ultrasound: reworked after tests
- new classes in frappy_psi/ultrasound.py and frappy_psi/adq.mr.py - add signal plottter - move clients to bin/ directory Change-Id: I8db8e5ebc082c346278f09e0e54504e070655f14
This commit is contained in:
@ -50,6 +50,27 @@ GHz = 1e9
|
||||
RMS_TO_VPP = 2 * np.sqrt(2)
|
||||
|
||||
|
||||
class Timer:
|
||||
def __init__(self):
|
||||
self.data = [(time.time(), 'start')]
|
||||
|
||||
def __call__(self, text=''):
|
||||
now = time.time()
|
||||
prev = self.data[-1][0]
|
||||
self.data.append((now, text))
|
||||
return now - prev
|
||||
|
||||
def summary(self):
|
||||
return ' '.join(f'{txt} {tim:.3f}' for tim, txt in self.data[1:])
|
||||
|
||||
def show(self):
|
||||
first = prev = self.data[0][0]
|
||||
print('---', first)
|
||||
for tim, txt in self.data[1:]:
|
||||
print(f'{(tim - first) * 1000:9.3f} {(tim - prev) * 1000:9.3f} ms {txt}')
|
||||
prev = tim
|
||||
|
||||
|
||||
class Adq:
|
||||
sample_rate = 2 * GHz
|
||||
max_number_of_channels = 2
|
||||
@ -161,7 +182,6 @@ class Adq:
|
||||
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
||||
ADQAPI.ADQ_ArmTrigger(self.adq_cu, self.adq_num)
|
||||
self.data = data
|
||||
self.starttime = time.time()
|
||||
|
||||
def get_data(self):
|
||||
"""get new data if available"""
|
||||
@ -173,12 +193,14 @@ class Adq:
|
||||
|
||||
if ADQAPI.ADQ_GetAcquiredAll(self.adq_cu, self.adq_num):
|
||||
ready = True
|
||||
data.timer('ready')
|
||||
else:
|
||||
if self.trigger == SW_TRIG:
|
||||
ADQAPI.ADQ_SWTrig(self.adq_cu, self.adq_num)
|
||||
if not ready:
|
||||
self.busy = True
|
||||
return None
|
||||
self.data = None
|
||||
t = time.time()
|
||||
# Get data from ADQ
|
||||
if not ADQAPI.ADQ_GetData(
|
||||
@ -187,7 +209,6 @@ class Adq:
|
||||
0, self.number_of_records, ADQ_CHANNELS_MASK,
|
||||
0, self.samples_per_record, ADQ_TRANSFER_MODE_NORMAL):
|
||||
raise RuntimeError('no success from ADQ_GetDATA')
|
||||
self.data = None
|
||||
data.retrieve(self)
|
||||
return data
|
||||
|
||||
@ -197,12 +218,20 @@ class PEdata:
|
||||
self.sample_rate = adq.sample_rate
|
||||
self.samp_freq = self.sample_rate / GHz
|
||||
self.number_of_records = adq.number_of_records
|
||||
self.timer = Timer()
|
||||
|
||||
def retrieve(self, adq):
|
||||
data = []
|
||||
rawsignal = []
|
||||
for ch in range(2):
|
||||
onedim = np.frombuffer(adq.target_buffers[ch].contents, dtype=np.int16)
|
||||
data.append(onedim.reshape(adq.number_of_records, adq.samples_per_record) / float(2**14)) # 14 bits ADC
|
||||
rawsignal.append(onedim[:adq.samples_per_record])
|
||||
# convert 16 bit int to a value in the range -1 .. 1
|
||||
data.append(onedim.reshape(adq.number_of_records, adq.samples_per_record) / float(2 ** 15))
|
||||
# Now this is an array with all records, but the time is artificial
|
||||
self.data = data
|
||||
self.rawsignal = rawsignal
|
||||
self.timer('retrieved')
|
||||
|
||||
def sinW(self, sig, freq, ti, tf):
|
||||
# sig: signal array
|
||||
@ -232,6 +261,7 @@ class PEdata:
|
||||
wave1 = sigout * (a * np.cos(2*np.pi*freq*t) + b * np.sin(2*np.pi*freq*t))
|
||||
wave2 = sigout * (a * np.sin(2*np.pi*freq*t) - b * np.cos(2*np.pi*freq*t))
|
||||
return wave1, wave2
|
||||
|
||||
def averageiq(self, data, freq, ti, tf):
|
||||
"""Average over records"""
|
||||
iorq = np.array([self.mix(data[0][i], data[1][i], freq, ti, tf) for i in range(self.number_of_records)])
|
||||
@ -254,24 +284,32 @@ class PEdata:
|
||||
|
||||
def gates_and_curves(self, freq, pulse, roi, bw_cutoff):
|
||||
"""return iq values of rois and prepare plottable curves for iq"""
|
||||
self.ndecimate = int(round(self.sample_rate / freq))
|
||||
# times = []
|
||||
# times.append(('aviq', time.time()))
|
||||
self.timer('gates')
|
||||
try:
|
||||
self.ndecimate = int(round(self.sample_rate / freq))
|
||||
except TypeError as e:
|
||||
raise TypeError(f'{self.sample_rate}/{freq} {e}')
|
||||
iq = self.averageiq(self.data, freq / GHz, *pulse)
|
||||
# times.append(('filtro', time.time()))
|
||||
self.timer('aviq')
|
||||
iqf = self.filtro(iq, bw_cutoff)
|
||||
m = len(iqf[0]) // self.ndecimate
|
||||
self.timer('filtro')
|
||||
m = max(1, len(iqf[0]) // self.ndecimate)
|
||||
ll = m * self.ndecimate
|
||||
iqf = [iqfx[0:ll] for iqfx in iqf]
|
||||
# times.append(('iqdec', time.time()))
|
||||
self.timer('iqf')
|
||||
iqd = np.average(np.resize(iqf, (2, m, self.ndecimate)), axis=2)
|
||||
self.timer('avg')
|
||||
t_axis = np.arange(m) * self.ndecimate / self.samp_freq
|
||||
pulsig = np.abs(self.data[0][0])
|
||||
# times.append(('pulsig', time.time()))
|
||||
self.timer('pulsig')
|
||||
pulsig = np.average(np.resize(pulsig, (m, self.ndecimate)), axis=1)
|
||||
self.curves = (t_axis, iqd[0], iqd[1], pulsig)
|
||||
# print(times)
|
||||
return [self.box(iqf, *r) for r in roi]
|
||||
result = ([self.box(iqf, *r) for r in roi], # gates
|
||||
(t_axis, iqd[0], iqd[1], pulsig)) # curves
|
||||
self.timer('result')
|
||||
# self.timer.show()
|
||||
# ns = len(self.rawsignal[0]) * self.number_of_records
|
||||
# print(f'{ns} {ns / 2e6} ms')
|
||||
return result
|
||||
|
||||
|
||||
class Namespace:
|
||||
@ -290,24 +328,40 @@ class RUSdata:
|
||||
self.inp = Namespace(idx=0, name='input')
|
||||
self.out = Namespace(idx=1, name='output')
|
||||
self.channels = (self.inp, self.out)
|
||||
self.timer = Timer()
|
||||
|
||||
def retrieve(self, adq):
|
||||
self.timer('start retrieve')
|
||||
npts = self.samples_per_record - self.delay_samples
|
||||
complex_sinusoid = np.exp(1j * 2 * np.pi * self.freq / self.sample_rate * np.arange(npts))
|
||||
nbin = max(1, npts // (self.periods * 60)) # for performance reasons, do the binning first
|
||||
nreduced = npts // nbin
|
||||
ft = 2 * np.pi * self.freq * nbin / self.sample_rate * np.arange(nreduced)
|
||||
self.timer('create time axis')
|
||||
# complex_sinusoid = np.exp(1j * ft) # do not use this, below is 33 % faster
|
||||
complex_sinusoid = 1j * np.sin(ft) + np.cos(ft)
|
||||
self.timer('sinusoid')
|
||||
|
||||
rawsignal = [] # for raw plot
|
||||
for chan in self.channels: # looping over input and output
|
||||
# although the ADC is only 14 bit it is representet as unsigend 16 bit numbers,
|
||||
# although the ADC is only 14 bit it is represented as unsigend 16 bit numbers,
|
||||
# and due to some calculations (calibration) the last 2 bits are not zero
|
||||
isignal = np.frombuffer(adq.target_buffers[chan.idx].contents, dtype=np.int16)[self.delay_samples:]
|
||||
# importatn convert to float first, before doing any calculations.
|
||||
# calculations with int16 may silently overflow
|
||||
chan.signal = isignal / float(2 ** 16) # in V -> peak to peak 1 V ~ +- 0.5 V
|
||||
chan.ovr_rate = (np.abs(isignal) > 32000).sum() / npts # fraction of points near end of range
|
||||
beg = self.delay_samples
|
||||
isignal = np.frombuffer(adq.target_buffers[chan.idx].contents, dtype=np.int16)[beg:beg+nreduced * nbin]
|
||||
self.timer('isignal')
|
||||
reduced = isignal.reshape((-1, nbin)).mean(axis=1) # this converts also int16 to float
|
||||
self.timer('reduce')
|
||||
rawsignal.append(reduced)
|
||||
chan.signal = signal = reduced * 2 ** -16 # in V -> peak to peak 1 V ~ +- 0.5 V
|
||||
self.timer('divide')
|
||||
# calculate RMS * sqrt(2) -> peak sinus amplitude.
|
||||
# may be higher than the input range by a factor 1.4 when heavily clipped
|
||||
signal = chan.signal - np.median(chan.signal)
|
||||
chan.amplitude = np.sqrt((signal ** 2).mean()) * RMS_TO_VPP
|
||||
self.timer('amp')
|
||||
chan.mixed = signal * complex_sinusoid
|
||||
self.timer('mix')
|
||||
chan.mean = chan.mixed.mean()
|
||||
self.timer('mean')
|
||||
self.rawsignal = rawsignal
|
||||
if self.inp.mean:
|
||||
self.iq = self.out.mean / self.inp.mean
|
||||
else:
|
||||
@ -324,15 +378,19 @@ class RUSdata:
|
||||
the imaginary part indicates a turning phase (rad/sec)
|
||||
the real part indicates changes in amplitude (0.01 ~= 1%/sec)
|
||||
"""
|
||||
self.timer('get_quality')
|
||||
npts = len(self.channels[0].signal)
|
||||
nper = npts // self.periods
|
||||
nbin = 50 # 50 samples, 25 ns
|
||||
for chan in self.channels:
|
||||
mean = chan.mixed.mean()
|
||||
chan.reduced = chan.mixed[:self.periods * nper].reshape((-1, nper)).mean(axis=1) / mean
|
||||
chan.binned = chan.signal[:npts // nbin * nbin].reshape((-1, nbin)).mean(axis=1)
|
||||
|
||||
timeaxis = np.arange(len(self.out.reduced)) * self.sample_rate / self.freq
|
||||
return Namespace(
|
||||
input_stddev = self.inp.reduced.std(),
|
||||
output_slope = np.polyfit(timeaxis, self.out.reduced, 1)[0])
|
||||
result = Namespace(
|
||||
input_stddev=self.inp.reduced.std(),
|
||||
output_slope=np.polyfit(timeaxis, self.out.reduced, 1)[0])
|
||||
self.timer('got_quality')
|
||||
self.timer.show()
|
||||
ns = len(self.rawsignal[0])
|
||||
print(f'{ns} {ns / 2e6} ms')
|
||||
return result
|
||||
|
Reference in New Issue
Block a user