#!/usr/bin/env python # -*- coding: utf-8 -*- # ***************************************************************************** # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Markus Zolliker # ***************************************************************************** """PPMS driver The PPMS hardware has some special requirements: - the communication to the hardware happens through windows COM - all measured data including state are handled by one request/reply pair GETDAT? - for each channel, the settings are handled through a single request/reply pair, needing a mechanism to treat a single parameter change correctly. Polling of value and status is done commonly for all modules. For each registered module .update_value_status() is called in order to update their value and StatusType. """ import threading import time from ast import literal_eval # convert string as comma separated numbers into tuple from frappy.datatypes import BoolType, EnumType, \ FloatRange, IntRange, StatusType, StringType from frappy.errors import HardwareError from frappy.lib import clamp from frappy.modules import Communicator, \ Drivable, Parameter, Property, Readable from frappy.io import HasIO from frappy.rwhandler import CommonReadHandler, CommonWriteHandler try: import frappy_psi.ppmswindows as ppmshw except ImportError: print('use simulation instead') import frappy_psi.ppmssim as ppmshw class Main(Communicator): """ppms communicator module""" pollinterval = Parameter('poll interval', FloatRange(), readonly=False, default=2) data = Parameter('internal', StringType(), export=True, # export for test only default="", readonly=True) class_id = Property('Quantum Design class id', StringType(), export=False) _channel_names = [ 'packed_status', 'temp', 'field', 'position', 'r1', 'i1', 'r2', 'i2', 'r3', 'i3', 'r4', 'i4', 'v1', 'v2', 'digital', 'cur1', 'pow1', 'cur2', 'pow2', 'p', 'u20', 'u21', 'u22', 'ts', 'u24', 'u25', 'u26', 'u27', 'u28', 'u29'] assert len(_channel_names) == 30 _channel_to_index = dict(((channel, i) for i, channel in enumerate(_channel_names))) _status_bitpos = {'temp': 0, 'field': 4, 'chamber': 8, 'position': 12} def earlyInit(self): super().earlyInit() self.modules = {} self._ppms_device = ppmshw.QDevice(self.class_id) self.lock = threading.Lock() def register(self, other): self.modules[other.channel] = other def communicate(self, command): """GPIB command""" with self.lock: self.comLog(f'> {command}') reply = self._ppms_device.send(command) self.comLog("< %s", reply) return reply def doPoll(self): self.read_data() def read_data(self): mask = 1 # always get packed_status for channelname, channel in self.modules.items(): if channel.enabled: mask |= 1 << self._channel_to_index.get(channelname, 0) # send, read and convert to floats and ints data = self.communicate(f'GETDAT? {mask}') reply = data.split(',') mask = int(reply.pop(0)) reply.pop(0) # pop timestamp result = {} for bitpos, channelname in enumerate(self._channel_names): if mask & (1 << bitpos): result[channelname] = float(reply.pop(0)) if 'temp' in result: result['tv'] = result['temp'] if 'ts' in result: result['temp'] = result['ts'] packed_status = int(result['packed_status']) result['chamber'] = None # 'chamber' must be in result for status, but value is ignored for channelname, channel in self.modules.items(): channel.update_value_status(result.get(channelname, None), packed_status) return data # return data as string class PpmsBase(HasIO, Readable): """common base for all ppms modules""" value = Parameter(needscfg=False) status = Parameter(datatype=StatusType(Readable, 'DISABLED'), needscfg=False) enabled = True # default, if no parameter enable is defined _last_settings = None # used by several modules slow_pollfactor = 1 # as this pollinterval affects only the polling of settings # it would be confusing to export it. pollinterval = Parameter(export=False) def initModule(self): super().initModule() self.io.register(self) def doPoll(self): # polling is done by the main module # and PPMS does not deliver really more fresh values when polled more often pass def update_value_status(self, value, packed_status): # update value and status # to be reimplemented for modules looking at packed_status if not self.enabled: self.status = (StatusType.DISABLED, 'disabled') return if value is None: self.status = (StatusType.ERROR, 'invalid value') else: self.value = value self.status = (StatusType.IDLE, '') def comm_write(self, command): """write command and check if result is OK""" reply = self.communicate(command) if reply != 'OK': raise HardwareError(f'bad reply {reply!r} to command {command!r}') class PpmsDrivable(Drivable, PpmsBase): pass class Channel(PpmsBase): """channel base class""" value = Parameter('main value of channels') enabled = Parameter('is this channel used?', readonly=False, datatype=BoolType(), default=False) channel = Property('channel name', datatype=StringType(), export=False, default='') no = Property('channel number', datatype=IntRange(1, 4), export=False) def earlyInit(self): super().earlyInit() if not self.channel: self.channel = self.name class UserChannel(Channel): """user channel""" no = Property('channel number', datatype=IntRange(0, 0), export=False, default=0) linkenable = Property('name of linked channel for enabling', datatype=StringType(), export=False, default='') def write_enabled(self, enabled): other = self.io.modules.get(self.linkenable, None) if other: other.enabled = enabled return enabled class DriverChannel(Channel): """driver channel""" current = Parameter('driver current', readonly=False, datatype=FloatRange(0., 5000., unit='uA')) powerlimit = Parameter('power limit', readonly=False, datatype=FloatRange(0., 1000., unit='uW')) param_names = 'current', 'powerlimit' @CommonReadHandler(param_names) def read_params(self): no, self.current, self.powerlimit = literal_eval( self.communicate(f'DRVOUT? {self.no}')) if self.no != no: raise HardwareError('DRVOUT command: channel number in reply does not match') @CommonWriteHandler(param_names) def write_params(self, values): """write parameters :param values: a dict like object containing the parameters to be written """ self.read_params() # make sure parameters are up to date self.comm_write('DRVOUT {no:d},{current:g},{powerlimit:g}'.format_map(values)) self.read_params() # read back class BridgeChannel(Channel): """bridge channel""" excitation = Parameter('excitation current', readonly=False, datatype=FloatRange(0.01, 5000., unit='uA')) powerlimit = Parameter('power limit', readonly=False, datatype=FloatRange(0.001, 1000., unit='uW')) dcflag = Parameter('True when excitation is DC (else AC)', readonly=False, datatype=BoolType()) readingmode = Parameter('reading mode', readonly=False, datatype=EnumType(standard=0, fast=1, highres=2)) voltagelimit = Parameter('voltage limit', readonly=False, datatype=FloatRange(0.0001, 100., unit='mV')) param_names = 'enabled', 'enabled', 'powerlimit', 'dcflag', 'readingmode', 'voltagelimit' @CommonReadHandler(param_names) def read_params(self): no, excitation, powerlimit, self.dcflag, self.readingmode, voltagelimit = literal_eval( self.communicate(f'BRIDGE? {self.no}')) if self.no != no: raise HardwareError('DRVOUT command: channel number in reply does not match') self.enabled = excitation != 0 and powerlimit != 0 and voltagelimit != 0 if excitation: self.excitation = excitation if powerlimit: self.powerlimit = powerlimit if voltagelimit: self.voltagelimit = voltagelimit @CommonWriteHandler(param_names) def write_params(self, values): """write parameters :param values: a dict like object containing the parameters to be written """ self.read_params() # make sure parameters are up to date if not values['enabled']: values['excitation'] = 0 values['powerlimit'] = 0 values['voltagelimit'] = 0 self.comm_write('BRIDGE {no:d},{enabled:d},{powerlimit:g},{dcflag:d},' '{readingmode:d},{voltagelimit:g}'.format_map(values)) self.read_params() # read back class Level(PpmsBase): """helium level""" value = Parameter(datatype=FloatRange(unit='%')) channel = 'level' def doPoll(self): self.read_value() def update_value_status(self, value, packed_status): pass # must be a no-op # when called from Main.read_data, value is always None # value and status is polled via settings def read_value(self): # ignore 'old reading' state of the flag, as this happens only for a short time return literal_eval(self.communicate('LEVEL?'))[0] class Chamber(PpmsDrivable): """sample chamber handling value is an Enum, which is redundant with the status text """ code_table = [ # valuecode, status, statusname, opcode, targetname (0, StatusType.IDLE, 'unknown', 10, 'noop'), (1, StatusType.IDLE, 'purged_and_sealed', 1, 'purge_and_seal'), (2, StatusType.IDLE, 'vented_and_sealed', 2, 'vent_and_seal'), (3, StatusType.WARN, 'sealed_unknown', 0, 'seal_immediately'), (4, StatusType.BUSY, 'purge_and_seal', None, None), (5, StatusType.BUSY, 'vent_and_seal', None, None), (6, StatusType.BUSY, 'pumping_down', None, None), (8, StatusType.IDLE, 'pumping_continuously', 3, 'pump_continuously'), (9, StatusType.IDLE, 'venting_continuously', 4, 'vent_continuously'), (15, StatusType.ERROR, 'general_failure', None, None), ] value_codes = {k: v for v, _, k, _, _ in code_table} target_codes = {k: v for v, _, _, _, k in code_table if k} name2opcode = {k: v for _, _, _, v, k in code_table if k} opcode2name = {v: k for _, _, _, v, k in code_table if k} status_map = {v: (c, k.replace('_', ' ')) for v, c, k, _, _ in code_table} value = Parameter(description='chamber state', datatype=EnumType(**value_codes), default=0) target = Parameter(description='chamber command', datatype=EnumType(**target_codes), default='noop') channel = 'chamber' def update_value_status(self, value, packed_status): status_code = (packed_status >> 8) & 0xf if status_code in self.status_map: self.value = status_code self.status = self.status_map[status_code] else: self.value = self.value_map['unknown'] self.status = (StatusType.ERROR, f'unknown status code {status_code}') def read_target(self): opcode = int(self.communicate('CHAMBER?')) return self.opcode2name[opcode] def write_target(self, value): if value == self.target.noop: return self.target.noop opcode = self.name2opcode[self.target.enum(value).name] assert self.communicate(f'CHAMBER {opcode}') == 'OK' return self.read_target() class Temp(PpmsDrivable): """temperature""" value = Parameter(datatype=FloatRange(unit='K')) status = Parameter(datatype=StatusType(Drivable, 'RAMPING', 'STABILIZING')) target = Parameter(datatype=FloatRange(1.7, 402.0, unit='K'), needscfg=False) setpoint = Parameter('intermediate set point', datatype=FloatRange(1.7, 402.0, unit='K')) ramp = Parameter('ramping speed', readonly=False, default=0, datatype=FloatRange(0, 20, unit='K/min')) workingramp = Parameter('intermediate ramp value', datatype=FloatRange(0, 20, unit='K/min'), default=0) approachmode = Parameter('how to approach target!', readonly=False, datatype=EnumType(fast_settle=0, no_overshoot=1), default=0) timeout = Parameter('drive timeout, in addition to ramp time', readonly=False, datatype=FloatRange(0, unit='sec'), default=3600) general_stop = Property('respect general stop', datatype=BoolType(), default=True, value=False) STATUS_MAP = { 1: (StatusType.IDLE, 'stable at target'), 2: (StatusType.RAMPING, 'ramping'), 5: (StatusType.STABILIZING, 'within tolerance'), 6: (StatusType.STABILIZING, 'outside tolerance'), 7: (StatusType.STABILIZING, 'filling/emptying reservoir'), 10: (StatusType.WARN, 'standby'), 13: (StatusType.WARN, 'control disabled'), 14: (StatusType.ERROR, 'can not complete'), 15: (StatusType.ERROR, 'general failure'), } channel = 'temp' _stopped = False _expected_target_time = 0 _last_change = 0 # 0 means no target change is pending _last_target = None # last reached target _cool_deadline = 0 _wait_at10 = False _ramp_at_limit = False param_names = 'setpoint', 'workingramp', 'approachmode' @CommonReadHandler(param_names) def read_params(self): settings = literal_eval(self.communicate('TEMP?')) if settings == self._last_settings: # update parameters only on change, as 'ramp' and 'approachmode' are # not always sent to the hardware return self.setpoint, self.workingramp, self.approachmode = self._last_settings = settings if self.setpoint != 10 or not self._wait_at10: self.log.debug('read back target %g %r', self.setpoint, self._wait_at10) self.target = self.setpoint if self.workingramp != 2 or not self._ramp_at_limit: self.log.debug('read back ramp %g %r', self.workingramp, self._ramp_at_limit) self.ramp = self.workingramp def _write_params(self, setpoint, ramp, approachmode): wait_at10 = False ramp_at_limit = False if self.value > 11: if setpoint <= 10: wait_at10 = True setpoint = 10 elif self.value > setpoint: if ramp >= 2: ramp = 2 ramp_at_limit = True self._wait_at10 = wait_at10 self._ramp_at_limit = ramp_at_limit self.calc_expected(setpoint, ramp) self.log.debug( 'change_temp v %r s %r r %r w %r l %r', self.value, setpoint, ramp, wait_at10, ramp_at_limit) self.comm_write(f'TEMP {setpoint:g},{ramp:g},{int(approachmode)}') self.read_params() def update_value_status(self, value, packed_status): if value is None: self.status = (StatusType.ERROR, 'invalid value') return self.value = value status_code = packed_status & 0xf status = self.STATUS_MAP.get(status_code, (StatusType.ERROR, f'unknown status code {status_code}')) now = time.time() if value > 11: # when starting from T > 50, this will be 15 min. # when starting from lower T, it will be less # when ramping with 2 K/min or less, the deadline is now self._cool_deadline = max(self._cool_deadline, now + min(40, value - 10) * 30) # 30 sec / K elif self._wait_at10: if now > self._cool_deadline: self._wait_at10 = False self._last_change = now self._write_params(self.target, self.ramp, self.approachmode) status = (StatusType.STABILIZING, 'waiting at 10 K') if self._last_change: # there was a change, which is not yet confirmed by hw if now > self._last_change + 5: self._last_change = 0 # give up waiting for busy elif self.isDriving(status) and status != self._status_before_change: self.log.debug('time needed to change to busy: %.3g', now - self._last_change) self._last_change = 0 else: status = (StatusType.BUSY, 'changed target') if abs(self.value - self.target) < self.target * 0.01: self._last_target = self.target elif self._last_target is None: self._last_target = self.value if self._stopped: # combine 'stopped' with current status text if status[0] == StatusType.IDLE: status = (status[0], 'stopped') else: status = (status[0], f'stopping ({status[1]})') if self._expected_target_time: # handle timeout if self.isDriving(status): if now > self._expected_target_time + self.timeout: status = (StatusType.WARN, f'timeout while {status[1]}') else: self._expected_target_time = 0 self.status = status def write_target(self, target): self._stopped = False if abs(self.target - self.value) <= 2e-5 * target and target == self.target: return None self._status_before_change = self.status self.status = (StatusType.BUSY, 'changed target') self._last_change = time.time() self._write_params(target, self.ramp, self.approachmode) self.log.debug('write_target %s', repr((self.setpoint, target, self._wait_at10))) return target def write_approachmode(self, value): if self.isDriving(): self._write_params(self.setpoint, self.ramp, value) return self.approachmode return value # do not execute TEMP command, as this would trigger an unnecessary T change def write_ramp(self, value): if self.isDriving(): self._write_params(self.setpoint, value, self.approachmode) return self.ramp return value # do not execute TEMP command, as this would trigger an unnecessary T change def calc_expected(self, target, ramp): self._expected_target_time = time.time() + abs(target - self.value) * 60.0 / max(0.1, ramp) def stop(self): if not self.isDriving(): return if self.status[0] != StatusType.STABILIZING: # we are not near target newtarget = clamp(self._last_target, self.value, self.target) if newtarget != self.target: self.log.debug('stop at %s K', newtarget) self.write_target(newtarget) self.status = self.status[0], f'stopping ({self.status[1]})' self._stopped = True class Field(PpmsDrivable): """magnetic field""" value = Parameter(datatype=FloatRange(unit='T')) status = Parameter(datatype=StatusType(Drivable, 'PREPARED', 'PREPARING', 'RAMPING', 'STABILIZING', 'FINALIZING')) target = Parameter(datatype=FloatRange(-15, 15, unit='T')) # poll only one parameter ramp = Parameter('ramping speed', readonly=False, datatype=FloatRange(0.064, 1.19, unit='T/min'), default=0.19) approachmode = Parameter('how to approach target', readonly=False, datatype=EnumType(linear=0, no_overshoot=1, oscillate=2), default=0) persistentmode = Parameter('what to do after changing field', readonly=False, datatype=EnumType(persistent=0, driven=1), default=0) STATUS_MAP = { 1: (StatusType.IDLE, 'persistent mode'), 2: (StatusType.PREPARING, 'switch warming'), 3: (StatusType.FINALIZING, 'switch cooling'), 4: (StatusType.IDLE, 'driven stable'), 5: (StatusType.STABILIZING, 'driven final'), 6: (StatusType.RAMPING, 'charging'), 7: (StatusType.RAMPING, 'discharging'), 8: (StatusType.ERROR, 'current error'), 11: (StatusType.ERROR, 'probably quenched'), 15: (StatusType.ERROR, 'general failure'), } channel = 'field' _stopped = False _last_target = None # last reached target _last_change = 0 # means no target change is pending param_names = 'target', 'ramp', 'approachmode', 'persistentmode' @CommonReadHandler(param_names) def read_params(self): settings = literal_eval(self.communicate('FIELD?')) # print('last_settings tt %s' % repr(self._last_settings)) if settings == self._last_settings: # we update parameters only on change, as 'ramp' and 'approachmode' are # not always sent to the hardware return target, ramp, self.approachmode, self.persistentmode = self._last_settings = settings self.target = round(target * 1e-4, 7) self.ramp = ramp * 6e-3 def _write_params(self, target, ramp, approachmode, persistentmode): self.comm_write(f'FIELD {target * 10000.0:g},{ramp / 0.006:g},{int(approachmode)},{int(persistentmode)}') self.read_params() def update_value_status(self, value, packed_status): if value is None: self.status = (StatusType.ERROR, 'invalid value') return self.value = round(value * 1e-4, 7) status_code = (packed_status >> 4) & 0xf status = self.STATUS_MAP.get(status_code, (StatusType.ERROR, f'unknown status code {status_code}')) now = time.time() if self._last_change: # there was a change, which is not yet confirmed by hw if status_code == 1: # persistent mode # leads are ramping (ppms has no extra status code for this!) if now < self._last_change + 30: status = (StatusType.PREPARING, 'ramping leads') else: status = (StatusType.WARN, 'timeout when ramping leads') elif now > self._last_change + 5: self._last_change = 0 # give up waiting for driving elif self.isDriving(status) and status != self._status_before_change: self._last_change = 0 self.log.debug('time needed to change to busy: %.3g', now - self._last_change) else: status = (StatusType.BUSY, 'changed target') if abs(self.target - self.value) <= 1e-4: self._last_target = self.target elif self._last_target is None: self._last_target = self.value if self._stopped: # combine 'stopped' with current status text if status[0] == StatusType.IDLE: status = (status[0], 'stopped') else: status = (status[0], f'stopping ({status[1]})') self.status = status def write_target(self, target): if abs(self.target - self.value) <= 2e-5 and target == self.target: self.target = target return None # avoid ramping leads self._status_before_change = self.status self._stopped = False self._last_change = time.time() self.status = (StatusType.BUSY, 'changed target') self._write_params(target, self.ramp, self.approachmode, self.persistentmode) return self.target def write_persistentmode(self, mode): if abs(self.target - self.value) <= 2e-5 and mode == self.persistentmode: self.persistentmode = mode return None # avoid ramping leads self._last_change = time.time() self._status_before_change = self.status self._stopped = False self.status = (StatusType.BUSY, 'changed persistent mode') self._write_params(self.target, self.ramp, self.approachmode, mode) return self.persistentmode def write_ramp(self, value): if self.isDriving(): self._write_params(self.target, value, self.approachmode, self.persistentmode) return self.ramp return value # do not execute FIELD command, as this would trigger a ramp up of leads current def write_approachmode(self, value): if self.isDriving(): self._write_params(self.target, self.ramp, value, self.persistentmode) # do not execute FIELD command, as this would trigger a ramp up of leads current def stop(self): if not self.isDriving(): return newtarget = clamp(self._last_target, self.value, self.target) if newtarget != self.target: self.log.debug('stop at %s T', newtarget) self.write_target(newtarget) self.status = (self.status[0], f'stopping ({self.status[1]})') self._stopped = True class Position(PpmsDrivable): """rotator position""" value = Parameter(datatype=FloatRange(unit='deg')) target = Parameter(datatype=FloatRange(-720., 720., unit='deg')) enabled = Parameter('is this channel used?', readonly=False, datatype=BoolType(), default=True) speed = Parameter('motor speed', readonly=False, default=12, datatype=FloatRange(0.8, 12, unit='deg/sec')) STATUS_MAP = { 1: (StatusType.IDLE, 'at target'), 5: (StatusType.BUSY, 'moving'), 8: (StatusType.IDLE, 'at limit'), 9: (StatusType.IDLE, 'at index'), 15: (StatusType.ERROR, 'general failure'), } channel = 'position' _stopped = False _last_target = None # last reached target _last_change = 0 _within_target = 0 # time since we are within target param_names = 'target', 'speed' @CommonReadHandler(param_names) def read_params(self): settings = literal_eval(self.communicate('MOVE?')) if settings == self._last_settings: # we update parameters only on change, as 'speed' is # not always sent to the hardware return self.target, _, speed = self._last_settings = settings self.speed = (15 - speed) * 0.8 def _write_params(self, target, speed): speed = int(round(min(14, max(0, 15 - speed / 0.8)), 0)) self.comm_write(f'MOVE {target:g},{0},{speed}') return self.read_params() def update_value_status(self, value, packed_status): if not self.enabled: self.status = (StatusType.DISABLED, 'disabled') return if value is None: self.status = (StatusType.ERROR, 'invalid value') return self.value = value status_code = (packed_status >> 12) & 0xf status = self.STATUS_MAP.get(status_code, (StatusType.ERROR, f'unknown status code {status_code}')) if self._last_change: # there was a change, which is not yet confirmed by hw now = time.time() if now > self._last_change + 5: self._last_change = 0 # give up waiting for busy elif self.isDriving(status) and status != self._status_before_change: self.log.debug('time needed to change to busy: %.3g', now - self._last_change) self._last_change = 0 else: status = (StatusType.BUSY, 'changed target') # BUSY can not reliably be determined from the status code, we have to do it on our own if abs(value - self.target) < 0.1: self._last_target = self.target if not self._within_target: self._within_target = time.time() if time.time() > self._within_target + 1: if status[0] != StatusType.IDLE: status = (StatusType.IDLE, status[1]) elif status[0] != StatusType.BUSY: status = (StatusType.BUSY, status[1]) if self._stopped: # combine 'stopped' with current status text if status[0] == StatusType.IDLE: status = (status[0], 'stopped') else: status = (status[0], f'stopping ({status[1]})') self.status = status def write_target(self, target): self._stopped = False self._last_change = 0 self._status_before_change = self.status self.status = (StatusType.BUSY, 'changed target') self._write_params(target, self.speed) return self.target def write_speed(self, value): if self.isDriving(): self._write_params(self.target, value) return self.speed return value # do not execute MOVE command, as this would trigger an unnecessary move def stop(self): if not self.isDriving(): return newtarget = clamp(self._last_target, self.value, self.target) if newtarget != self.target: self.log.debug('stop at %s T', newtarget) self.write_target(newtarget) self.status = (self.status[0], f'stopping ({self.status[1]})') self._stopped = True