# -*- coding: utf-8 -*- # ***************************************************************************** # # This program is free software; you can redistribute it and/or modify it under # the terms of the GNU General Public License as published by the Free Software # Foundation; either version 2 of the License, or (at your option) any later # version. # # This program is distributed in the hope that it will be useful, but WITHOUT # ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS # FOR A PARTICULAR PURPOSE. See the GNU General Public License for more # details. # # You should have received a copy of the GNU General Public License along with # this program; if not, write to the Free Software Foundation, Inc., # 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA # # Module authors: # Markus Zolliker # # ***************************************************************************** from secop.core import Parameter, FloatRange, BUSY, IDLE, WARN from secop.lib.statemachine import StateMachine, Retry, Stop class HasConvergence: """mixin for convergence checks Implementation based on tolerance, settling time and timeout. The algorithm does its best to support changes of these parameters on the fly. However, the full history is not considered, which means for example that the spent time inside tolerance stored already is not altered when changing tolerance. """ tolerance = Parameter('absolute tolerance', FloatRange(0, unit='$'), readonly=False, default=0) settling_time = Parameter( '''settling time total amount of time the value has to be within tolerance before switching to idle. ''', FloatRange(0, unit='sec'), readonly=False, default=60) timeout = Parameter( '''timeout timeout = 0: disabled, else: A timeout event happens, when the difference abs( - ) drags behind the expected difference for longer than . The expected difference is determined by parameters 'workingramp' or 'ramp'. If ramp is not available, an exponential decay of the difference with as time constant is expected. As soon as the value is the first time within tolerance, the timeout criterium is changed: then the timeout event happens after this time + + . ''', FloatRange(0, unit='sec'), readonly=False, default=3600) status = Parameter('status determined from convergence checks', default=(IDLE, '')) convergence_state = None def earlyInit(self): super().earlyInit() self.convergence_state = StateMachine(threaded=False, logger=self.log, cleanup=self.cleanup, spent_inside=0) def cleanup(self, state): state.default_cleanup(state) if state.stopped: if state.stopped is Stop: # and not Restart self.status = WARN, 'stopped' else: self.status = WARN, repr(state.last_error) def doPoll(self): super().doPoll() state = self.convergence_state state.cycle() def get_min_slope(self, dif): slope = getattr(self, 'workingramp', 0) or getattr(self, 'ramp', 0) if slope or not self.timeout: return slope return dif / self.timeout # assume exponential decay of dif, with time constant def get_dif_tol(self): value = self.read_value() tol = self.tolerance if not tol: tol = 0.01 * max(abs(self.target), abs(value)) dif = abs(self.target - value) return dif, tol def start_state(self): """to be called from write_target""" self.convergence_state.start(self.state_approach) def interrupt_state(self): """to be called from stop""" self.convergence_state.start(self.state_instable) def state_approach(self, state): """approaching, checking progress (busy)""" state.spent_inside = 0 dif, tol = self.get_dif_tol() if dif < tol: state.timeout_base = state.now return self.state_inside if not self.timeout: return Retry() if state.init: state.timeout_base = state.now state.dif_crit = dif # criterium for resetting timeout base self.status = BUSY, 'approaching' state.dif_crit -= self.get_min_slope(dif) * state.delta() if dif < state.dif_crit: # progress is good: reset timeout base state.timeout_base = state.now elif state.now > state.timeout_base + self.timeout: self.status = WARN, 'convergence timeout' return self.state_instable return Retry() def state_inside(self, state): """inside tolerance, still busy""" dif, tol = self.get_dif_tol() if dif > tol: return self.state_outside state.spent_inside += state.delta() if state.spent_inside > self.settling_time: self.status = IDLE, 'reached target' return self.state_stable if state.init: self.status = BUSY, 'inside tolerance' return Retry() def state_outside(self, state): """temporarely outside tolerance, busy""" dif, tol = self.get_dif_tol() if dif < tol: return self.state_inside if state.now > state.timeout_base + self.settling_time + self.timeout: self.status = WARN, 'settling timeout' return self.state_instable if state.init: self.status = BUSY, 'outside tolerance' # do not reset the settling time on occasional outliers, count backwards instead state.spent_inside = max(0.0, state.spent_inside - state.delta()) return Retry() def state_stable(self, state): """stable, after settling_time spent within tolerance, idle""" dif, tol = self.get_dif_tol() if dif <= tol: return Retry() self.status = WARN, 'instable' state.spent_inside = max(self.settling_time, state.spent_inside) return self.state_instable def state_instable(self, state): """went outside tolerance from stable, warning""" dif, tol = self.get_dif_tol() if dif <= tol: state.spent_inside += state.delta() if state.spent_inside > self.settling_time: self.status = IDLE, 'stable' # = recovered from instable return self.state_stable else: state.spent_inside = max(0, state.spent_inside - state.delta()) return Retry() def state_interrupt(self, state): self.status = IDLE, 'stopped' # stop called return self.state_instable def stop(self): self.convergence_state.start(self.state_interrupt)