ultrasound: reworked after tests

- new classes in frappy_psi/ultrasound.py and frappy_psi/adq.mr.py
- add signal plottter
- move clients to bin/ directory

Change-Id: I8db8e5ebc082c346278f09e0e54504e070655f14
This commit is contained in:
zolliker 2025-03-26 15:31:46 +01:00
parent 322cd39e0a
commit 6f547f0781
7 changed files with 553 additions and 167 deletions

46
bin/peus-plot Normal file
View File

@ -0,0 +1,46 @@
#!/usr/bin/env python3
import sys
from frappy.client.interactive import Client
from frappy_psi.iqplot import Plot
import numpy as np
import matplotlib.pyplot as plt
if len(sys.argv) < 2:
print('Usage: python peusplot.py <maxY>')
def get_modules(name):
return list(filter(None, (globals().get(name % i) for i in range(10))))
secnode = Client('localhost:5000')
time_size = {'time', 'size'}
int_mods = [u] + get_modules('roi%d')
t_rois = get_modules('roi%d')
i_rois = get_modules('roi%di')
q_rois = get_modules('roi%dq')
if len(sys.argv) > 1:
maxy = float(sys.argv[1])
else:
maxy = 0.02
iqplot = Plot(maxy)
for i in range(99):
pass
try:
while True:
curves = np.array(u.get_curves())
iqplot.plot(curves,
rois=[(r.time, r.time + r.size) for r in int_mods],
average=([r.time for r in t_rois],
[r.value for r in i_rois],
[r.value for r in q_rois]))
plt.pause(0.5)
if iqplot.fig is None: # graph window closed
break
except KeyboardInterrupt:
iqplot.close()

60
bin/us-plot Normal file
View File

@ -0,0 +1,60 @@
#!/usr/bin/env python3
import sys
from frappy.client.interactive import Client
import numpy as np
import matplotlib.pyplot as plt
Client('pc13252:5000')
def plot(array, ax, style, xs):
xaxis = np.arange(len(array)) * xs
return ax.plot(xaxis, array, style)[0]
def update(array, line, xs):
xaxis = np.arange(len(array)) * xs
line.set_data(np.array([xaxis, array]))
def on_close(event):
sys.exit(0)
# inp_signal.read()
# out_signal.read()
if len(sys.argv) < 2:
print("""
Usage: python3 sig.py <end> [<start> [<npoints>]]
end: end of window [ns]
start: start of window [n2], default: 0
npoints: number fo points (default 1000)
""")
else:
start = 0
end = float(sys.argv[1])
npoints = 1000
if len(sys.argv) > 2:
start = float(sys.argv[2])
if len(sys.argv) > 3:
npoints = float(sys.argv[3])
fig, ax = plt.subplots(figsize=(15,3))
fig.canvas.mpl_connect('close_event', on_close)
try:
get_signal = iq.get_signal
print('plotting RUS signal')
except NameError:
get_signal = u.get_signal
print('plotting PE signal')
xs, signal = get_signal(start, end, npoints)
lines = [plot(s, ax, '-', xs) for s in signal]
while True:
plt.pause(0.5)
plt.draw()
xs, signal = get_signal(start, end, npoints)
for line, sig in zip(lines, signal):
update(sig, line, xs)

87
cfg/PEUS_cfg.py Normal file
View File

@ -0,0 +1,87 @@
Node('pulse_echo.cfg',
'ultrasound, pulse_echo configuration',
interface='5000',
)
Mod('u',
'frappy_psi.ultrasound.PulseEcho',
'ultrasound acquisition loop',
freq='f',
# pollinterval=0.1,
time=900.0,
size=5000.0,
nr=500,
sr=32768,
bw=1e7,
)
Mod('fio',
'frappy_psi.ultrasound.FreqStringIO', '',
uri='serial:///dev/ttyS1?baudrate=57600',
)
Mod('f',
'frappy_psi.ultrasound.Frequency',
'writable for frequency',
output='R', # L for LF (bnc), R for RF (type N)
io='fio',
amp=0.5, # VPP
)
Mod('fdif',
'frappy_psi.ultrasound.FrequencyDif',
'writable for frequency minus base frequency',
freq='f',
base=41490200.0,
)
# Mod('curves',
# 'frappy_psi.ultrasound.Curves',
# 't, I, Q and pulse arrays for plot',
# )
def roi(name, time, size, components='iqpa', enable=True, control=False, freq=None, **kwds):
description = 'I/Q of region {name}'
if freq:
kwds.update(cls='frappy_psi.ultrasound.ControlRoi',
description=f'{description} as control loop',
freq=freq, **kwds)
else:
kwds.update(cls='frappy_psi.ultrasound.Roi',
description=description, **kwds)
kwds.update({c: name + c for c in components})
Mod(name,
main='u',
time=time,
size=size,
enable=enable,
**kwds,
)
for c in components:
Mod(name + c,
'frappy.modules.Readable',
f'{name}{c} component',
)
# control loop
roi('roi0', 2450, 300, freq='f', maxstep=100000, minstep=4000)
# other rois
roi('roi1', 5950, 300)
roi('roi2', 9475, 300)
roi('roi3', 12900, 300)
#roi('roi4', 400, 30, False)
#roi('roi5', 400, 30, False)
#roi('roi6', 400, 30, False)
#roi('roi7', 400, 30, False)
#roi('roi8', 400, 30, False)
#roi('roi9', 400, 30, False)
Mod('delay',
'frappy_psi.dg645.Delay',
'delay line with 2 channels',
uri='serial:///dev/ttyS2',
on1=1e-09,
on2=1e-09,
off1=4e-07,
off2=6e-07,
)

39
cfg/RUS_cfg.py Normal file
View File

@ -0,0 +1,39 @@
Node(equipment_id = 'r_ultrasound.psi.ch',
description = 'resonant ultra sound setup',
interface = 'tcp://5000',
)
Mod('iq',
cls = 'frappy_psi.ultrasound.RUS',
description = 'ultrasound iq mesurement',
imod = 'i',
qmod = 'q',
freq='f',
input_range=10, # VPP
input_delay = 0,
periods = 163,
)
Mod('freqio',
'frappy_psi.ultrasound.FreqStringIO',
' ',
uri = 'serial:///dev/ttyS1?baudrate=57600',
)
Mod('f',
cls = 'frappy_psi.ultrasound.Frequency',
description = 'ultrasound frequency',
io='freqio',
output='L', # L for LF (bnc), R for RF (type N)
target=10000,
)
Mod('i',
cls='frappy.modules.Readable',
description='I component',
)
Mod('q',
cls='frappy.modules.Readable',
description='Q component',
)

View File

@ -50,6 +50,27 @@ GHz = 1e9
RMS_TO_VPP = 2 * np.sqrt(2) RMS_TO_VPP = 2 * np.sqrt(2)
class Timer:
def __init__(self):
self.data = [(time.time(), 'start')]
def __call__(self, text=''):
now = time.time()
prev = self.data[-1][0]
self.data.append((now, text))
return now - prev
def summary(self):
return ' '.join(f'{txt} {tim:.3f}' for tim, txt in self.data[1:])
def show(self):
first = prev = self.data[0][0]
print('---', first)
for tim, txt in self.data[1:]:
print(f'{(tim - first) * 1000:9.3f} {(tim - prev) * 1000:9.3f} ms {txt}')
prev = tim
class Adq: class Adq:
sample_rate = 2 * GHz sample_rate = 2 * GHz
max_number_of_channels = 2 max_number_of_channels = 2
@ -161,7 +182,6 @@ class Adq:
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num) ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
ADQAPI.ADQ_ArmTrigger(self.adq_cu, self.adq_num) ADQAPI.ADQ_ArmTrigger(self.adq_cu, self.adq_num)
self.data = data self.data = data
self.starttime = time.time()
def get_data(self): def get_data(self):
"""get new data if available""" """get new data if available"""
@ -173,12 +193,14 @@ class Adq:
if ADQAPI.ADQ_GetAcquiredAll(self.adq_cu, self.adq_num): if ADQAPI.ADQ_GetAcquiredAll(self.adq_cu, self.adq_num):
ready = True ready = True
data.timer('ready')
else: else:
if self.trigger == SW_TRIG: if self.trigger == SW_TRIG:
ADQAPI.ADQ_SWTrig(self.adq_cu, self.adq_num) ADQAPI.ADQ_SWTrig(self.adq_cu, self.adq_num)
if not ready: if not ready:
self.busy = True self.busy = True
return None return None
self.data = None
t = time.time() t = time.time()
# Get data from ADQ # Get data from ADQ
if not ADQAPI.ADQ_GetData( if not ADQAPI.ADQ_GetData(
@ -187,7 +209,6 @@ class Adq:
0, self.number_of_records, ADQ_CHANNELS_MASK, 0, self.number_of_records, ADQ_CHANNELS_MASK,
0, self.samples_per_record, ADQ_TRANSFER_MODE_NORMAL): 0, self.samples_per_record, ADQ_TRANSFER_MODE_NORMAL):
raise RuntimeError('no success from ADQ_GetDATA') raise RuntimeError('no success from ADQ_GetDATA')
self.data = None
data.retrieve(self) data.retrieve(self)
return data return data
@ -197,12 +218,20 @@ class PEdata:
self.sample_rate = adq.sample_rate self.sample_rate = adq.sample_rate
self.samp_freq = self.sample_rate / GHz self.samp_freq = self.sample_rate / GHz
self.number_of_records = adq.number_of_records self.number_of_records = adq.number_of_records
self.timer = Timer()
def retrieve(self, adq):
data = [] data = []
rawsignal = []
for ch in range(2): for ch in range(2):
onedim = np.frombuffer(adq.target_buffers[ch].contents, dtype=np.int16) onedim = np.frombuffer(adq.target_buffers[ch].contents, dtype=np.int16)
data.append(onedim.reshape(adq.number_of_records, adq.samples_per_record) / float(2**14)) # 14 bits ADC rawsignal.append(onedim[:adq.samples_per_record])
# convert 16 bit int to a value in the range -1 .. 1
data.append(onedim.reshape(adq.number_of_records, adq.samples_per_record) / float(2 ** 15))
# Now this is an array with all records, but the time is artificial # Now this is an array with all records, but the time is artificial
self.data = data self.data = data
self.rawsignal = rawsignal
self.timer('retrieved')
def sinW(self, sig, freq, ti, tf): def sinW(self, sig, freq, ti, tf):
# sig: signal array # sig: signal array
@ -232,6 +261,7 @@ class PEdata:
wave1 = sigout * (a * np.cos(2*np.pi*freq*t) + b * np.sin(2*np.pi*freq*t)) wave1 = sigout * (a * np.cos(2*np.pi*freq*t) + b * np.sin(2*np.pi*freq*t))
wave2 = sigout * (a * np.sin(2*np.pi*freq*t) - b * np.cos(2*np.pi*freq*t)) wave2 = sigout * (a * np.sin(2*np.pi*freq*t) - b * np.cos(2*np.pi*freq*t))
return wave1, wave2 return wave1, wave2
def averageiq(self, data, freq, ti, tf): def averageiq(self, data, freq, ti, tf):
"""Average over records""" """Average over records"""
iorq = np.array([self.mix(data[0][i], data[1][i], freq, ti, tf) for i in range(self.number_of_records)]) iorq = np.array([self.mix(data[0][i], data[1][i], freq, ti, tf) for i in range(self.number_of_records)])
@ -254,24 +284,32 @@ class PEdata:
def gates_and_curves(self, freq, pulse, roi, bw_cutoff): def gates_and_curves(self, freq, pulse, roi, bw_cutoff):
"""return iq values of rois and prepare plottable curves for iq""" """return iq values of rois and prepare plottable curves for iq"""
self.ndecimate = int(round(self.sample_rate / freq)) self.timer('gates')
# times = [] try:
# times.append(('aviq', time.time())) self.ndecimate = int(round(self.sample_rate / freq))
except TypeError as e:
raise TypeError(f'{self.sample_rate}/{freq} {e}')
iq = self.averageiq(self.data, freq / GHz, *pulse) iq = self.averageiq(self.data, freq / GHz, *pulse)
# times.append(('filtro', time.time())) self.timer('aviq')
iqf = self.filtro(iq, bw_cutoff) iqf = self.filtro(iq, bw_cutoff)
m = len(iqf[0]) // self.ndecimate self.timer('filtro')
m = max(1, len(iqf[0]) // self.ndecimate)
ll = m * self.ndecimate ll = m * self.ndecimate
iqf = [iqfx[0:ll] for iqfx in iqf] iqf = [iqfx[0:ll] for iqfx in iqf]
# times.append(('iqdec', time.time())) self.timer('iqf')
iqd = np.average(np.resize(iqf, (2, m, self.ndecimate)), axis=2) iqd = np.average(np.resize(iqf, (2, m, self.ndecimate)), axis=2)
self.timer('avg')
t_axis = np.arange(m) * self.ndecimate / self.samp_freq t_axis = np.arange(m) * self.ndecimate / self.samp_freq
pulsig = np.abs(self.data[0][0]) pulsig = np.abs(self.data[0][0])
# times.append(('pulsig', time.time())) self.timer('pulsig')
pulsig = np.average(np.resize(pulsig, (m, self.ndecimate)), axis=1) pulsig = np.average(np.resize(pulsig, (m, self.ndecimate)), axis=1)
self.curves = (t_axis, iqd[0], iqd[1], pulsig) result = ([self.box(iqf, *r) for r in roi], # gates
# print(times) (t_axis, iqd[0], iqd[1], pulsig)) # curves
return [self.box(iqf, *r) for r in roi] self.timer('result')
# self.timer.show()
# ns = len(self.rawsignal[0]) * self.number_of_records
# print(f'{ns} {ns / 2e6} ms')
return result
class Namespace: class Namespace:
@ -290,24 +328,40 @@ class RUSdata:
self.inp = Namespace(idx=0, name='input') self.inp = Namespace(idx=0, name='input')
self.out = Namespace(idx=1, name='output') self.out = Namespace(idx=1, name='output')
self.channels = (self.inp, self.out) self.channels = (self.inp, self.out)
self.timer = Timer()
def retrieve(self, adq): def retrieve(self, adq):
self.timer('start retrieve')
npts = self.samples_per_record - self.delay_samples npts = self.samples_per_record - self.delay_samples
complex_sinusoid = np.exp(1j * 2 * np.pi * self.freq / self.sample_rate * np.arange(npts)) nbin = max(1, npts // (self.periods * 60)) # for performance reasons, do the binning first
nreduced = npts // nbin
ft = 2 * np.pi * self.freq * nbin / self.sample_rate * np.arange(nreduced)
self.timer('create time axis')
# complex_sinusoid = np.exp(1j * ft) # do not use this, below is 33 % faster
complex_sinusoid = 1j * np.sin(ft) + np.cos(ft)
self.timer('sinusoid')
rawsignal = [] # for raw plot
for chan in self.channels: # looping over input and output for chan in self.channels: # looping over input and output
# although the ADC is only 14 bit it is representet as unsigend 16 bit numbers, # although the ADC is only 14 bit it is represented as unsigend 16 bit numbers,
# and due to some calculations (calibration) the last 2 bits are not zero # and due to some calculations (calibration) the last 2 bits are not zero
isignal = np.frombuffer(adq.target_buffers[chan.idx].contents, dtype=np.int16)[self.delay_samples:] beg = self.delay_samples
# importatn convert to float first, before doing any calculations. isignal = np.frombuffer(adq.target_buffers[chan.idx].contents, dtype=np.int16)[beg:beg+nreduced * nbin]
# calculations with int16 may silently overflow self.timer('isignal')
chan.signal = isignal / float(2 ** 16) # in V -> peak to peak 1 V ~ +- 0.5 V reduced = isignal.reshape((-1, nbin)).mean(axis=1) # this converts also int16 to float
chan.ovr_rate = (np.abs(isignal) > 32000).sum() / npts # fraction of points near end of range self.timer('reduce')
rawsignal.append(reduced)
chan.signal = signal = reduced * 2 ** -16 # in V -> peak to peak 1 V ~ +- 0.5 V
self.timer('divide')
# calculate RMS * sqrt(2) -> peak sinus amplitude. # calculate RMS * sqrt(2) -> peak sinus amplitude.
# may be higher than the input range by a factor 1.4 when heavily clipped # may be higher than the input range by a factor 1.4 when heavily clipped
signal = chan.signal - np.median(chan.signal)
chan.amplitude = np.sqrt((signal ** 2).mean()) * RMS_TO_VPP chan.amplitude = np.sqrt((signal ** 2).mean()) * RMS_TO_VPP
self.timer('amp')
chan.mixed = signal * complex_sinusoid chan.mixed = signal * complex_sinusoid
self.timer('mix')
chan.mean = chan.mixed.mean() chan.mean = chan.mixed.mean()
self.timer('mean')
self.rawsignal = rawsignal
if self.inp.mean: if self.inp.mean:
self.iq = self.out.mean / self.inp.mean self.iq = self.out.mean / self.inp.mean
else: else:
@ -324,15 +378,19 @@ class RUSdata:
the imaginary part indicates a turning phase (rad/sec) the imaginary part indicates a turning phase (rad/sec)
the real part indicates changes in amplitude (0.01 ~= 1%/sec) the real part indicates changes in amplitude (0.01 ~= 1%/sec)
""" """
self.timer('get_quality')
npts = len(self.channels[0].signal) npts = len(self.channels[0].signal)
nper = npts // self.periods nper = npts // self.periods
nbin = 50 # 50 samples, 25 ns
for chan in self.channels: for chan in self.channels:
mean = chan.mixed.mean() mean = chan.mixed.mean()
chan.reduced = chan.mixed[:self.periods * nper].reshape((-1, nper)).mean(axis=1) / mean chan.reduced = chan.mixed[:self.periods * nper].reshape((-1, nper)).mean(axis=1) / mean
chan.binned = chan.signal[:npts // nbin * nbin].reshape((-1, nbin)).mean(axis=1)
timeaxis = np.arange(len(self.out.reduced)) * self.sample_rate / self.freq timeaxis = np.arange(len(self.out.reduced)) * self.sample_rate / self.freq
return Namespace( result = Namespace(
input_stddev = self.inp.reduced.std(), input_stddev=self.inp.reduced.std(),
output_slope = np.polyfit(timeaxis, self.out.reduced, 1)[0]) output_slope=np.polyfit(timeaxis, self.out.reduced, 1)[0])
self.timer('got_quality')
self.timer.show()
ns = len(self.rawsignal[0])
print(f'{ns} {ns / 2e6} ms')
return result

View File

@ -7,10 +7,12 @@ Created on Tue Feb 4 11:07:56 2020
import numpy as np import numpy as np
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
NAN = float('nan')
def rect(x1, x2, y1, y2): def rect(x1, x2, y1, y2):
return np.array([[x1,x2,x2,x1,x1],[y1,y1,y2,y2,y1]]) return np.array([[x1,x2,x2,x1,x1],[y1,y1,y2,y2,y1]])
NAN = float('nan')
def rects(intervals, y12): def rects(intervals, y12):
result = [rect(*intervals[0], *y12)] result = [rect(*intervals[0], *y12)]
@ -19,6 +21,7 @@ def rects(intervals, y12):
result.append(rect(*x12, *y12)) result.append(rect(*x12, *y12))
return np.concatenate(result, axis=1) return np.concatenate(result, axis=1)
class Plot: class Plot:
def __init__(self, maxy): def __init__(self, maxy):
self.lines = {} self.lines = {}
@ -54,6 +57,9 @@ class Plot:
self.fig = None self.fig = None
self.first = True self.first = True
def on_close(self, event):
self.fig = None
def plot(self, curves, rois=None, average=None): def plot(self, curves, rois=None, average=None):
boxes = rects(rois[1:], self.yaxis[0]) boxes = rects(rois[1:], self.yaxis[0])
pbox = rect(*rois[0], *self.yaxis[1]) pbox = rect(*rois[0], *self.yaxis[1])
@ -68,6 +74,7 @@ class Plot:
if self.first: if self.first:
plt.ion() plt.ion()
self.fig, axleft = plt.subplots(figsize=(15,7)) self.fig, axleft = plt.subplots(figsize=(15,7))
self.fig.canvas.mpl_connect('close_event', self.on_close)
plt.title("I/Q", fontsize=14) plt.title("I/Q", fontsize=14)
axleft.set_xlim(0, curves[0][-1]) axleft.set_xlim(0, curves[0][-1])
self.ax = [axleft, axleft.twinx()] self.ax = [axleft, axleft.twinx()]

View File

@ -26,9 +26,11 @@ import numpy as np
from frappy_psi.adq_mr import Adq, PEdata, RUSdata from frappy_psi.adq_mr import Adq, PEdata, RUSdata
from frappy.core import Attached, BoolType, Done, FloatRange, HasIO, StatusType, \ from frappy.core import Attached, BoolType, Done, FloatRange, HasIO, StatusType, \
IntRange, Module, Parameter, Readable, Writable, Drivable, StringIO, StringType, \ IntRange, Module, Parameter, Readable, Writable, StatusType, StringIO, StringType, \
IDLE, BUSY, DISABLED, WARN, ERROR, TupleOf, ArrayOf, Command, Attached, EnumType IDLE, BUSY, DISABLED, WARN, ERROR, TupleOf, ArrayOf, Command, Attached, EnumType ,\
Drivable
from frappy.properties import Property from frappy.properties import Property
from frappy.lib import clamp
# from frappy.modules import Collector # from frappy.modules import Collector
Collector = Readable Collector = Readable
@ -46,11 +48,12 @@ def fname_from_time(t, extension):
class Roi(Readable): class Roi(Readable):
main = Attached() main = Attached()
a = Attached(mandatory=False) # amplitude Readable
p = Attached(mandatory=False) # phase Readable
i = Attached(mandatory=False) # i Readable
q = Attached(mandatory=False) # amplitude Readable
value = Parameter('amplitude', FloatRange(), default=0) value = Parameter('i, q', TupleOf(FloatRange(), FloatRange()), default=(0, 0))
phase = Parameter('phase', FloatRange(unit='deg'), default=0)
i = Parameter('in phase', FloatRange(), default=0)
q = Parameter('out of phase', FloatRange(), default=0)
time = Parameter('start time', FloatRange(unit='nsec'), readonly=False) time = Parameter('start time', FloatRange(unit='nsec'), readonly=False)
size = Parameter('interval (symmetric around time)', FloatRange(unit='nsec'), readonly=False) size = Parameter('interval (symmetric around time)', FloatRange(unit='nsec'), readonly=False)
enable = Parameter('calculate this roi', BoolType(), readonly=False, default=True) enable = Parameter('calculate this roi', BoolType(), readonly=False, default=True)
@ -80,6 +83,49 @@ class Roi(Readable):
return Done return Done
class ControlRoi(Roi, Writable):
freq = Attached()
target = Parameter(datatype=Roi.value.datatype)
maxstep = Parameter('max frequency step', FloatRange(unit='Hz'), readonly=False,
default=10000)
minstep = Parameter('min frequency step for slope calculation', FloatRange(unit='Hz'),
readonly=False, default=4000)
slope = Parameter('inphase/frequency slope', FloatRange(), readonly=False,
default=1e6)
control_active = Parameter('are we controlling?', BoolType(), readonly=False)
_freq_target = None
_skipctrl = 2
_old = None
def doPoll(self):
inphase = self.value[0]
freq = self.freq.target
if freq != self._freq_target:
self._freq_target = freq
# do no control 2 times after changing frequency
self._skipctrl = 2
if self.control_active:
if self._old:
newfreq = freq + inphase * self.slope
fdif = freq - self._old[0]
if abs(fdif) >= self.minstep:
idif = inphase - self._old[1]
self.slope = - fdif / idif
else:
# do a 'test' step
newfreq = freq + self.minstep
self.old = (freq, inphase)
if self._skipctrl > 0: # do no control for some time after changing frequency
self._skipctrl -= 1
elif self.control_active:
self._freq_target = self.freq.write_target(clamp(freq - self.maxstep, newfreq, freq + self.maxstep))
def write_target(self, value):
self.control_active = True
return 0
class Pars(Module): class Pars(Module):
description = 'relevant parameters from SEA' description = 'relevant parameters from SEA'
@ -90,44 +136,75 @@ class Pars(Module):
class FreqStringIO(StringIO): class FreqStringIO(StringIO):
end_of_line = '\r' end_of_line = '\r\n'
class Frequency(HasIO, Writable): class Frequency(HasIO, Drivable):
value = Parameter('frequency', unit='Hz') value = Parameter('frequency', unit='Hz')
amp = Parameter('amplitude (VPP)', FloatRange(unit='V'), readonly=False) amp = Parameter('amplitude (VPP)', FloatRange(unit='V'), readonly=False)
output = Parameter('output: L or R', EnumType(L=1, R=0), readonly=False, default='L') output = Parameter('output: L or R', EnumType(L=1, R=0), readonly=False, default='L')
last_change = 0 last_change = 0
ioClass = FreqStringIO ioClass = FreqStringIO
dif = None dif = None
_freq = None _started = 0
_within_write_target = False
_nopoll_until = 0
def doPoll(self):
super().doPoll()
if self.isBusy() and time.time() > self._started + 5:
self.status = WARN, 'acquisition timeout'
def register_dif(self, dif): def register_dif(self, dif):
self.dif = dif self.dif = dif
def read_value(self): def read_value(self):
if self._freq is None: if time.time() > self._nopoll_until or self.value == 0:
self._freq = float(self.communicate('FREQ?')) self.value = float(self.communicate('FREQ?'))
return self._freq if self.dif:
self.dif.read_value()
return self.value
def set_busy(self):
"""called by an acquisition module
from a callback on value within write_target
"""
if self._within_write_target:
self._started = time.time()
self.log.info('set busy')
self.status = BUSY, 'waiting for acquisition'
def set_idle(self):
if self.isBusy():
self.status = IDLE, ''
def write_target(self, value): def write_target(self, value):
self._freq = float(self.communicate('FREQ %.15g;FREQ?' % value)) self._nopoll_until = time.time() + 10
self.last_change = time.time() try:
if self.dif: self._within_write_target = True
self.dif.read_value() # may trigger busy=True from an acquisition module
self.read_value() self.value = float(self.communicate('FREQ %.15g;FREQ?' % value))
return self._freq self.last_change = time.time()
if self.dif:
self.dif.read_value()
return self.value
finally:
self._within_write_target = False
def write_amp(self, amp): def write_amp(self, amp):
reply = self.communicate(f'AMP{self.output.name} {amp} VPP;AMP{self.output.name}? VPP') self._nopoll_until = time.time() + 10
return float(reply) self.amp = float(self.communicate(f'AMP{self.output.name} {amp} VPP;AMP{self.output.name}? VPP'))
return self.amp
def read_amp(self): def read_amp(self):
reply = self.communicate(f'AMP{self.output.name}? VPP') if time.time() > self._nopoll_until or self.amp == 0:
return float(reply) return float(self.communicate(f'AMP{self.output.name}? VPP'))
return self.amp
class FrequencyDif(Readable): class FrequencyDif(Drivable):
freq = Attached(Frequency) freq = Attached(Frequency)
base = Parameter('base frequency', FloatRange(unit='Hz'), default=0) base = Parameter('base frequency', FloatRange(unit='Hz'), default=0)
value = Parameter('difference to base frequency', FloatRange(unit='Hz'), default=0) value = Parameter('difference to base frequency', FloatRange(unit='Hz'), default=0)
@ -136,25 +213,54 @@ class FrequencyDif(Readable):
super().initModule() super().initModule()
self.freq.register_dif(self) self.freq.register_dif(self)
def write_value(self, target):
self.freq.write_target(target + self.base)
return self.value # this was updated in Frequency
def read_value(self): def read_value(self):
return self.freq - self.base return self.freq.value - self.base
def read_status(self):
return self.freq.read_status()
class Base: class Base:
freq = Attached() freq = Attached()
sr = Parameter('samples per record', datatype=IntRange(1, 1E9), default=16384) sr = Parameter('samples per record', datatype=IntRange(1, 1E9), default=16384)
adq = None adq = None
_rawsignal = None
_fast_poll = 0.001
def shutdownModule(self): def shutdownModule(self):
if self.adq: if self.adq:
self.adq.deletecu() self.adq.deletecu()
self.adq = None self.adq = None
@Command(argument=TupleOf(FloatRange(unit='ns'), FloatRange(unit='ns'), IntRange(0,99999)),
result=TupleOf(FloatRange(),
ArrayOf(ArrayOf(IntRange(-0x7fff, 0x7fff), 0, 99999))))
def get_signal(self, start, end, npoints):
"""get signal
:param start: start time (ns)
:param end: end time (ns)
:param npoints: hint for number of data points
:return: (<time-step>, array of array of y)
for performance reasons the result data is rounded to int16
"""
# convert ns to samples
sr = self.adq.sample_rate * 1e-9
istart = round(start * sr)
iend = min(self.sr, round(end * sr))
nbin = max(1, round((iend - istart) / npoints))
iend = iend // nbin * nbin
return (nbin / sr,
[np.round(ch[istart:iend].reshape((-1, nbin)).mean(axis=1)) for ch in self._rawsignal])
class PulseEcho(Base): class PulseEcho(Base, Readable):
value = Parameter("t, i, q, pulse curves", value = Parameter(default=0)
TupleOf(*[ArrayOf(FloatRange(), 0, 16283) for _ in range(4)]), default=[[]] * 4)
nr = Parameter('number of records', datatype=IntRange(1, 9999), default=500) nr = Parameter('number of records', datatype=IntRange(1, 9999), default=500)
bw = Parameter('bandwidth lowpassfilter', datatype=FloatRange(unit='Hz'), default=10E6) bw = Parameter('bandwidth lowpassfilter', datatype=FloatRange(unit='Hz'), default=10E6)
control = Parameter('control loop on?', BoolType(), readonly=False, default=True) control = Parameter('control loop on?', BoolType(), readonly=False, default=True)
@ -163,6 +269,8 @@ class PulseEcho(Base):
size = Parameter('pulse length (starting from time)', FloatRange(unit='nsec'), size = Parameter('pulse length (starting from time)', FloatRange(unit='nsec'),
readonly=False) readonly=False)
pulselen = Parameter('adjusted pulse length (integer number of periods)', FloatRange(unit='nsec'), default=1) pulselen = Parameter('adjusted pulse length (integer number of periods)', FloatRange(unit='nsec'), default=1)
# curves = Attached(mandatory=False)
pollinterval = Parameter('poll interval', datatype=FloatRange(0,120))
_starttime = None _starttime = None
@ -171,6 +279,49 @@ class PulseEcho(Base):
self.adq = Adq() self.adq = Adq()
self.adq.init(self.sr, self.nr) self.adq.init(self.sr, self.nr)
self.roilist = [] self.roilist = []
self.setFastPoll(True, self._fast_poll)
def doPoll(self):
try:
data = self.adq.get_data()
except Exception as e:
self.status = ERROR, repr(e)
return
if data is None:
if self.adq.busy:
return
self.adq.start(PEdata(self.adq))
self.setFastPoll(True, self._fast_poll)
return
roilist = [r for r in self.roilist if r.enable]
freq = self.freq.read_value()
if not freq:
self.log.info('freq=0')
return
gates, curves = data.gates_and_curves(
freq, (self.time, self.time + self.size),
[(r.time, r.time + r.size) for r in roilist], self.bw)
for i, roi in enumerate(roilist):
a = gates[i][0]
b = gates[i][1]
roi.value = a, b
if roi.i:
roi.i.value = a
if roi.q:
roi.q.value = b
if roi.a:
roi.a.value = math.sqrt(a ** 2 + b ** 2)
if roi.p:
roi.p.value = math.atan2(a, b) * 180 / math.pi
self._curves = curves
self._rawsignal = data.rawsignal
@Command(result=TupleOf(*[ArrayOf(FloatRange(), 0, 99999)
for _ in range(4)]))
def get_curves(self):
"""retrieve curves"""
return self._curves
def write_nr(self, value): def write_nr(self, value):
self.adq.init(self.sr, value) self.adq.init(self.sr, value)
@ -184,46 +335,6 @@ class PulseEcho(Base):
def register_roi(self, roi): def register_roi(self, roi):
self.roilist.append(roi) self.roilist.append(roi)
# TODO: fix
# def go(self):
# self._starttime = time.time()
# self.adq.start()
def read_value(self):
# TODO: data = self.get_data()
if self.get_rawdata(): # new data available
roilist = [r for r in self.roilist if r.enable]
freq = self.freq.value
gates = self.adq.gates_and_curves(self._data, freq,
(self.time, self.time + self.size),
[r.interval for r in roilist])
for i, roi in enumerate(roilist):
roi.i = a = gates[i][0]
roi.q = b = gates[i][1]
roi.value = math.sqrt(a ** 2 + b ** 2)
roi.phase = math.atan2(a, b) * 180 / math.pi
return self.adq.curves
# TODO: CONTROL
# inphase = self.roilist[0].i
# if self.control:
# newfreq = freq + inphase * self.slope - self.basefreq
# # step = sorted((-self.maxstep, inphase * self.slope, self.maxstep))[1]
# if self.old:
# fdif = freq - self.old[0]
# idif = inphase - self.old[1]
# if abs(fdif) >= self.minstep:
# self.slope = - fdif / idif
# else:
# fdif = 0
# idif = 0
# newfreq = freq + self.minstep
# self.old = (freq, inphase)
# if self.skipctrl > 0: # do no control for some time after changing frequency
# self.skipctrl -= 1
# elif self.control:
# self.freq = sorted((self.freq - self.maxstep, newfreq, self.freq + self.maxstep))[1]
CONTINUE = 0 CONTINUE = 0
GO = 1 GO = 1
@ -235,26 +346,21 @@ class RUS(Base, Collector):
freq = Attached() freq = Attached()
imod = Attached(mandatory=False) imod = Attached(mandatory=False)
qmod = Attached(mandatory=False) qmod = Attached(mandatory=False)
input_signal = Attached(mandatory=False)
output_signal = Attached(mandatory=False)
value = Parameter('averaged (I, Q) tuple', TupleOf(FloatRange(), FloatRange())) value = Parameter('averaged (I, Q) tuple', TupleOf(FloatRange(), FloatRange()))
status = Parameter(datatype=StatusType(Readable, 'BUSY')) status = Parameter(datatype=StatusType(Readable, 'BUSY'))
periods = Parameter('number of periods', IntRange(1, 9999), default=12) periods = Parameter('number of periods', IntRange(1, 999999), default=12, readonly=False)
input_delay = Parameter('throw away everything before this time', input_delay = Parameter('throw away everything before this time',
FloatRange(unit='ns'), default=10000, readonly=False) FloatRange(unit='ns'), default=10000, readonly=False)
input_range = Parameter('input range (taking in to account attenuation)', FloatRange(unit='V'), input_range = Parameter('input range (taking into account attenuation)', FloatRange(unit='V'),
default=10, readonly=False) default=10, readonly=False)
output_range = Parameter('output range', FloatRange(unit='V'), output_range = Parameter('output range', FloatRange(unit='V'),
default=1, readonly=False) default=1, readonly=False)
input_phase_stddev = Parameter('input signal quality', FloatRange(unit='rad'), default=0)
output_phase_slope = Parameter('output signal phase slope', FloatRange(unit='rad/sec'), default=0)
output_amp_slope = Parameter('output signal amplitude change', FloatRange(unit='1/sec'), default=0)
input_amplitude = Parameter('input signal amplitude', FloatRange(unit='V'), default=0) input_amplitude = Parameter('input signal amplitude', FloatRange(unit='V'), default=0)
output_amplitude = Parameter('output signal amplitude', FloatRange(unit='V'), default=0) output_amplitude = Parameter('output signal amplitude', FloatRange(unit='V'), default=0)
phase = Parameter('phase', FloatRange(unit='deg'), default=0) phase = Parameter('phase', FloatRange(unit='deg'), default=0)
amp = Parameter('amplitude', FloatRange(), default=0) amp = Parameter('amplitude', FloatRange(), default=0)
continuous = Parameter('continuous mode', BoolType(), readonly=False, default=True) continuous = Parameter('continuous mode', BoolType(), readonly=False, default=True)
pollinterval = Parameter(datatype=FloatRange(0, 120), default=1) pollinterval = Parameter(datatype=FloatRange(0, 120), default=5)
_starttime = None _starttime = None
_iq = 0 _iq = 0
@ -262,16 +368,26 @@ class RUS(Base, Collector):
_action = CONTINUE # one of CONTINUE, GO, DONE_GO, WAIT_GO _action = CONTINUE # one of CONTINUE, GO, DONE_GO, WAIT_GO
_status = IDLE, 'no data yet' _status = IDLE, 'no data yet'
_busy = False # waiting for end of aquisition (not the same as self.status[0] == BUSY) _busy = False # waiting for end of aquisition (not the same as self.status[0] == BUSY)
_requested_freq = None
def initModule(self): def initModule(self):
super().initModule() super().initModule()
self.adq = Adq() self.adq = Adq()
self._ovr_rate = {}
self.freq.addCallback('value', self.update_freq) self.freq.addCallback('value', self.update_freq)
self.freq.addCallback('target', self.update_freq_target)
# self.write_periods(self.periods) # self.write_periods(self.periods)
def update_freq_target(self, value):
self.go()
def update_freq(self, value): def update_freq(self, value):
self.setFastPoll(True, 0.001) self.setFastPoll(True, self._fast_poll)
self._requested_freq = value
self.freq.set_busy() # is only effective when the update was trigger within freq.write_target
def get_quality_info(self, data):
"""hook for RESqual"""
data.timer.show()
def doPoll(self): def doPoll(self):
try: try:
@ -283,22 +399,10 @@ class RUS(Base, Collector):
self.wait_until = time.time() + 2 self.wait_until = time.time() + 2
return return
self.setFastPoll(False)
if data: # this is new data if data: # this is new data
self._data = data self._busy = False
for chan in data.channels: self.get_quality_info(data) # hook for RUSqual
if chan.ovr_rate: self._rawsignal = data.rawsignal
self._ovr_rate[chan.name] = chan.ovr_rate * 100
else:
self._ovr_rate.pop(chan.name, None)
qual = data.get_quality()
if self.input_signal:
self.input_signal.value = np.round(data.channels[0].binned, 3)
if self.output_signal:
self.output_signal.value = np.round(data.channels[1].binned, 3)
self.input_phase_stddev = qual.input_stddev.imag
self.output_phase_slope = qual.output_slope.imag
self.output_amp_slope = qual.output_slope.real
self.input_amplitude = data.inp.amplitude * self.input_range self.input_amplitude = data.inp.amplitude * self.input_range
self.output_amplitude = data.out.amplitude * self.output_range self.output_amplitude = data.out.amplitude * self.output_range
self._iq = iq = data.iq * self.output_range / self.input_range self._iq = iq = data.iq * self.output_range / self.input_range
@ -306,18 +410,33 @@ class RUS(Base, Collector):
self.amp = np.abs(iq) self.amp = np.abs(iq)
self.read_value() self.read_value()
self.set_status(IDLE, '') self.set_status(IDLE, '')
if self.freq.isBusy():
if data.freq == self._requested_freq:
self.log.info('set freq idle %.3f', time.time() % 1.0)
self.freq.set_idle()
else:
self.log.warn('freq does not match: requested %.14g, from data: %.14g',
self._requested_freq, data.freq)
else:
self.log.info('freq not busy %.3f', time.time() % 1.0)
if self._action == CONTINUE:
self.setFastPoll(False)
self.log.info('slow')
return
elif self._busy: elif self._busy:
self._busy = False
if self._action == DONE_GO: if self._action == DONE_GO:
self.log.info('busy')
self.set_status(BUSY, 'acquiring') self.set_status(BUSY, 'acquiring')
else: else:
self.set_status(IDLE, 'acquiring') self.set_status(IDLE, 'acquiring')
return return
if self._action == CONTINUE and self.continuous: if self._action == CONTINUE and self.continuous:
print('CONTINUE')
self.start_acquisition() self.start_acquisition()
self.set_status(IDLE, 'acquiring') self.set_status(IDLE, 'acquiring')
return return
if self._action == GO: if self._action == GO:
print('pending GO')
self.start_acquisition() self.start_acquisition()
self._action = DONE_GO self._action = DONE_GO
self.set_status(BUSY, 'acquiring') self.set_status(BUSY, 'acquiring')
@ -339,8 +458,6 @@ class RUS(Base, Collector):
self.read_status() self.read_status()
def read_status(self): def read_status(self):
if self._ovr_rate and self._status[0] < WARN:
return WARN, 'overrange on %s' % ' and '.join(self._ovr_rate)
return self._status return self._status
def read_value(self): def read_value(self):
@ -352,7 +469,8 @@ class RUS(Base, Collector):
@Command @Command
def go(self): def go(self):
"""start aquisition""" """start acquisition"""
self.log.info('go %.3f', time.time() % 1.0)
if self._busy: if self._busy:
self._action = GO self._action = GO
else: else:
@ -362,54 +480,25 @@ class RUS(Base, Collector):
self.read_status() self.read_status()
def start_acquisition(self): def start_acquisition(self):
self.log.info('start %.3f', time.time() % 1.0)
freq = self.freq.read_value() freq = self.freq.read_value()
self.sr = round(self.periods * self.adq.sample_rate / freq) self.sr = round(self.periods * self.adq.sample_rate / freq)
delay_samples = round(self.input_delay * self.adq.sample_rate * 1e-9) delay_samples = round(self.input_delay * self.adq.sample_rate * 1e-9)
self.adq.init(self.sr + delay_samples, 1) self.adq.init(self.sr + delay_samples, 1)
self.adq.start(RUSdata(self.adq, freq, self.periods, delay_samples)) self.adq.start(RUSdata(self.adq, freq, self.periods, delay_samples))
self._busy = True self._busy = True
self.setFastPoll(True, 0.001) self.setFastPoll(True, self._fast_poll)
class Signal(Readable): class RUSqual(RUS):
value = Parameter('pulse', ArrayOf(FloatRange(), maxlen=9999)) """version with additional info about quality of input and output signal"""
input_phase_stddev = Parameter('input signal quality', FloatRange(unit='rad'), default=0)
output_phase_slope = Parameter('output signal phase slope', FloatRange(unit='rad/sec'), default=0)
output_amp_slope = Parameter('output signal amplitude change', FloatRange(unit='1/sec'), default=0)
class ControlLoop(Module): def get_quality_info(self, data):
roi = Attached(Roi) qual = data.get_quality()
maxstep = Parameter('max frequency step', FloatRange(unit='Hz'), readonly=False, self.input_phase_stddev = qual.input_stddev.imag
default=10000) self.output_phase_slope = qual.output_slope.imag
minstep = Parameter('min frequency step for slope calculation', FloatRange(unit='Hz'), self.output_amp_slope = qual.output_slope.real
readonly=False, default=4000)
slope = Parameter('inphase/frequency slope', FloatRange(), readonly=False,
default=1e6)
# class Frequency(HasIO, Readable):
# pars = Attached()
# curves = Attached(mandatory=False)
# maxy = Property('plot y scale', datatype=FloatRange(), default=0.5)
#
# value = Parameter('frequency@I,q', datatype=FloatRange(unit='Hz'), default=0)
# basefreq = Parameter('base frequency', FloatRange(unit='Hz'), readonly=False)
# nr = Parameter('number of records', datatype=IntRange(1,10000), default=500)
# sr = Parameter('samples per record', datatype=IntRange(1,1E9), default=16384)
# freq = Parameter('target frequency', FloatRange(unit='Hz'), readonly=False)
# bw = Parameter('bandwidth lowpassfilter', datatype=FloatRange(unit='Hz'),default=10E6)
# amp = Parameter('amplitude', FloatRange(unit='dBm'), readonly=False)
# control = Parameter('control loop on?', BoolType(), readonly=False, default=True)
# rusmode = Parameter('RUS mode on?', BoolType(), readonly=False, default=False)
# time = Parameter('pulse start time', FloatRange(unit='nsec'),
# readonly=False)
# size = Parameter('pulse length (starting from time)', FloatRange(unit='nsec'),
# readonly=False)
# pulselen = Parameter('adjusted pulse length (integer number of periods)', FloatRange(unit='nsec'), default=1)
# maxstep = Parameter('max frequency step', FloatRange(unit='Hz'), readonly=False,
# default=10000)
# minstep = Parameter('min frequency step for slope calculation', FloatRange(unit='Hz'),
# readonly=False, default=4000)
# slope = Parameter('inphase/frequency slope', FloatRange(), readonly=False,
# default=1e6)
# plot = Parameter('create plot images', BoolType(), readonly=False, default=True)
# save = Parameter('save data', BoolType(), readonly=False, default=True)
# pollinterval = Parameter(datatype=FloatRange(0,120))