fix interplay mercury.TemperatureLoop and HasConvergence

frappy_psi.convergence.HasConvergence:
- no need to inherit HasStates (should be independent)
- trigger current state then tolerance or settling_time is changed

frappy_psi.mercury:
- improve readback checks
- fix interplay with HasControlledBy
- fix interplay with HasConvergence

Change-Id: I6efedbe6bbfba5a66ddd22ac441ebf38af11eda6
Reviewed-on: https://forge.frm2.tum.de/review/c/secop/frappy/+/31047
Tested-by: Jenkins Automated Tests <pedersen+jenkins@frm2.tum.de>
Reviewed-by: Markus Zolliker <markus.zolliker@psi.ch>
This commit is contained in:
2023-05-08 14:16:26 +02:00
parent bc2b860f31
commit 3a3ca0372b
3 changed files with 196 additions and 155 deletions

View File

@@ -21,11 +21,11 @@
# *****************************************************************************
from frappy.core import Parameter, FloatRange, BUSY, IDLE, WARN
from frappy.states import HasStates
from frappy.lib.statemachine import StateMachine, Retry, Stop
from frappy.lib import merge_status
class HasConvergence(HasStates):
class HasConvergence:
"""mixin for convergence checks
Implementation based on tolerance, settling time and timeout.
@@ -33,6 +33,8 @@ class HasConvergence(HasStates):
fly. However, the full history is not considered, which means for example
that the spent time inside tolerance stored already is not altered when
changing tolerance.
does not inherit from HasStates (own state machine!)
"""
tolerance = Parameter('absolute tolerance', FloatRange(0, unit='$'), readonly=False, default=0)
settling_time = Parameter(
@@ -51,118 +53,131 @@ class HasConvergence(HasStates):
As soon as the value is the first time within tolerance, the timeout criterium is changed:
then the timeout event happens after this time + <settling_time> + <timeout>.
''', FloatRange(0, unit='sec'), readonly=False, default=3600)
status = Parameter('status determined from convergence checks', default=(IDLE, ''))
convergence_state = None
status = Parameter() # make sure status is a parameter
convergence_state = None # the state machine
def earlyInit(self):
super().earlyInit()
self.convergence_state = StateMachine(threaded=False, logger=self.log,
cleanup=self.cleanup, spent_inside=0)
self.convergence_state = StateMachine(
threaded=False, logger=self.log, cleanup=self.convergence_cleanup,
status=(IDLE, ''), spent_inside=0, stop_status=(IDLE, 'stopped'))
def cleanup(self, state):
def convergence_cleanup(self, state):
state.default_cleanup(state)
if state.stopped:
if state.stopped is Stop: # and not Restart
self.status = WARN, 'stopped'
self.__set_status(WARN, 'stopped')
else:
self.status = WARN, repr(state.last_error)
self.__set_status(WARN, repr(state.last_error))
def doPoll(self):
super().doPoll()
state = self.convergence_state
state.cycle()
def get_min_slope(self, dif):
def __set_status(self, *status):
if status != self.convergence_state.status:
self.convergence_state.status = status
self.read_status()
def read_status(self):
return merge_status(super().read_status(), self.convergence_state.status)
#self.log.warn('inner %r conv %r merged %r', super().read_status(), self.convergence_state.status, merged)
#return merged
def convergence_min_slope(self, dif):
"""calculate minimum expected slope"""
slope = getattr(self, 'workingramp', 0) or getattr(self, 'ramp', 0)
if slope or not self.timeout:
return slope
return dif / self.timeout # assume exponential decay of dif, with time constant <tolerance>
def get_dif_tol(self):
value = self.read_value()
def convergence_dif(self):
"""get difference target - value and tolerance"""
tol = self.tolerance
if not tol:
tol = 0.01 * max(abs(self.target), abs(value))
dif = abs(self.target - value)
tol = 0.01 * max(abs(self.target), abs(self.value))
dif = abs(self.target - self.value)
return dif, tol
def start_state(self):
def convergence_start(self):
"""to be called from write_target"""
self.convergence_state.start(self.state_approach)
self.__set_status(BUSY, 'changed_target')
self.convergence_state.start(self.convergence_approach)
def state_approach(self, state):
def convergence_approach(self, state):
"""approaching, checking progress (busy)"""
state.spent_inside = 0
dif, tol = self.get_dif_tol()
dif, tol = self.convergence_dif()
if dif < tol:
state.timeout_base = state.now
return self.state_inside
return self.convergence_inside
if not self.timeout:
return Retry
if state.init:
state.timeout_base = state.now
state.dif_crit = dif # criterium for resetting timeout base
self.status = BUSY, 'approaching'
state.dif_crit -= self.get_min_slope(dif) * state.delta()
self.__set_status(BUSY, 'approaching')
state.dif_crit -= self.convergence_min_slope(dif) * state.delta()
if dif < state.dif_crit: # progress is good: reset timeout base
state.timeout_base = state.now
elif state.now > state.timeout_base + self.timeout:
self.status = WARN, 'convergence timeout'
return self.state_instable
self.__set_status(WARN, 'convergence timeout')
return self.convergence_instable
return Retry
def state_inside(self, state):
def convergence_inside(self, state):
"""inside tolerance, still busy"""
dif, tol = self.get_dif_tol()
dif, tol = self.convergence_dif()
if dif > tol:
return self.state_outside
return self.convergence_outside
state.spent_inside += state.delta()
if state.spent_inside > self.settling_time:
self.status = IDLE, 'reached target'
return self.state_stable
self.__set_status(IDLE, 'reached target')
return self.convergence_stable
if state.init:
self.status = BUSY, 'inside tolerance'
self.__set_status(BUSY, 'inside tolerance')
return Retry
def state_outside(self, state):
def convergence_outside(self, state):
"""temporarely outside tolerance, busy"""
dif, tol = self.get_dif_tol()
dif, tol = self.convergence_dif()
if dif < tol:
return self.state_inside
return self.convergence_inside
if state.now > state.timeout_base + self.settling_time + self.timeout:
self.status = WARN, 'settling timeout'
return self.state_instable
self.__set_status(WARN, 'settling timeout')
return self.convergence_instable
if state.init:
self.status = BUSY, 'outside tolerance'
self.__set_status(BUSY, 'outside tolerance')
# do not reset the settling time on occasional outliers, count backwards instead
state.spent_inside = max(0.0, state.spent_inside - state.delta())
return Retry
def state_stable(self, state):
def convergence_stable(self, state):
"""stable, after settling_time spent within tolerance, idle"""
dif, tol = self.get_dif_tol()
dif, tol = self.convergence_dif()
if dif <= tol:
return Retry
self.status = WARN, 'instable'
self.__set_status(WARN, 'instable')
state.spent_inside = max(self.settling_time, state.spent_inside)
return self.state_instable
return self.convergence_instable
def state_instable(self, state):
def convergence_instable(self, state):
"""went outside tolerance from stable, warning"""
dif, tol = self.get_dif_tol()
dif, tol = self.convergence_dif()
if dif <= tol:
state.spent_inside += state.delta()
if state.spent_inside > self.settling_time:
self.status = IDLE, 'stable' # = recovered from instable
return self.state_stable
self.__set_status(IDLE, 'stable') # = recovered from instable
return self.convergence_stable
else:
state.spent_inside = max(0, state.spent_inside - state.delta())
return Retry
def state_interrupt(self, state):
def convergence_interrupt(self, state):
"""stopping"""
self.status = IDLE, 'stopped' # stop called
return self.state_instable
self.__set_status(state.stop_status) # stop called
return self.convergence_instable
def stop(self):
"""set to idle when busy
@@ -170,4 +185,14 @@ class HasConvergence(HasStates):
does not stop control!
"""
if self.isBusy():
self.convergence_state.start(self.state_interrupt)
self.convergence_state.start(self.convergence_interrupt)
def write_settling_time(self, value):
if self.pollInfo:
self.pollInfo.trigger(True)
return value
def write_tolerance(self, value):
if self.pollInfo:
self.pollInfo.trigger(True)
return value

View File

@@ -25,12 +25,13 @@ import math
import re
import time
from frappy.core import Drivable, HasIO, Writable, \
Parameter, Property, Readable, StringIO, Attached, IDLE, nopoll
from frappy.core import Drivable, HasIO, Writable, StatusType, \
Parameter, Property, Readable, StringIO, Attached, IDLE, RAMPING, nopoll
from frappy.datatypes import EnumType, FloatRange, StringType, StructOf, BoolType, TupleOf
from frappy.errors import HardwareError, ProgrammingError, ConfigError
from frappy.errors import HardwareError, ProgrammingError, ConfigError, RangeError
from frappy_psi.convergence import HasConvergence
from frappy.lib.enum import Enum
from frappy.states import Retry, Finish
from frappy.mixins import HasOutputModule, HasControlledBy
VALUE_UNIT = re.compile(r'(.*\d|inf)([A-Za-z/%]*)$')
@@ -126,7 +127,7 @@ class MercuryChannel(HasIO):
msg = f'invalid reply {reply!r} to cmd {cmd!r}'
raise HardwareError(msg) from None
def multichange(self, adr, values, convert=as_float, tolerance=0, n_retry=3):
def multichange(self, adr, values, convert=as_float, tolerance=0, n_retry=3, lazy=False):
"""set parameter(s) in mercury syntax
:param adr: as in multiquery method. SET: is added automatically
@@ -134,6 +135,7 @@ class MercuryChannel(HasIO):
:param convert: a converter function (converts given value to string and replied string to value)
:param tolerance: tolerance for readback check
:param n_retry: number of retries or 0 for no readback check
:param lazy: check direct reply only (no additional query)
:return: the values as tuple
Example (kind=TEMP, slot=DB6.T1:
@@ -145,6 +147,7 @@ class MercuryChannel(HasIO):
adr = self._complete_adr(adr)
params = [f'{k}:{convert(v)}' for k, v in values]
cmd = f"SET:{adr}:{':'.join(params)}"
givenkeys = tuple(v[0] for v in values)
for _ in range(max(1, n_retry)): # try n_retry times or until readback result matches
reply = self.communicate(cmd)
head = f'STAT:SET:{adr}:'
@@ -153,29 +156,35 @@ class MercuryChannel(HasIO):
replyiter = iter(reply[len(head):].split(':'))
# reshuffle reply=(k1, r1, v1, k2, r2, v1) --> keys = (k1, k2), result = (r1, r2), valid = (v1, v2)
keys, result, valid = zip(*zip(replyiter, replyiter, replyiter))
assert keys == tuple(k for k, _ in values)
assert keys == givenkeys
assert any(v == 'VALID' for v in valid)
result = tuple(convert(r) for r in result)
except (AssertionError, AttributeError, ValueError) as e:
time.sleep(0.1) # in case of missed replies this might help to skip garbage
raise HardwareError(f'invalid reply {reply!r} to cmd {cmd!r}') from e
if n_retry == 0:
return [v[1] for v in values] # no readback check
keys = [v[0] for v in values]
debug = []
readback = self.multiquery(adr, keys, convert, debug)
for k, r, b in zip(keys, result, readback):
return [v for _, v in values]
if lazy:
debug = [reply]
readback = [v for _, v in values]
else:
debug = []
readback = list(self.multiquery(adr, givenkeys, convert, debug))
failed = False
for i, ((k, v), r, b) in enumerate(zip(values, result, readback)):
if convert is as_float:
tol = max(abs(r) * 1e-3, abs(b) * 1e-3, tolerance)
if abs(r - b) > tol:
break
elif r != b:
break
else:
if abs(b - v) > tol or abs(r - v) > tol:
readback[i] = None
failed = True
elif b != v or r != v:
readback[i] = None
failed = True
if not failed:
return readback
self.log.warning('sent: %s', cmd)
self.log.warning('got: %s', debug[0])
return readback
self.log.warning('sent: %s', cmd)
self.log.warning('got: %s', debug[0])
return tuple(v[1] if b is None else b for b, v in zip(readback, values))
def query(self, adr, convert=as_float):
"""query a single parameter
@@ -185,9 +194,9 @@ class MercuryChannel(HasIO):
adr, _, name = adr.rpartition(':')
return self.multiquery(adr, [name], convert)[0]
def change(self, adr, value, convert=as_float, tolerance=0, n_retry=3):
def change(self, adr, value, convert=as_float, tolerance=0, n_retry=3, lazy=False):
adr, _, name = adr.rpartition(':')
return self.multichange(adr, [(name, value)], convert, tolerance, n_retry)[0]
return self.multichange(adr, [(name, value)], convert, tolerance, n_retry, lazy)[0]
class TemperatureSensor(MercuryChannel, Readable):
@@ -202,38 +211,14 @@ class TemperatureSensor(MercuryChannel, Readable):
return self.query('DEV::TEMP:SIG:RES')
class HasInput(MercuryChannel):
controlled_by = Parameter('source of target value', EnumType(members={'self': SELF}), default=0)
# do not know why this? target = Parameter(readonly=False)
input_callbacks = ()
def register_input(self, name, control_off):
"""register input
:param name: the name of the module (for controlled_by enum)
:param control_off: a method on the input module to switch off control
"""
if not self.input_callbacks:
self.input_callbacks = []
self.input_callbacks.append(control_off)
prev_enum = self.parameters['controlled_by'].datatype._enum
# add enum member, using autoincrement feature of Enum
self.parameters['controlled_by'].datatype = EnumType(Enum(prev_enum, **{name: None}))
def write_controlled_by(self, value):
if self.controlled_by == value:
return value
self.controlled_by = value
if value == SELF:
for control_off in self.input_callbacks:
control_off()
return value
class HasInput(HasControlledBy, MercuryChannel):
pass
class Loop(HasConvergence, MercuryChannel, Drivable):
class Loop(HasOutputModule, MercuryChannel, Drivable):
"""common base class for loops"""
control_active = Parameter('control mode', BoolType())
output_module = Attached(HasInput, mandatory=False)
control_active = Parameter(readonly=False)
ctrlpars = Parameter(
'pid (proportional band, integral time, differential time',
StructOf(p=FloatRange(0, unit='$'), i=FloatRange(0, unit='min'), d=FloatRange(0, unit='min')),
@@ -241,35 +226,15 @@ class Loop(HasConvergence, MercuryChannel, Drivable):
)
enable_pid_table = Parameter('', BoolType(), readonly=False)
def initModule(self):
super().initModule()
if self.output_module:
self.output_module.register_input(self.name, self.control_off)
def control_off(self):
if self.control_active:
self.log.warning('switch to manual mode')
self.write_control_active(False)
def set_output(self, active):
def set_output(self, active, source='HW'):
if active:
if self.output_module and self.output_module.controlled_by != self.name:
self.output_module.write_controlled_by(self.name)
self.activate_control()
else:
if self.output_module and self.output_module.controlled_by != SELF:
self.output_module.write_controlled_by(SELF)
status = IDLE, 'control inactive'
if self.status != status:
self.status = status
self.deactivate_control(source)
def set_target(self, target):
if self.control_active:
self.set_output(True)
else:
self.log.warning('switch loop control on')
self.write_control_active(True)
self.set_output(True)
self.target = target
self.start_state()
def read_enable_pid_table(self):
return self.query(f'DEV::{self.kinds[0]}:LOOP:PIDT', off_on)
@@ -286,8 +251,24 @@ class Loop(HasConvergence, MercuryChannel, Drivable):
pid = self.multichange(f'DEV::{self.kinds[0]}:LOOP', [(k, value[k.lower()]) for k in 'PID'])
return {k.lower(): v for k, v in zip('PID', pid)}
def read_status(self):
return IDLE, ''
class HeaterOutput(HasInput, MercuryChannel, Writable):
class ConvLoop(HasConvergence, Loop):
def deactivate_control(self, source):
if self.control_active:
super().deactivate_control(source)
self.convergence_state.start(self.inactive_state)
if self.pollInfo:
self.pollInfo.trigger(True)
def inactive_state(self, state):
self.convergence_state.status = IDLE, 'control inactive'
return Finish
class HeaterOutput(HasInput, Writable):
"""heater output
Remark:
@@ -324,7 +305,7 @@ class HeaterOutput(HasInput, MercuryChannel, Writable):
if self._last_target is not None:
if not self.true_power:
self._volt_target = math.sqrt(self._last_target * self.resistivity)
self.change('DEV::HTR:SIG:VOLT', self._volt_target)
self.change('DEV::HTR:SIG:VOLT', self._volt_target, tolerance=2e-4)
return self.resistivity
def read_status(self):
@@ -344,7 +325,7 @@ class HeaterOutput(HasInput, MercuryChannel, Writable):
self.write_resistivity(round(res, 1))
if self.controlled_by == 0:
self._volt_target = math.sqrt(self._last_target * self.resistivity)
self.change('DEV::HTR:SIG:VOLT', self._volt_target)
self.change('DEV::HTR:SIG:VOLT', self._volt_target, tolerance=2e-4)
return volt * current
def read_target(self):
@@ -362,23 +343,25 @@ class HeaterOutput(HasInput, MercuryChannel, Writable):
might be used by a software loop
"""
self._volt_target = math.sqrt(target * self.resistivity)
self.change('DEV::HTR:SIG:VOLT', self._volt_target)
self.change('DEV::HTR:SIG:VOLT', self._volt_target, tolerance=2e-4)
self._last_target = target
return target
def write_target(self, value):
self.write_controlled_by(SELF)
self.self_controlled()
return self.set_target(value)
class TemperatureLoop(TemperatureSensor, Loop, Drivable):
class TemperatureLoop(TemperatureSensor, ConvLoop):
kind = 'TEMP'
output_module = Attached(HasInput, mandatory=False)
ramp = Parameter('ramp rate', FloatRange(0, unit='$/min'), readonly=False)
enable_ramp = Parameter('enable ramp rate', BoolType(), readonly=False)
setpoint = Parameter('working setpoint (differs from target when ramping)', FloatRange(0, unit='$'))
status = Parameter(datatype=StatusType(Drivable, 'RAMPING')) # add ramping status
tolerance = Parameter(default=0.1)
_last_setpoint_change = None
__status = IDLE, ''
# overridden in subclass frappy_psi.triton.TemperatureLoop
ENABLE = 'TEMP:LOOP:ENAB'
ENABLE_RAMP = 'TEMP:LOOP:RENA'
@@ -394,7 +377,9 @@ class TemperatureLoop(TemperatureSensor, Loop, Drivable):
return active
def write_control_active(self, value):
self.set_output(value)
if value:
raise RangeError('write to target to switch control on')
self.set_output(value, 'user')
return self.change(f'DEV::{self.ENABLE}', value, off_on)
@nopoll # polled by read_setpoint
@@ -407,43 +392,65 @@ class TemperatureLoop(TemperatureSensor, Loop, Drivable):
def read_setpoint(self):
setpoint = self.query('DEV::TEMP:LOOP:TSET')
if self.enable_ramp:
if setpoint == self.setpoint:
if setpoint == self.target:
self.__ramping = False
elif setpoint == self.setpoint:
# update target when working setpoint does no longer change
if setpoint != self.target and self._last_setpoint_change is not None:
if self._last_setpoint_change is not None:
unchanged_since = time.time() - self._last_setpoint_change
if unchanged_since > max(12.0, 0.06 / max(1e-4, self.ramp)):
self.__ramping = False
self.target = self.setpoint
return setpoint
self._last_setpoint_change = time.time()
else:
self.__ramping = False
self.target = setpoint
return setpoint
def set_target(self, target):
self.change(f'DEV::{self.ENABLE}', True, off_on)
super().set_target(target)
def deactivate_control(self, source):
if self.__ramping:
self.__ramping = False
# stop ramping setpoint
self.change('DEV::TEMP:LOOP:TSET', self.read_setpoint(), lazy=True)
super().deactivate_control(source)
def ramping_state(self, state):
self.read_setpoint()
if self.__ramping:
return Retry
return self.convergence_approach
def write_target(self, value):
target = self.change('DEV::TEMP:LOOP:TSET', value)
target = self.change('DEV::TEMP:LOOP:TSET', value, lazy=True)
if self.enable_ramp:
self._last_setpoint_change = None
self.__ramping = True
self.set_target(value)
self.convergence_state.status = RAMPING, 'ramping'
self.read_status()
self.convergence_state.start(self.ramping_state)
else:
self.set_target(target)
self.convergence_start()
self.read_status()
return self.target
def read_enable_ramp(self):
return self.query(f'DEV::{self.ENABLE_RAMP}', off_on)
def write_enable_ramp(self, value):
return self.change(f'DEV::{self.ENABLE_RAMP}', value, off_on)
def set_output(self, active):
if active:
if self.output_module and self.output_module.controlled_by != self.name:
self.output_module.write_controlled_by(self.name)
else:
if self.output_module and self.output_module.controlled_by != SELF:
self.output_module.write_controlled_by(SELF)
status = IDLE, 'control inactive'
if self.status != status:
self.status = status
if self.enable_ramp < value: # ramp_enable was off: start from current value
self.change('DEV::TEMP:LOOP:TSET', self.value, lazy=True)
result = self.change(f'DEV::{self.ENABLE_RAMP}', value, off_on)
if self.isDriving() and value != self.enable_ramp:
self.enable_ramp = value
self.write_target(self.target)
return result
def read_ramp(self):
result = self.query(f'DEV::{self.RAMP_RATE}')
@@ -470,7 +477,7 @@ class PressureSensor(MercuryChannel, Readable):
return self.query('DEV::PRES:SIG:PRES')
class ValvePos(HasInput, MercuryChannel, Drivable):
class ValvePos(HasInput, Drivable):
kind = 'PRES,AUX'
value = Parameter('value pos', FloatRange(unit='%'), readonly=False)
target = Parameter('valve pos target', FloatRange(0, 100, unit='$'), readonly=False)
@@ -491,11 +498,11 @@ class ValvePos(HasInput, MercuryChannel, Drivable):
return self.query('DEV::PRES:LOOP:FSET')
def write_target(self, value):
self.write_controlled_by(SELF)
self.self_controlled()
return self.change('DEV::PRES:LOOP:FSET', value)
class PressureLoop(HasInput, PressureSensor, Loop, Drivable):
class PressureLoop(PressureSensor, HasControlledBy, ConvLoop):
kind = 'PRES'
output_module = Attached(ValvePos, mandatory=False)
tolerance = Parameter(default=0.1)
@@ -506,7 +513,7 @@ class PressureLoop(HasInput, PressureSensor, Loop, Drivable):
return active
def write_control_active(self, value):
self.set_output(value)
self.set_output(value, 'user')
return self.change('DEV::PRES:LOOP:FAUT', value, off_on)
def read_target(self):
@@ -521,7 +528,7 @@ class PressureLoop(HasInput, PressureSensor, Loop, Drivable):
super().set_target(target)
def write_target(self, value):
self.write_controlled_by(SELF)
self.self_controlled()
self.set_target(value)
return value
@@ -548,14 +555,13 @@ class HasAutoFlow:
self.needle_valve.register_input(self.name, self.auto_flow_off)
def write_auto_flow(self, value):
if value:
if self.needle_valve and self.needle_valve.controlled_by != self.name:
self.needle_valve.write_controlled_by(self.name)
else:
if self.needle_valve and self.needle_valve.controlled_by != SELF:
self.needle_valve.write_controlled_by(SELF)
_, (fmin, _) = self.flowpars
self.needle_valve.write_target(fmin)
if self.needle_valve:
if value:
self.needle_valve.controlled_by = self.name
else:
if self.needle_valve.controlled_by != SELF:
self.needle_valve.controlled_by = SELF
self.needle_valve.write_target(self.flowpars[1][0]) # flow min
return value
def auto_flow_off(self):