
_last_target = None # last reached target
_last_change = 0
_within_target = 0 # time since we are within target
param_names = 'target', 'speed'
@CommonReadHandler(param_names)
def read_params(self):
settings = literal_eval(self.communicate('MOVE?'))
if settings == self._last_settings:
# we update parameters only on change, as 'speed' is
# not always sent to the hardware
return
self.target, _, speed = self._last_settings = settings
self.speed = (15 - speed) * 0.8
def _write_params(self, target, speed):
speed = int(round(min(14, max(0, 15 - speed / 0.8)), 0))
self.comm_write('MOVE %g,%d,%d' % (target, 0, speed))
return self.read_params()
def update_value_status(self, value, packed_status):
if not self.enabled:
self.status = (self.Status.DISABLED, 'disabled')
return
if value is None:
self.status = (self.Status.ERROR, 'invalid value')
return
self.value = value
status_code = (packed_status >> 12) & 0xf
status = self.STATUS_MAP.get(status_code, (self.Status.ERROR, 'unknown status code %d' % status_code))
if self._last_change: # there was a change, which is not yet confirmed by hw
now = time.time()
if now > self._last_change + 5:
self._last_change = 0 # give up waiting for busy
elif self.isDriving(status) and status != self._status_before_change:
self.log.debug('time needed to change to busy: %.3g', now - self._last_change)
self._last_change = 0
else:
status = (self.Status.BUSY, 'changed target')
# BUSY can not reliably be determined from the status code, we have to do it on our own
if abs(value - self.target) < 0.1:
self._last_target = self.target
if not self._within_target:
self._within_target = time.time()
if time.time() > self._within_target + 1:
if status[0] != self.Status.IDLE:
status = (self.Status.IDLE, status[1])
elif status[0] != self.Status.BUSY:
status = (self.Status.BUSY, status[1])
if self._stopped:
# combine 'stopped' with current status text
if status[0] == self.Status.IDLE:
status = (status[0], 'stopped')
else:
status = (status[0], 'stopping (%s)' % status[1])
self.status = status
def write_target(self, target):
self._stopped = False
self._last_change = 0
self._status_before_change = self.status
self.status = (self.Status.BUSY, 'changed target')
self._write_params(target, self.speed)
return self.target
def write_speed(self, value):
if self.isDriving():
self._write_params(self.target, value)
return self.speed
return value # do not execute MOVE command, as this would trigger an unnecessary move
def stop(self):
if not self.isDriving():
return
newtarget = clamp(self._last_target, self.value, self.target)
if newtarget != self.target:
self.log.debug('stop at %s T', newtarget)
self.write_target(newtarget)
self.status = (self.status[0], 'stopping (%s)' % self.status[1])
self._stopped = True