
TNMR
Frappy-NICOS Integration

Version 1.0.0

D. V. Garrad
August 27, 2025

Contents

1 Introduction 2

2 TNMR Interfacing 3

3 Connection Scheme 4

4 Setup 5
4.1 TNMR/Frappy Setup . 5
4.2 NICOS Setup . 7
4.3 Installing DNMR . 8

5 Getting Started in NICOS 10

6 Basic Programming Reference 14
6.1 NICOS . 14
6.2 Frappy . 17

6.2.1 TNMR VisualBasic/COM Interface (tnmr_interface
and NTNMR) . 17

6.2.2 OTFModule . 17
6.3 tnmr_interface . 19

6.3.1 sequence_generation 22
6.3.2 sequence_fileformat 24

7 Drawbacks, Known Issues, and Other Notes 27

1

1 Introduction

This document is meant to outline how one can set up a TNMR-Frappy server,
as well as a NICOS-Frappy connection, and some basic information to un-
derstand the details “under the hood.” Further, it provides limited technical
details (i.e., programming reference); the majority of these details should be
outlined in the Programming Guide1 or in-line comments.

Note: this documentation was written throughout the development of the
system. Some screenshots will likely be slightly outdated, but the main ideas
hold.

1https://forge.frm2.tum.de/public/doc/frappy/html/

2

https://forge.frm2.tum.de/public/doc/frappy/html/
https://forge.frm2.tum.de/public/doc/frappy/html/

2 TNMR Interfacing

Tecmag’s TNMR software does not have an official API, but it does come
shipped with a Component Object Model (COM)2 interface. This is intended
as a means of scripting small experiments inside the TNMR interface, so
there are limitations to the interfacing possibilities. Despite this, an API and
helper library was written in Python to provide core functionalities, including:

• Pulse sequence generation

• Pulse sequence file generation

• Live parameter alteration

• Data acquisition starting, aborting

• File loading/saving

This API and library are typically hidden from the NICOS user within the Frappy
server code, but the passionate user is welcome to contribute3.

The Frappy server directly connects to an instance of TNMR if one is found,
via the COM interface as described above. You will see errors if it cannot find
an open instance of the program, and it should be opened at any time, before
or after the Frappy server is started, but of course before attempting to take
data or execute commands from NICOS.

2https://learn.microsoft.com/en-us/windows/win32/com/
component-object-model--com--portal

3https://github.com/SampleEnvironment/frappy

3

https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://github.com/SampleEnvironment/frappy
https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://learn.microsoft.com/en-us/windows/win32/com/component-object-model--com--portal
https://github.com/SampleEnvironment/frappy

3 Connection Scheme

In the most basic NMR experiment using this system, there is only one com-
puter, running TNMR, a Frappy server, and a NICOS server. This is perhaps
unrealistic for many institutions, as often the TNMR instance is running on a
standalone system, disconnected from external devices such as cryostats
and magnets. It is entirely possible, and encouraged, to separate these sys-
tems, so the TNMR instance and pulse generation and data acquisition (DAQ)
hardware are connected to a dedicated PC. This is the configuration that this
system was written for, so the rest of the documentation will assume it.

For notation, the PC running the TNMR instance and connected to the pulse
generation and DAQ hardware will be referred to as the “NMR PC“ and the
system running the NICOS server will be referred to as the “control interface”.

The basic pipeline for commands the user wishes to execute is as follows:

1. A user enables the TNMR module in NICOS on the control interface, and
connects by entering the correct network address

2. A command is sent via NICOS on the control interface

3. The loaded TNMR NICOS module leverages SECoP to send the com-
mand to the NMR PC

4. The NMR PC receives this command, starting the necessary processes
(i.e., starting an acquisition cycle, changing parameters in TNMR, gath-
ering data, etc.) and sending back polled values through SECoP.

5. The NICOS server receives new values and updates the user display
accordingly.

See Fig. 1 for a graphical outline of the connection scheme for an NMR
experiment.

4

Figure 1: A connection diagram which outlines how each system in a typical
NMR experimental setup should interact with each other. An instance of
TNMR is open on a PC connected to a transmitter/receiver (in this case,
a Tecmag SCOUT), which runs a Frappy server. This Frappy server then
connects to a NICOS server via SECoP, and the end user interacts only with
NICOS.

4 Setup

4.1 TNMR/Frappy Setup

On the TNMR PC, Frappy should be downloaded from the Git repository:

git clone https://github.com/SampleEnvironment/frappy
cd frappy
python -m pip install -r requirements.txt
python -m pip install pywin32 pythoncom

This will install Frappy, its requirements, and a Python/COM interface library.
This may take some time. Further, after this is complete, it is recommended
to navigate to the install location for pywin32 and run the post-install script,
pywin32_postinstall.py.

Before starting an instance of the frappy server, it is important that the user
navigates to frappy/frappy_psi/tnmr/templates and, if not using the
SCOUT, replaces the files dashboard.txt and tmp.tnt with working dash-

5

https://tecmag.com/scout/
https://sampleenvironment.github.io/secop-site/

board and .TNT files respectively. The values in these do not matter particu-
larly, but a working base configuration otherwise is necessary. This is due to
some TNMR dodginess. It is also encouraged that the user adds their setup
files to the setup_files folder, under the name of their device, to develop a
small library of working setups. Who knows, perhaps setup files suitable for
your device are there already?

After starting an instance of TNMR (see Tecmag’s website for guidance on
installation), the Frappy server should be started. In a terminal (potentially
the same one as used for the above), navigate to the Frappy base directory
and run the following:

python bin\frappy-server frappy_OTFMod

This will start the Frappy server, with the appropriate configuration file (con-
figuration files are found in cfg/. In this case, the configuration used is
frappy_OTFMod_cfg.py) for TNMR interaction. The user is free to write
their own configuration file as well, but one is provided with core function-
ality for ease of use. They are quite simple to write, and there are plenty of
examples to learn from, if one is documentation-averse. Once the server is
started, the process of setting up the NMR PC is complete! Keep TNMR and
the console used open.

Some additional considerations:

• Windows updates should be disabled, aswell as they can be, tominimise
interruptions.

• Intel Speed Shift and Intel Speed Step (settings in the BIOS of some
Intel-based PCs) should be disabled; these have been known to cause
cryptic problems which can cause lost time.

• USB Auto-Suspend and HDD shutoff timers should be disabled to avoid
similar problems.

• The tnmr_OTF_module (as created and named by the configuration
file) will monitor for many errors ad warnings, but there is no guarantee
that it will catch everything. The interface with TNMR is limited, so it is
advisable to follow setup carefully to minimise risk.

6

4.2 NICOS Setup

This section does not provide a tutorial for configuring NICOS in its entirety4,
but rather a basic setup including just a TNMR interface. Further, it assumes
that NICOS is already installed and you know where!

There exists a repository5 with configuration files, helper function defini-
tions, and example scripts for a basic NMR setup NICOS interface. To install
these, execute the following to download the scripts from the base NICOS
directory (often named nicos/, where one would find bin/, data/, and
nicos_sinq/):

cd nicos_sinq/
git clone https://github.com/Davis-Garrad/

NICOS-TNMR.git
git clone https://gitea.psi.ch/linse/frappy_sinq.git
cd ../../ # root directory (outside NICOS)
git clone https://gitea.psi.ch/linse/servicemanager.git

Now there are a few tasks to be completed:

• nicos_sinq/tnmr/nicos.conf has several values to be updated:
cache ports, daemon ports, filepaths, etc.

• nicos_sinq/tnmr/setups/frappy_tnmr.py contains the saved data’s
filename template, as well as the default address to find the TNMR PC
at.

Beyond these items, you can also adjust the GUI, filesinks, etc. if desired.
This is covered under NICOS documentation, so it will not be covered here,
except a listing of options that this package provides:

• HDF5 Datasink (nicos_sinq/tnmr/sinks/HDF5.py)

• NeXus Datasink (nicos_sinq/tnmr/sinks/HDF5_NEXUS.py)

• Custom TNMR-purposed commands (nicos_sinq/tnmr/commands/
tnmr_commands.py). This should almost certainly be included in any
setup. See Sec. 6.1 for more detail.

• Demo setups (nicos_sinq/tnmr/setups)

4https://forge.frm2.tum.de/nicos/doc/nicos-stable/installconfig/
5https://github.com/Davis-Garrad/NICOS-TNMR

7

https://forge.frm2.tum.de/nicos/doc/nicos-stable/installconfig/
https://github.com/Davis-Garrad/NICOS-TNMR
https://forge.frm2.tum.de/nicos/doc/nicos-stable/installconfig/
https://github.com/Davis-Garrad/NICOS-TNMR

• Example scripts (nicos_sinq/tnmr/example_scripts)

Once everything is configured as one desires, one can start the frappy server:

python {frappy root directory}/bin/frappy-server {cfg}

where {cfg} denotes a particular configuration file (as described in the
frappy documentation) in cfg/. This could be, for example, psi_nmr_setup
if the filename is psi_nmr_setup_cfg.py. Frappy, when starting a server,
searches for files in the cfg/ folder, ending with _cfg.py. Once the frappy
server is initialised, one should start the NICOS server on a Linux machine
(see 7):

{NICOS root directory}/bin/start.sh

Finally, the user can open a NICOS GUI or CLI and simply connect to the server
configured in the previous step. If unsure of the address to connect to, it is
helpful to look at the configuration files and the output of the NICOS server
start command.

4.3 Installing DNMR

While the NICOS setup provides a framework for generating NeXus files to
store NMR data, there does not exist (to the author’s knowledge) a suitable
analysis software. While the user of this system is encouraged to write any
tooling they need as they like, there does exist an easily extensible open-
source project called DNMR6, built specifically for this system and purpose,
but open more generally to NMR. This can be found either on pip,

python -m pip install DNMR

which should install all necessary dependencies, or if the user is more con-
cerned with the inner workings of the software and/or wants to modify it
(please do!), the source can also be found at its public GitHub repository,

git clone https://github.com/Davis-Garrad/DNMR.git
cd DNMR
pip install -e .

If you modify the program, please fork the project on GitHub and make your
changes accessible to the public. Someone out there is probably looking for

6https://pypi.org/project/DNMR/

8

https://pypi.org/project/DNMR/
https://pypi.org/project/DNMR/
https://pypi.org/project/DNMR/

exactly what you’ve added!

Once either of these versions has been installed, the program itself can be
started with the command,

python -m DNMR

or, if installed from pip, simply

dnmr

Note: On Windows, pip will install a GUI-only command, dnmr-gui.

9

5 Getting Started in NICOS

This section does not cover basic setup. The purpose of this section is to get
the user started collecting and saving data in a running NICOS server, with an
available frappy server to connect to.

The first step in using a frappy device is connecting to it. The NICOS server
may automatically connect to it, in which case the user would see some
sort of “ready” status. If this is not the case, then the status will contain
information on some sort of connection error:

Figure 2: A failed frappy-NICOS connection on the se_main device.

In most cases, if configured correctly, this can be fixed by reconfiguring the
device’s uri parameter, after which NICOS will automatically try to reconnect.
This value can be found in the frappy server configuration, as well as the
frappy server command output.

Now that the user has a frappy-TNMR interface configured and running in
NICOS, they may want to take some data. This is simple enough, and example
scripts for typical experiments are provided in {nicos}/nicos_sinq/tnmr/
example_scripts. It is recommended that the user familiarises themselves
with the the T1 and frequency scan scripts, in particular, as they are most
informative.

After one of these scripts is run, status updates will be appended to the NICOS
log, as in Fig. 3 and a file will be generated containing all the data.

The data file can be loaded into DNMR directly from the command line:

python -m DNMR {filename(s)}

or via the in-app dialogue. Multiple files passed to the CLI or selected in a
single loading operation in the GUI will be combined and treated as though

10

Figure 3: What the start of a scan looks like in NICOS. Note the scan number,
sample name, and filename. These are functionalities of NICOS. The ETA and
completion time are both a function of the TNMR-Frappy-NICOS system; see
Sec. 6 for more detail.

the data were taken in one scan. In this fashion, field scans over several
domains can be combined to view in tandem.

In this example, a T1 scan is analysed: First, the data is loaded in and rephased.
Each datapoint can be viewed, rephased, and the peak to analyse can be
identified separately. For the purpose of a simple T1 scan, however, it makes
the most sense to just use the auto-rephasing feature. This is illustrated in
Fig. 4.

One can also, if using a particular filter which doesn’t already, apply a window
to the Fourier transform of the data. This will be used in integrating the data
for the T1 datapoints. Regardless of whether the user needs to do this or not,
the Fourier transform can be found in the “FT” tab, as shown in Fig. 5.

After the data is made ready from the previous steps, it can be viewed in a
custom-made tab, built specifically for T1 scan data. Fig. ?? shows what this
might look like for some particularly pleasant data, as well as a fit which was
made after clicking the “Fit” button.

Now the user has, in following this example, taken, inspected, and analysed
data. This concludes the “Getting Started” section.

11

Figure 4: In a T1 analysis, the first step is rephasing the data. DNMR has an
inbuilt auto-rephasing functionality, activated by clicking the button labelled
“Autophase.” The next step is to scroll through the different scan points (with
their own “index”) and verify that the data and rephasing looks reasonable.

12

Figure 5: The Fourier transform of the data can be viewed in the “FT” tab.

Figure 6: The “T1 Fit” tab is custom-made to perform fits on T1 data, so this is
the logical next tab to visit. After pressing the “Fit” button, we can then parse
the result.

13

6 Basic Programming Reference

In this section, commands and functions will be detailed together, but colour-
coded separately. Commands (accessible to NICOS users) will be coloured
blue, parameters (also accessible to NICOS users) will be coloured teal, and
developer functions (accessible only behind the scenes) will be coloured
grey. Section titles are the filenames in which one can find the discussed
functionality, without extensions.

6.1 NICOS

User Commands

generate_pulse(pw, ph, dt, pc)

Generates a dictionary representing a pulse in a pulse sequence.
Parameters are pulse width (us), pulse height (a.u., % total power
for the SCOUT), delay time (us), phase cycle (str, e.g., “0 1 2 3”).
These dictionaries can be modified, and have elements pulse_width,
pulse_height, delay_time, and phase_cycle.

generate_sequences(base_sequence: list,
pulse_indices: list, var_name: str, vals: list)

Creates a list of pulse sequences from a single pulse sequence,
assigning a variable in a collection of pulses to a value in
the given list. For instance, if a user wanted to scan the
first and second delay times over the range 5-10us in 2us
steps, they could write generate_sequences(base_sequence, [0,1],

'delay_time', [5,6,8,10]) to generate the appropriate list. In ef-
fect, base_sequence is copied for each entry in vals, and the value
of var_name in each of the pulses indicated by pulse_indices are
changed to one of the values in vals.

log_durations(s, e, N)

Generates a list of durations between s and e (inclusive), logarithmi-
cally spaced.

14

estimate_sequence_length_from_device(dev, seq)

Returns the estimated time, in seconds, of a single pulse sequence
acquisition. Uses the parameters in dev, a TNMR device loaded into
NICOS.

estimate_sequence_length(params, seq)

Returns the estimated time, in seconds, of a single pulse se-
quence acquisition. Uses the parameters in params, a dictio-
nary with keys like those in a TNMR device. Requires that
params contains at least acquisition_time, pre_acquisition_time,
post_acquisition_time, and num_acqs.

estimate_scan_length_from_device(dev, scan_seq)

Returns the estimated time, in seconds, of a list of pulse sequence
acquisitions. Uses the parameters in dev, a TNMR device loaded into
NICOS.

estimate_scan_length(params, scan_seq)

Returns the estimated time, in seconds, of a list of pulse se-
quence acquisitions. Uses the parameters in params, a dictio-
nary with keys like those in a TNMR device. Requires that
params contains at least acquisition_time, pre_acquisition_time,
post_acquisition_time, and num_acqs

timestring(seconds)

Returns a nicely formatted string indicating a length and how far that
is into the future.

print_sequence(seq)

Pretty-prints a pulse sequence for easy viewing.

15

scan_sequence(dev, seq, additional_lambdas={})

Given a TNMR interface dev, performs a compilation, zero-go, and
saves data from the acquisition for a single pulse sequence. Every
value returned by the lambda functions in additional_lambdas (each
of the signature f()) will be saved as part of the environment, with
names given by their keys in the dictionary.

scan_sequences(dev, sequence_list,
additional_lambdas={})

Given a TNMR interface dev, acquires data for a list of pulse se-
quences and bundles the data together in one file (with separate
entries). This is simply the list-form of scan_sequence. See the refer-
ence info for that function to get a better idea of how this works.

get_tnmr_params(dev)

Returns a dictionary of the currently loaded parameters in the given
TNMR interface, like acquisition time, observed frequency, and 1D
scans.

tnmr_scan()

While this is technically neither a parameter nor a function, it is
likely of use to the reader. The tnmr_scan object is a Python Con-
text Manager, for use in a with statement. The top-level tnmr_scan
object both initialises a file, and dictates which NMR acquisitions
are written to said file. Every call to the provided Data Manager’s
putValues and finishPoint(), etc. deal with the file opened via a
line of code that looks like with tnmr_scan() as data_manager:
This includes those included in the scan_sequence(s) functions. The
shown data_manager variable would then be a NICOS DataManager
object; see the NICOS Reference if you wish to use this advanced
functionality, or leave it as with tnmr_scan(): ... if you plan to only
use the scan_sequence(s) funcionality described herein. In essence,
this class provides a context for NICOS file handling.

16

6.2 Frappy

6.2.1 TNMR VisualBasic/COM Interface (tnmr_interface and NTNMR)

It is recommended to check Tecmag’s TNMR documentation for detailed
notes. This document does not seem to be publicly available, but can likely
be sourced from the support.

6.2.2 OTFModule

Commands/Parameters accessible through SECoP
This encapsulates all the functionality that NICOS directly sees.

compile_and_run(thread=True)

Compiles and runs the currently-loaded pulse sequence and options.
If thread is set to True, then this function starts a child thread. Other-
wise, this function blocks.

kill()

This command sends an Abort signal to TNMR, signalling the pro-
gram to halt an acquisition. This does not guarantee that the acqui-
sition will end, though one can check the status of the module to be
sure.

update_parameters(params: dict)

Takes a dictionary of keys corresponding to the parameters described
below, and sets their values in the device calling this command to
those in params

title

This parameter only determines what the title written into the se-
quence file is.

sample

Open text describing the sample which is written to metadata.

17

nucleus

Open text meant to describe the addressed nucleus/nuclei.

comments

This parameter is saved to metadata. It acts as an open text field for
any miscellaneous comments.

(pre,post,-)acquisition_time

See sequence_generation. Pre- and regular acquisition times in µs,
post-acquisition time in ms.

ringdown_time

See sequence_generation. In µs

acq_phase_cycle

See sequence_generation.

num_acqs

This parameter determines the total number of averaged scans for
each datapoint. Formerly num_scans.

obs_freq

The frequency of the receiver. In MHz.

Developer Functions

tnmr()

This function creates a new instance of the TNMR API wrapper. To be
used upon every access to the TNMR software from code.

stop()

Simply provides the core functionality for kill().

18

__compile_sequence()

Compiles the sequence loaded in sequence_data. This involves the fol-
lowing:
1. creating the sequence table via seq_gen.get_single_pulse_block

calls;
2. combining them all; saving this sequence where TNMR can see it,
and in a format it can read;
3. taking a copy of all the acquisition parameters (so that if they are
changed mid-acquisition, no incorrect information is written to files);
4. telling TNMR to read it (i.e., tnmr().load_sequence()), reloading the
dashboard and parameters in the process;
5. and giving TNMR the correct parameters to populate the new dash-
board with.
The temporary sequence file is saved in root/sequences and times-
tamped where root is the working directory of the frappy server com-
mand. The word “compile” is a bit of a misnomer in its usage here,
but signifies that all of a pulse sequence’s information is collected and
prepared according to some process to ensure both that it works and
that it is saved in an accessible and reproducible manner.

__zero_go()

This command simply sends a command to TNMR to begin to ac-
quire data (Zero-and-Go). This is not meant to be called before
__compile_sequence(), and the consequences of such an action are
deemed undefined behaviour. Things probably won’t break, but they
won’t do what you want, either!

__compile_and_run()

An extremely thin wrapper for first compiling and then Zero-Going.

6.3 tnmr_interface

This module exists entirely as an API for Tecmag. Most functions are simple
wrappers for the COM interface.

19

get_instance()

This function attempts to create or get an existing instance of a COM
interface object, connected to a TNMR instance. It is important that
the handle for this COM object is often refreshed (i.e., not stored in
an object), as the interface can fail when new threads/processes are
created and try to do the same. Treat this as a singleton pattern to
avoid headaches and trouble.

execute_cmd(cmd)

Sends an arbitrary COM interface command through to TNMR. This
is useful for debugging, but should not be accessible to end users, as
it can destabilise things if used improperly. Think of it as a really big
sledgehammer - no user should ever come close, even if they think they
need to remove a wall.

openfile(filepath, active=True)

Opens a .TNT file into TNMR. This can provide direct access to the
data and sequence used to get it. Further, it also loads some settings
from the .TNT.

set_activefile()

Updates the active file and active filepath internally. (Currently unused)

20

ZeroGo(lock=True, interval=0.5[s], check_time=10[s])

If no acquisition is already running, signals to TNMR to Zero-and-Go. If
successful in sending this signal, the function then forces a halt until
some condition is met (within the function, a constant CHECK_MODE is set
to either “data” or “thread”. The condition for “data” is that the zeroth
data point changes within check_time. The condition for “thread” is that
the thread started to send the Zero-Go command terminates before
check_time. Default is “thread”) or check_time elapses. If check_time
does elapse, this is a signal of some fault in TNMR and the function
recursively tries again. Once this succeeds, if lock is enabled then
every interval, TNMR is polled to see if the acquisition is complete and
control is released once it is.

acquisition_running()

Returns a boolean value: whether an acquisition is currently running or
not.

get_data()

Pulls all the data from TNMR and returns it as a tuple: (reals, imaginar-
ies).

save_file(filepath=”)

Saves the current setup as a .TNT file. If filepath is left as the default,
then the currently active file is overwritten.

set_nmrparameter(param_name, value)

Sets a dashboard parameter. It does not matter which page the pa-
rameter is on. Eg., set_nmrparameter("Obs. Freq", "41.5MHz") has the
same effect as manually changing “Obs. Freq” in TNMR to 41.5MHz.

get_nmrparameter(param_name)

Returns the value of a dashboard parameter.

21

is_nmrparameter(param_name)

Returns a boolean: whether the provided parameter name is found in
the list of valid parameters.

get_all_nmrparameters()

Returns a dictionary of all the dashboard parameters, in the form { [page
name]: { [parameter name]: [parameter value], ... }, ... }. This may result
in duplicates, as parameters can be on multiple pages at once.

get_page_parameters(page)

Like get_all_nmrparameters, but for a single page.

load_sequence(filename)

Possibly destructive to live data. This ismore interesting than it sounds.
Sequences cannot be loaded directly as TNMR’s API is slightly dodgy
here. This function, in short, closes the active file (this is the destructive
part), loads a template file with some default values, loads a default
dashboard, loads a sequence into the template file, saves the template
file into an evenmore temporary file, and finally re-opens that file. These
acrobatics are justified in that doing anything else results in TNMRbeing
unhappy.

load_dashboard(dashboard_fn)

Loads a dashboard from a dashboard setup file. Despite what the
TNMR documentation says, this does seem to overwrite the values in
the dashboard. Potentially useful, but not used currently.

6.3.1 sequence_generation

This file exists to hold helper functions for reading and writing pulse sequence
files in Tecmag format. The structure of a pulse sequence is limited to aid in
usability and simplicity. Every pulse sequence is composed of a sequence of
pulses (if one cannot wrap their mind around this concept, they should be
kept far from RF electronics). Each of these pulses is parameterised by 4

22

values:

• Pulse width; how long the signal remains HIGH for.

• Pulse height; the power output of the signal.

• Delay time; how long to keep the signal LOW for after the pulse.

• Phase cycle; a string, of the form “0 1 2 3 3 2 1 0” which determines the
phase cycling sequence. This is dependent on the hardware used. This
string must be a series of integers separated by whitespace.

These pulses, in Python, are stored as dictionaries with keys pulse_width,
pulse_height, delay_time, and phase_cycle. These pulses (dictionaries) can
be combined into a pulse sequence (list of dictionaries).

In the sequence_generation implementation the dictionaries are slightly more
complicated as this is the lowest level of pulse sequence handling; they
contain fields for every possibility in TNMR. There exists a helper function,
combine_blocks(l, r), which should be used to combine blocks (collections
of columns) in Python (TNMR). Further, all pulse sequences must be book-
ended by an “initial” block and a “final” block, which define phase reset, ac-
quisition, ringdown, etc..

Functionality to create pulse sequences

get_single_pulse_block(name, pulse_width,
pulse_height, delay_time, phase_cycle=“0”)

Creates a single “block” dictionary for a single pulse. All times should
be provided in the format “10u”.

get_initial_block()

Creates a single “block” dictionary to be placed at the start of any pulse
sequence.

23

get_final_block(ringdown_time, preacquire_time,
acquire_time, cooldown_time, acq_phase_cycle=“0”)

Creates a single “block” dictionary to be placed at the end of any
pulse sequence. Ringdown before acquisition, a delay after ringdown
(preacquire_time), acquisition time, post-acquisition delay, and the ac-
quisition phase cycle are all configurable. All times should be provided
in the format “10u”.

combine_blocks(l, r)

Combines two “blocks”, l and r, in the order: l first, then r.

Please review the below code snippet for an example:
1 '''Creates a pulse sequence containing a 5 microsecond pulse,

followed by a 50 microsecond pause, a 10 microsecond pulse, a
204.8 microsecond acquisition, and then a 500ms delay.'''

2 start = get_initial_block()
3 end = get_final_block('10u', '1u', '204.8u', '500m', '0 2 0 2')
4 p1 = get_single_pulse_block('p90', '5u', '40', '50u', '0 1 2 3')
5 p2 = get_single_pulse_block('p180', '10u', '40', '1u', '1 0 3 2') # I

don't really know how to phase cycle... But who does?
6

7 total_pulse = combine_blocks(start, p1)
8 total_pulse = combine_blocks(total_pulse, p2)
9 total_pulse = combine_blocks(total_pulse, end)

Functionality to handle files

save_sequence(filename, sequence)

Saves a sequence to a file in Tecmag’s format.

save_sequence_cfg(filename, sequence)

Saves a sequence to a file in a human-readable JSON file. Good for
testing and logging.

6.3.2 sequence_fileformat

This is the best documentation of the TNMR sequence file format that I could
generate from inspection and trial and error. It also happens to be the file

24

which provides some helper functions to generate proper file structure. Gen-
erally, even a developer for this software can ignore this particular interface,
and limit themselves to using the sequence_generation interface.

fm(s, spacing=3)

Generates the correct string for a value in string format such that TNMR
can understand it. Pretty much every value in a TNMR sequence file is
formatted as such.

get_info_header(filename, author, col_names,
tuning_number, binary_name=“PSEQ1.001.18 BIN”)

Generates a string for the top of the sequence file, which contains
information on the filename, author, columns, the number of columns
(tuning_number for historical reasons), and the binary used to generate
the file. While programs using this API will emphatically not be named
“PSEQ1.001.18 BIN”, this is what TNMR expects when loading a file. We
always tell TNMR what it wants to hear.

get_delay_header(col_delays, tuning_number)

Generates a string for the delay section of the sequence file.

get_event_header(event_type, vals, tables, table_reg,
tuning_number, col_delays)

Generates a string describing the events section of the sequence file.
If tables are used anywhere in the events, they should be registered in
the table registry (table_reg). This part should come after the delay
section.

get_table_spec(table)

Generates the string for the table specification in the sequence file.
This goes after the event section.

25

generate_default_sequence(col_names, col_delays)

Generates a dictionary containing all the necessary information to
provide a solid base to make small adjustments to. Default values can
be found in the sequence_fileformat.py file, under event_defaults.
The generated dictionary should be passed to create_sequence_file

after adjustments.

create_sequence_file(filename, data, author=“NA”)

Takes a dictionary with all possible information that Tecmag could
possibly require, and generates a .TPS Tecmag pulse sequence file
from it. The helper function generate_default_sequence can be useful
here.

26

7 Drawbacks, Known Issues, and Other Notes

• Only Linux is supported for the NICOS server. This is due to the use of
os.fork, technically a part of Python’s standard library but very much not
cross-platform. Since no TNMR program exists for Linux, this means
that two computers are necessary for this setup. Fortunately, one of
them can also act as “master” for the rest of the setup, and the TNMR
PC can be somewhat isolated.

• If there is some problem in TNMR that requires intervention, the ac-
quisition commands will recursively retry, possibly leading to a stack
overflow and therefore a crash of the Frappy server. This, in the au-
thor’s experience, has never happened in reality but it is quite possible
in theory.

27

	Introduction
	TNMR Interfacing
	Connection Scheme
	Setup
	TNMR/Frappy Setup
	NICOS Setup
	Installing DNMR

	Getting Started in NICOS
	Basic Programming Reference
	NICOS
	Frappy
	TNMR VisualBasic/COM Interface (tnmr_interface and NTNMR)
	OTFModule

	tnmr_interface
	sequence_generation
	sequence_fileformat

	Drawbacks, Known Issues, and Other Notes

