[WIP] uniax after changing to StateMachine

Change-Id: I0173f8c8eaaeb2526477d05803a615673297667d
This commit is contained in:
zolliker 2022-09-16 14:53:42 +02:00
parent 3ab9821860
commit a8f1495bc8

View File

@ -26,6 +26,11 @@ import math
from secop.core import Drivable, Parameter, FloatRange, Done, \ from secop.core import Drivable, Parameter, FloatRange, Done, \
Attached, Command, PersistentMixin, PersistentParam, BoolType Attached, Command, PersistentMixin, PersistentParam, BoolType
from secop.errors import BadValueError from secop.errors import BadValueError
from secop.lib.statemachine import Retry, StateMachine, Restart
class Error(Exception):
pass
class Uniax(PersistentMixin, Drivable): class Uniax(PersistentMixin, Drivable):
@ -52,29 +57,33 @@ class Uniax(PersistentMixin, Drivable):
default=0.2, persistent='auto') default=0.2, persistent='auto')
low_pos = Parameter('max. position for positive forces', FloatRange(unit='deg'), readonly=False, needscfg=False) low_pos = Parameter('max. position for positive forces', FloatRange(unit='deg'), readonly=False, needscfg=False)
high_pos = Parameter('min. position for negative forces', FloatRange(unit='deg'), readonly=False, needscfg=False) high_pos = Parameter('min. position for negative forces', FloatRange(unit='deg'), readonly=False, needscfg=False)
motor_play = Parameter('summed steps without substantial change', FloatRange(), default=0) substantial_force = Parameter('min. force change expected within motor play', FloatRange(), default=0)
max_play = Parameter('max. summed steps without substantial change', FloatRange(), readonly=False, default=70) motor_play = Parameter('acceptable motor play within hysteresis', FloatRange(), readonly=False, default=10)
motor_max_play = Parameter('acceptable motor play outside hysteresis', FloatRange(), readonly=False, default=70)
pollinterval = 0.1 pollinterval = 0.1
fast_pollfactor = 1
_mot_target = None # for detecting manual motor manipulations _mot_target = None # for detecting manual motor manipulations
_filter_start = 0 _filter_start = 0
_filtered = False
_cnt = 0 _cnt = 0
_sum = 0 _sum = 0
_cnt_rderr = 0 _cnt_rderr = 0
_cnt_wrerr = 0 _cnt_wrerr = 0
_action = None
_last_force = 0
_expected_step = 1
_in_cnt = 0 _in_cnt = 0
_init_action = False
_zero_pos_tol = None _zero_pos_tol = None
_find_target = 0 _state = None
def earlyInit(self): def earlyInit(self):
super().earlyInit() super().earlyInit()
self._zero_pos_tol = {} self._zero_pos_tol = {}
self._action = self.idle
def initModule(self):
super().initModule()
self._state = StateMachine(logger=self.log, threaded=False, cleanup=self.cleanup)
def doPoll(self):
self.read_value()
self._state.cycle()
def drive_relative(self, step, ntry=3): def drive_relative(self, step, ntry=3):
"""drive relative, try 3 times""" """drive relative, try 3 times"""
@ -105,31 +114,14 @@ class Uniax(PersistentMixin, Drivable):
mot = self.motor mot = self.motor
if mot.isBusy(): if mot.isBusy():
if mot.target != self._mot_target: if mot.target != self._mot_target:
self.action = self.idle raise Error('control stopped - motor moved directly')
return True return True
return False return False
def next_action(self, action): def zero_pos(self, value):
"""call next action
:param action: function to be called next time
:param do_now: do next action in the same cycle
"""
self._action = action
self._init_action = True
self.log.info('action %r', action.__name__)
def init_action(self):
"""return true when called the first time after next_action"""
if self._init_action:
self._init_action = False
return True
return False
def zero_pos(self, value,):
"""get high_pos or low_pos, depending on sign of value """get high_pos or low_pos, depending on sign of value
:param force: when not 0, return an estimate for a good starting position :param value: return an estimate for a good starting position
""" """
name = 'high_pos' if value > 0 else 'low_pos' name = 'high_pos' if value > 0 else 'low_pos'
@ -158,145 +150,141 @@ class Uniax(PersistentMixin, Drivable):
setattr(self, name, pos) setattr(self, name, pos)
return pos return pos
def find(self, force, target): def do_find(self, state):
"""find active (engaged) range""" """find active (engaged) range"""
sign = math.copysign(1, target) if state.init:
if force * sign > self.hysteresis or force * sign > target * sign: state.prev_direction = 0 # find not yet started
direction = math.copysign(1, self.target)
if self.value * direction > self.hysteresis or self.value * direction > self.target * direction:
if self.motor_busy(): if self.motor_busy():
self.log.info('motor stopped - substantial force detected: %g', force) self.log.info('motor stopped - substantial force detected: %g', self.value)
self.motor.stop() self.motor.stop()
elif self.init_action(): elif state.prev_direction == 0:
self.next_action(self.adjust) return self.do_adjust
return if abs(self.value) > self.hysteresis:
if abs(force) > self.hysteresis: self.set_zero_pos(self.value, self.motor.read_value())
self.set_zero_pos(force, self.motor.read_value()) return self.do_adjust
self.next_action(self.adjust) if self.value * direction < -self.hysteresis:
return state.force_before_free = self.value
if force * sign < -self.hysteresis: return self.do_free
self._previous_force = force
self.next_action(self.free)
return
if self.motor_busy(): if self.motor_busy():
if sign * self._find_target < 0: # target sign changed if direction == -state.prev_direction: # target direction changed
self.motor.stop() self.motor.stop()
self.next_action(self.find) # restart find state.init_find = True # restart find
return return Retry()
else: zero_pos = self.zero_pos(self.target)
self._find_target = target if state.prev_direction: # find already started
zero_pos = self.zero_pos(target)
side_name = 'positive' if target > 0 else 'negative'
if not self.init_action():
if abs(self.motor.target - self.motor.value) > self.motor.tolerance: if abs(self.motor.target - self.motor.value) > self.motor.tolerance:
# no success on last find try, try short and strong step # no success on last find try, try short and strong step
self.write_adjusting(True) self.write_adjusting(True)
self.log.info('one step to %g', self.motor.value + self.safe_step) self.log.info('one step to %g', self.motor.value + self.safe_step)
self.drive_relative(sign * self.safe_step) self.drive_relative(direction * self.safe_step)
return return Retry()
else:
state.prev_direction = math.copysign(1, self.target)
side_name = 'negative' if direction == -1 else 'positive'
if zero_pos is not None: if zero_pos is not None:
self.status = 'BUSY', 'change to %s side' % side_name self.status = 'BUSY', 'change to %s side' % side_name
zero_pos += sign * (self.hysteresis * self.slope - self.motor.tolerance) zero_pos += direction * (self.hysteresis * self.slope - self.motor.tolerance)
if (self.motor.value - zero_pos) * sign < -self.motor.tolerance: if (self.motor.value - zero_pos) * direction < -self.motor.tolerance:
self.write_adjusting(False) self.write_adjusting(False)
self.log.info('change side to %g', zero_pos) self.log.info('change side to %g', zero_pos)
self.drive_relative(zero_pos - self.motor.value) self.drive_relative(zero_pos - self.motor.value)
return return Retry()
# we are already at or beyond zero_pos # we are already at or beyond zero_pos
self.next_action(self.adjust) return self.do_adjust
return
self.write_adjusting(False) self.write_adjusting(False)
self.status = 'BUSY', 'find %s side' % side_name self.status = 'BUSY', 'find %s side' % side_name
self.log.info('one turn to %g', self.motor.value + sign * 360) self.log.info('one turn to %g', self.motor.value + direction * 360)
self.drive_relative(sign * 360) self.drive_relative(direction * 360)
return Retry()
def free(self, force, target): def cleanup(self, state):
"""free from high force at other end""" """in case of error, set error status"""
if self.motor_busy(): if state.stopped: # stop or restart
if state.stopped is Restart:
return return
if abs(force) > abs(self._previous_force) + self.tolerance: self.status = 'IDLE', 'stopped'
self.log.warning('stopped')
else:
self.status = 'ERROR', str(state.last_error)
if isinstance(state.last_error, Error):
self.log.error('%s', state.last_error)
else:
self.log.error('%r raised in state %r', str(state.last_error), state.status_string)
self.motor.stop()
self.write_adjusting(False)
def do_free(self, state):
"""free from high force at other end"""
if state.init:
state.free_way = None
if self.motor_busy():
return Retry()
if abs(self.value) > abs(state.force_before_free) + self.tolerance:
self.stop() self.stop()
self.status = 'ERROR', 'force increase while freeing' self.status = 'ERROR', 'force increase while freeing'
self.log.error(self.status[1]) self.log.error(self.status[1])
return return None
if abs(force) < self.hysteresis: if abs(self.value) < self.hysteresis:
self.next_action(self.find) return self.do_find
return if state.free_way is None:
if self.init_action(): state.free_way = 0
self._free_way = 0 self.log.info('free from high force %g', self.value)
self.log.info('free from high force %g', force)
self.write_adjusting(True) self.write_adjusting(True)
sign = math.copysign(1, target) direction = math.copysign(1, self.target)
if self._free_way > (abs(self._previous_force) + self.hysteresis) * self.slope: if state.free_way > (abs(state.force_before_free) + self.hysteresis) * self.slope:
self.stop() self.stop()
self.status = 'ERROR', 'freeing failed' self.status = 'ERROR', 'freeing failed'
self.log.error(self.status[1]) self.log.error(self.status[1])
return return None
self._free_way += self.safe_step state.free_way += self.safe_step
self.drive_relative(sign * self.safe_step) self.drive_relative(direction * self.safe_step)
return Retry()
def within_tolerance(self, force, target): def do_within_tolerance(self, state):
"""within tolerance""" """within tolerance"""
if self.motor_busy(): if self.motor_busy():
return return Retry()
if abs(target - force) > self.tolerance: if abs(self.target - self.value) > self.tolerance:
self.next_action(self.adjust) return self.do_adjust
elif self.init_action():
self.status = 'IDLE', 'within tolerance' self.status = 'IDLE', 'within tolerance'
def adjust(self, force, target): def do_adjust(self, state):
"""adjust force""" """adjust force"""
if state.init:
state.prev_force = None
if self.motor_busy(): if self.motor_busy():
return return
if abs(target - force) < self.tolerance: if abs(self.target - self.value) < self.tolerance:
self._in_cnt += 1 self._in_cnt += 1
if self._in_cnt >= 3: if self._in_cnt >= 3:
self.motor_play = 0 return self.do_within_tolerance
self.next_action(self.within_tolerance)
return
else: else:
self._in_cnt = 0 self._in_cnt = 0
if self.init_action(): if state.prev_force is None:
self.motor_play = 0 state.prev_force = self.value
state.prev_pos = self.motor.pos
self.write_adjusting(True) self.write_adjusting(True)
self.status = 'BUSY', 'adjusting force' self.status = 'BUSY', 'adjusting force'
elif not self._filtered: elif not self._filtered:
return return
else: else:
force_step = force - self._last_force if abs(self.value - state.prev_force) > self.substantial_force:
if self._expected_step: state.prev_force = self.value
# compare detected / expected step state.prev_pos = self.motor.value
q = force_step / self._expected_step
mstep = self._expected_step * self.slope
if q < 0.1:
self.motor_play += mstep
elif q > 0.5:
if abs(self.motor_play) <= abs(mstep):
self.motor_play = 0
else: else:
self.motor_play = self.motor_play * (1 - abs(mstep / self.motor_play)) motor_dif = abs(self.value - state.prev_pos)
if abs(self.motor_play) >= 10: if abs(self.value) < self.hysteresis:
if force < self.hysteresis: if motor_dif > self.motor_play:
self.log.warning('adjusting failed - try to find zero pos') self.log.warning('adjusting failed - try to find zero pos')
self.set_zero_pos(target, None) self.set_zero_pos(self.target, None)
self.next_action(self.find) return self.do_find
elif abs(self.motor_play) > self.max_play: elif motor_dif > self.motor_max_play:
self.stop() raise Error('force seems not to change substantially')
self.status = 'ERROR', 'force seems not to change substantially' force_step = (self.target - self.value) * self.pid_i
self.log.error(self.status[1]) self.drive_relative(force_step * self.slope)
return return Retry()
self._last_force = force
force_step = (target - force) * self.pid_i
if abs(target - force) < self.tolerance * 0.5:
self._expected_step = 0
return
self._expected_step = force_step
step = force_step * self.slope
self.drive_relative(step)
def idle(self, *args):
if self.init_action():
self.write_adjusting(False)
if self.status[0] == 'BUSY':
self.status = 'IDLE', 'stopped'
def read_value(self): def read_value(self):
try: try:
@ -313,7 +301,6 @@ class Uniax(PersistentMixin, Drivable):
now = time.time() now = time.time()
if self.motor_busy(): if self.motor_busy():
# do not filter while driving # do not filter while driving
self.value = force
self.reset_filter() self.reset_filter()
self._filtered = False self._filtered = False
else: else:
@ -322,46 +309,42 @@ class Uniax(PersistentMixin, Drivable):
if now < self._filter_start + self.filter_interval: if now < self._filter_start + self.filter_interval:
return Done return Done
force = self._sum / self._cnt force = self._sum / self._cnt
self.value = force
self.reset_filter(now) self.reset_filter(now)
self._filtered = True self._filtered = True
if abs(force) > self.limit + self.hysteresis: if abs(force) > self.limit + self.hysteresis:
self.motor.stop()
self.status = 'ERROR', 'above max limit' self.status = 'ERROR', 'above max limit'
self.log.error(self.status[1]) self.log.error(self.status[1])
return Done return Done
if self.zero_pos(force) is None and abs(force) > self.hysteresis and self._filtered: if self.zero_pos(force) is None and abs(force) > self.hysteresis and self._filtered:
self.set_zero_pos(force, self.motor.read_value()) self.set_zero_pos(force, self.motor.read_value())
self._action(self.value, self.target) return force
return Done
def write_target(self, target): def write_target(self, target):
if abs(target) > self.limit: if abs(target) > self.limit:
raise BadValueError('force above limit') raise BadValueError('force above limit')
if abs(target - self.value) <= self.tolerance: if abs(target - self.value) <= self.tolerance:
if self.isBusy(): if not self.isBusy():
self.stop()
self.next_action(self.within_tolerance)
else:
self.status = 'IDLE', 'already at target' self.status = 'IDLE', 'already at target'
self.next_action(self.within_tolerance) self._state.start(self.do_within_tolerance)
return target return target
self.log.info('new target %g', target) self.log.info('new target %g', target)
self._cnt_rderr = 0 self._cnt_rderr = 0
self._cnt_wrerr = 0 self._cnt_wrerr = 0
self.status = 'BUSY', 'changed target' self.status = 'BUSY', 'changed target'
if self.value * math.copysign(1, target) > self.hysteresis: if self.value * math.copysign(1, target) > self.hysteresis:
self.next_action(self.adjust) self._state.start(self.do_adjust)
else: else:
self.next_action(self.find) self._state.start(self.do_find)
return target return target
@Command() @Command()
def stop(self): def stop(self):
self._action = self.idle
if self.motor.isBusy(): if self.motor.isBusy():
self.log.info('stop motor') self.log.info('stop motor')
self.motor.stop() self.motor.stop()
self.next_action(self.idle) self.status = 'IDLE', 'stopped'
self._state.stop()
def write_force_offset(self, value): def write_force_offset(self, value):
self.force_offset = value self.force_offset = value