WIP new version of ultrasound
Change-Id: Iadb83396a64e277f6f0a37f7a96d92105648c4fe
This commit is contained in:
@ -1,256 +1,313 @@
|
||||
"""
|
||||
Created on Tue Nov 26 15:42:43 2019
|
||||
|
||||
@author: tartarotti_d-adm
|
||||
"""
|
||||
|
||||
|
||||
import sys
|
||||
import atexit
|
||||
import signal
|
||||
import time
|
||||
import numpy as np
|
||||
import ctypes as ct
|
||||
from numpy import sqrt, arctan2, sin, cos
|
||||
import scipy.signal
|
||||
|
||||
#from pylab import *
|
||||
|
||||
#ADQAPI = ct.cdll.LoadLibrary("ADQAPI.dll")
|
||||
ADQAPI = ct.cdll.LoadLibrary("libadq.so.0")
|
||||
|
||||
#For different trigger modes
|
||||
SW_TRIG = 1
|
||||
EXT_TRIG_1 = 2 #This external trigger does not work if the level of the trigger is very close to 0.5V. Now we have it close to 3V, and it works
|
||||
EXT_TRIG_2 = 7
|
||||
EXT_TRIG_3 = 8
|
||||
LVL_TRIG = 3
|
||||
INT_TRIG = 4
|
||||
LVL_FALLING = 0
|
||||
LVL_RISING = 1
|
||||
|
||||
#samples_per_record=16384
|
||||
ADQ_TRANSFER_MODE_NORMAL = 0x00
|
||||
ADQ_CHANNELS_MASK = 0x3
|
||||
|
||||
#f_LO = 40
|
||||
|
||||
def butter_lowpass(cutoff, sr, order=5):
|
||||
nyq = 0.5 * sr
|
||||
normal_cutoff = cutoff / nyq
|
||||
b, a = scipy.signal.butter(order, normal_cutoff, btype = 'low', analog = False)
|
||||
return b, a
|
||||
|
||||
|
||||
class Adq(object):
|
||||
max_number_of_channels = 2
|
||||
samp_freq = 2
|
||||
#ndecimate = 50 # decimation ratio (2GHz / 40 MHz)
|
||||
ndecimate = 50
|
||||
|
||||
def __init__(self, number_of_records, samples_per_record, bw_cutoff):
|
||||
self.number_of_records = number_of_records
|
||||
self.samples_per_record = samples_per_record
|
||||
self.bw_cutoff = bw_cutoff
|
||||
ADQAPI.ADQAPI_GetRevision()
|
||||
|
||||
# Manually set return type from some ADQAPI functions
|
||||
ADQAPI.CreateADQControlUnit.restype = ct.c_void_p
|
||||
ADQAPI.ADQ_GetRevision.restype = ct.c_void_p
|
||||
ADQAPI.ADQ_GetPtrStream.restype = ct.POINTER(ct.c_int16)
|
||||
ADQAPI.ADQControlUnit_FindDevices.argtypes = [ct.c_void_p]
|
||||
# Create ADQControlUnit
|
||||
self.adq_cu = ct.c_void_p(ADQAPI.CreateADQControlUnit())
|
||||
ADQAPI.ADQControlUnit_EnableErrorTrace(self.adq_cu, 3, '.')
|
||||
self.adq_num = 1
|
||||
|
||||
# Find ADQ devices
|
||||
ADQAPI.ADQControlUnit_FindDevices(self.adq_cu)
|
||||
n_of_ADQ = ADQAPI.ADQControlUnit_NofADQ(self.adq_cu)
|
||||
if n_of_ADQ != 1:
|
||||
raise ValueError('number of ADQs must be 1, not %d' % n_of_ADQ)
|
||||
|
||||
rev = ADQAPI.ADQ_GetRevision(self.adq_cu, self.adq_num)
|
||||
revision = ct.cast(rev,ct.POINTER(ct.c_int))
|
||||
print('\nConnected to ADQ #1')
|
||||
# Print revision information
|
||||
print('FPGA Revision: {}'.format(revision[0]))
|
||||
if (revision[1]):
|
||||
print('Local copy')
|
||||
else :
|
||||
print('SVN Managed')
|
||||
if (revision[2]):
|
||||
print('Mixed Revision')
|
||||
else :
|
||||
print('SVN Updated')
|
||||
print('')
|
||||
|
||||
ADQ_CLOCK_INT_INTREF = 0 #internal clock source
|
||||
ADQ_CLOCK_EXT_REF = 1 #internal clock source, external reference
|
||||
ADQ_CLOCK_EXT_CLOCK = 2 #External clock source
|
||||
ADQAPI.ADQ_SetClockSource(self.adq_cu, self.adq_num, ADQ_CLOCK_EXT_REF);
|
||||
|
||||
##########################
|
||||
# Test pattern
|
||||
#ADQAPI.ADQ_SetTestPatternMode(self.adq_cu, self.adq_num, 4)
|
||||
##########################
|
||||
# Sample skip
|
||||
#ADQAPI.ADQ_SetSampleSkip(self.adq_cu, self.adq_num, 1)
|
||||
##########################
|
||||
|
||||
# Set trig mode
|
||||
self.trigger = EXT_TRIG_1
|
||||
#trigger = LVL_TRIG
|
||||
success = ADQAPI.ADQ_SetTriggerMode(self.adq_cu, self.adq_num, self.trigger)
|
||||
if (success == 0):
|
||||
print('ADQ_SetTriggerMode failed.')
|
||||
if (self.trigger == LVL_TRIG):
|
||||
success = ADQAPI.ADQ_SetLvlTrigLevel(self.adq_cu, self.adq_num, -100)
|
||||
if (success == 0):
|
||||
print('ADQ_SetLvlTrigLevel failed.')
|
||||
success = ADQAPI.ADQ_SetTrigLevelResetValue(self.adq_cu, self.adq_num, 1000)
|
||||
if (success == 0):
|
||||
print('ADQ_SetTrigLevelResetValue failed.')
|
||||
success = ADQAPI.ADQ_SetLvlTrigChannel(self.adq_cu, self.adq_num, 1)
|
||||
if (success == 0):
|
||||
print('ADQ_SetLvlTrigChannel failed.')
|
||||
success = ADQAPI.ADQ_SetLvlTrigEdge(self.adq_cu, self.adq_num, LVL_RISING)
|
||||
if (success == 0):
|
||||
print('ADQ_SetLvlTrigEdge failed.')
|
||||
elif (self.trigger == EXT_TRIG_1) :
|
||||
success = ADQAPI.ADQ_SetExternTrigEdge(self.adq_cu, self.adq_num,2)
|
||||
if (success == 0):
|
||||
print('ADQ_SetLvlTrigEdge failed.')
|
||||
# success = ADQAPI.ADQ_SetTriggerThresholdVoltage(self.adq_cu, self.adq_num, trigger, ct.c_double(0.2))
|
||||
# if (success == 0):
|
||||
# print('SetTriggerThresholdVoltage failed.')
|
||||
print("CHANNEL:"+str(ct.c_int(ADQAPI.ADQ_GetLvlTrigChannel(self.adq_cu, self.adq_num))))
|
||||
self.setup_target_buffers()
|
||||
atexit.register(self.deletecu)
|
||||
signal.signal(signal.SIGTERM, lambda *_: sys.exit(0))
|
||||
|
||||
def setup_target_buffers(self):
|
||||
# Setup target buffers for data
|
||||
self.target_buffers=(ct.POINTER(ct.c_int16 * self.samples_per_record * self.number_of_records)
|
||||
* self.max_number_of_channels)()
|
||||
for bufp in self.target_buffers:
|
||||
bufp.contents = (ct.c_int16 * self.samples_per_record * self.number_of_records)()
|
||||
|
||||
def deletecu(self):
|
||||
# Only disarm trigger after data is collected
|
||||
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
||||
ADQAPI.ADQ_MultiRecordClose(self.adq_cu, self.adq_num);
|
||||
# Delete ADQControlunit
|
||||
ADQAPI.DeleteADQControlUnit(self.adq_cu)
|
||||
print('ADQ closed')
|
||||
|
||||
def start(self):
|
||||
"""start data acquisition"""
|
||||
# samples_per_records = samples_per_record/number_of_records
|
||||
# Change number of pulses to be acquired acording to how many records are taken
|
||||
# Start acquisition
|
||||
ADQAPI.ADQ_MultiRecordSetup(self.adq_cu, self.adq_num,
|
||||
self.number_of_records,
|
||||
self.samples_per_record)
|
||||
|
||||
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
||||
ADQAPI.ADQ_ArmTrigger(self.adq_cu, self.adq_num)
|
||||
|
||||
def getdata(self):
|
||||
"""wait for aquisition to be finished and get data"""
|
||||
#start = time.time()
|
||||
while(ADQAPI.ADQ_GetAcquiredAll(self.adq_cu,self.adq_num) == 0):
|
||||
time.sleep(0.001)
|
||||
#if (self.trigger == SW_TRIG):
|
||||
# ADQAPI.ADQ_SWTrig(self.adq_cu, self.adq_num)
|
||||
#mid = time.time()
|
||||
status = ADQAPI.ADQ_GetData(self.adq_cu, self.adq_num, self.target_buffers,
|
||||
self.samples_per_record * self.number_of_records, 2,
|
||||
0, self.number_of_records, ADQ_CHANNELS_MASK,
|
||||
0, self.samples_per_record, ADQ_TRANSFER_MODE_NORMAL);
|
||||
#print(time.time()-mid,mid-start)
|
||||
if not status:
|
||||
raise ValueError('no succesS from ADQ_GetDATA')
|
||||
# Now this is an array with all records, but the time is artificial
|
||||
data = []
|
||||
for ch in range(2):
|
||||
onedim = np.frombuffer(self.target_buffers[ch].contents, dtype=np.int16)
|
||||
data.append(onedim.reshape(self.number_of_records, self.samples_per_record) / float(2**14)) # 14 bits ADC
|
||||
return data
|
||||
|
||||
def acquire(self):
|
||||
self.start()
|
||||
return self.getdata()
|
||||
|
||||
def sinW(self,sig,freq,ti,tf):
|
||||
# sig: signal array
|
||||
# freq
|
||||
# ti, tf: initial and end time
|
||||
si = int(ti * self.samp_freq)
|
||||
nperiods = freq * (tf - ti)
|
||||
n = int(round(max(2, int(nperiods)) / nperiods * (tf-ti) * self.samp_freq))
|
||||
self.nperiods = n
|
||||
t = np.arange(si, len(sig)) / self.samp_freq
|
||||
t = t[:n]
|
||||
self.pulselen = n / self.samp_freq
|
||||
sig = sig[si:si+n]
|
||||
a = 2*np.sum(sig*np.cos(2*np.pi*freq*t))/len(sig)
|
||||
b = 2*np.sum(sig*np.sin(2*np.pi*freq*t))/len(sig)
|
||||
return a, b
|
||||
|
||||
def mix(self, sigin, sigout, freq, ti, tf):
|
||||
# sigin, sigout: signal array, incomping, output
|
||||
# freq
|
||||
# ti, tf: initial and end time if sigin
|
||||
a, b = self.sinW(sigin, freq, ti, tf)
|
||||
phase = arctan2(a,b) * 180 / np.pi
|
||||
amp = sqrt(a**2 + b**2)
|
||||
a, b = a/amp, b/amp
|
||||
#si = int(ti * self.samp_freq)
|
||||
t = np.arange(len(sigout)) / self.samp_freq
|
||||
wave1 = sigout * (a * cos(2*np.pi*freq*t) + b * sin(2*np.pi*freq*t))
|
||||
wave2 = sigout * (a * sin(2*np.pi*freq*t) - b * cos(2*np.pi*freq*t))
|
||||
return wave1, wave2
|
||||
|
||||
def averageiq(self, data, freq, ti, tf):
|
||||
'''Average over records'''
|
||||
iorq = np.array([self.mix(data[0][i], data[1][i], freq, ti, tf) for i in range(self.number_of_records)])
|
||||
# iorq = np.array([self.mix(data[0][:], data[1][:], freq, ti, tf)])
|
||||
return iorq.sum(axis=0) / self.number_of_records
|
||||
|
||||
def filtro(self, iorq, cutoff):
|
||||
b, a = butter_lowpass(cutoff, self.samp_freq*1e9)
|
||||
|
||||
#ifi = np.array(scipy.signal.filtfilt(b,a,iorq[0]))
|
||||
#qf = np.array(scipy.signal.filtfilt(b,a,iorq[1]))
|
||||
iqf = [scipy.signal.filtfilt(b,a,iorq[i]) for i in np.arange(len(iorq))]
|
||||
|
||||
return iqf
|
||||
|
||||
def box(self, iorq, ti, tf):
|
||||
si = int(self.samp_freq * ti)
|
||||
sf = int(self.samp_freq * tf)
|
||||
bxa = [sum(iorq[i][si:sf])/(sf-si) for i in np.arange(len(iorq))]
|
||||
return bxa
|
||||
|
||||
def gates_and_curves(self, data, freq, pulse, roi):
|
||||
"""return iq values of rois and prepare plottable curves for iq"""
|
||||
self.ndecimate = int(round(2E9/freq))
|
||||
times = []
|
||||
times.append(('aviq', time.time()))
|
||||
iq = self.averageiq(data,freq*1e-9,*pulse)
|
||||
times.append(('filtro', time.time()))
|
||||
iqf = self.filtro(iq,self.bw_cutoff)
|
||||
m = len(iqf[0]) // self.ndecimate
|
||||
ll = m * self.ndecimate
|
||||
iqf = [iqfx[0:ll] for iqfx in iqf]
|
||||
times.append(('iqdec', time.time()))
|
||||
iqd = np.average(np.resize(iqf, (2, m, self.ndecimate)), axis=2)
|
||||
t_axis = np.arange(m) * self.ndecimate / self.samp_freq
|
||||
pulsig = np.abs(data[0][0])
|
||||
times.append(('pulsig', time.time()))
|
||||
pulsig = np.average(np.resize(pulsig, (m, self.ndecimate)), axis=1)
|
||||
self.curves = (t_axis, iqd[0], iqd[1], pulsig)
|
||||
#print(times)
|
||||
return [self.box(iqf,*r) for r in roi]
|
||||
|
||||
# *****************************************************************************
|
||||
# This program is free software; you can redistribute it and/or modify it under
|
||||
# the terms of the GNU General Public License as published by the Free Software
|
||||
# Foundation; either version 2 of the License, or (at your option) any later
|
||||
# version.
|
||||
#
|
||||
# This program is distributed in the hope that it will be useful, but WITHOUT
|
||||
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
|
||||
# details.
|
||||
#
|
||||
# You should have received a copy of the GNU General Public License along with
|
||||
# this program; if not, write to the Free Software Foundation, Inc.,
|
||||
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||||
#
|
||||
# Module authors:
|
||||
# Damaris Tartarotti Maimone
|
||||
# Markus Zolliker <markus.zolliker@psi.ch>
|
||||
# *****************************************************************************
|
||||
"""Wrapper for the ADQ data acquisition card for ultrasound"""
|
||||
import sys
|
||||
import atexit
|
||||
import signal
|
||||
import time
|
||||
import numpy as np
|
||||
import ctypes as ct
|
||||
from scipy.signal import butter, filtfilt
|
||||
|
||||
|
||||
# For different trigger modes
|
||||
SW_TRIG = 1
|
||||
# The following external trigger does not work if the level of the trigger is very close to 0.5V.
|
||||
# Now we have it close to 3V, and it works
|
||||
EXT_TRIG_1 = 2
|
||||
EXT_TRIG_2 = 7
|
||||
EXT_TRIG_3 = 8
|
||||
LVL_TRIG = 3
|
||||
INT_TRIG = 4
|
||||
LVL_FALLING = 0
|
||||
LVL_RISING = 1
|
||||
|
||||
ADQ_CLOCK_INT_INTREF = 0 # internal clock source
|
||||
ADQ_CLOCK_EXT_REF = 1 # internal clock source, external reference
|
||||
ADQ_CLOCK_EXT_CLOCK = 2 # External clock source
|
||||
|
||||
ADQ_TRANSFER_MODE_NORMAL = 0x00
|
||||
ADQ_CHANNELS_MASK = 0x3
|
||||
|
||||
GHz = 1e9
|
||||
|
||||
|
||||
class Adq:
|
||||
sample_rate = 2 * GHz
|
||||
max_number_of_channels = 2
|
||||
ndecimate = 50 # decimation ratio (2GHz / 40 MHz)
|
||||
number_of_records = 1
|
||||
samples_per_record = 16384
|
||||
bw_cutoff = 10E6
|
||||
trigger = EXT_TRIG_1
|
||||
adq_num = 1
|
||||
UNDEFINED = -1
|
||||
IDLE = 0
|
||||
BUSY = 1
|
||||
READY = 2
|
||||
status = UNDEFINED
|
||||
data = None
|
||||
|
||||
def __init__(self):
|
||||
global ADQAPI
|
||||
ADQAPI = ct.cdll.LoadLibrary("libadq.so.0")
|
||||
|
||||
ADQAPI.ADQAPI_GetRevision()
|
||||
|
||||
# Manually set return type from some ADQAPI functions
|
||||
ADQAPI.CreateADQControlUnit.restype = ct.c_void_p
|
||||
ADQAPI.ADQ_GetRevision.restype = ct.c_void_p
|
||||
ADQAPI.ADQ_GetPtrStream.restype = ct.POINTER(ct.c_int16)
|
||||
ADQAPI.ADQControlUnit_FindDevices.argtypes = [ct.c_void_p]
|
||||
# Create ADQControlUnit
|
||||
self.adq_cu = ct.c_void_p(ADQAPI.CreateADQControlUnit())
|
||||
ADQAPI.ADQControlUnit_EnableErrorTrace(self.adq_cu, 3, '.')
|
||||
|
||||
# Find ADQ devices
|
||||
ADQAPI.ADQControlUnit_FindDevices(self.adq_cu)
|
||||
n_of_adq = ADQAPI.ADQControlUnit_NofADQ(self.adq_cu)
|
||||
if n_of_adq != 1:
|
||||
raise RuntimeError('number of ADQs must be 1, not %d' % n_of_adq)
|
||||
|
||||
rev = ADQAPI.ADQ_GetRevision(self.adq_cu, self.adq_num)
|
||||
revision = ct.cast(rev, ct.POINTER(ct.c_int))
|
||||
print('\nConnected to ADQ #1')
|
||||
# Print revision information
|
||||
print('FPGA Revision: {}'.format(revision[0]))
|
||||
if revision[1]:
|
||||
print('Local copy')
|
||||
else:
|
||||
print('SVN Managed')
|
||||
if revision[2]:
|
||||
print('Mixed Revision')
|
||||
else:
|
||||
print('SVN Updated')
|
||||
print('')
|
||||
|
||||
ADQAPI.ADQ_SetClockSource(self.adq_cu, self.adq_num, ADQ_CLOCK_EXT_REF)
|
||||
|
||||
##########################
|
||||
# Test pattern
|
||||
# ADQAPI.ADQ_SetTestPatternMode(self.adq_cu, self.adq_num, 4)
|
||||
##########################
|
||||
# Sample skip
|
||||
# ADQAPI.ADQ_SetSampleSkip(self.adq_cu, self.adq_num, 1)
|
||||
##########################
|
||||
|
||||
# set trigger mode
|
||||
if not ADQAPI.ADQ_SetTriggerMode(self.adq_cu, self.adq_num, self.trigger):
|
||||
raise RuntimeError('ADQ_SetTriggerMode failed.')
|
||||
if self.trigger == LVL_TRIG:
|
||||
if not ADQAPI.ADQ_SetLvlTrigLevel(self.adq_cu, self.adq_num, -100):
|
||||
raise RuntimeError('ADQ_SetLvlTrigLevel failed.')
|
||||
if not ADQAPI.ADQ_SetTrigLevelResetValue(self.adq_cu, self.adq_num, 1000):
|
||||
raise RuntimeError('ADQ_SetTrigLevelResetValue failed.')
|
||||
if not ADQAPI.ADQ_SetLvlTrigChannel(self.adq_cu, self.adq_num, 1):
|
||||
raise RuntimeError('ADQ_SetLvlTrigChannel failed.')
|
||||
if not ADQAPI.ADQ_SetLvlTrigEdge(self.adq_cu, self.adq_num, LVL_RISING):
|
||||
raise RuntimeError('ADQ_SetLvlTrigEdge failed.')
|
||||
elif self.trigger == EXT_TRIG_1:
|
||||
if not ADQAPI.ADQ_SetExternTrigEdge(self.adq_cu, self.adq_num, 2):
|
||||
raise RuntimeError('ADQ_SetLvlTrigEdge failed.')
|
||||
# if not ADQAPI.ADQ_SetTriggerThresholdVoltage(self.adq_cu, self.adq_num, trigger, ct.c_double(0.2)):
|
||||
# raise RuntimeError('SetTriggerThresholdVoltage failed.')
|
||||
print("CHANNEL:"+str(ct.c_int(ADQAPI.ADQ_GetLvlTrigChannel(self.adq_cu, self.adq_num))))
|
||||
atexit.register(self.deletecu)
|
||||
signal.signal(signal.SIGTERM, lambda *_: sys.exit(0))
|
||||
|
||||
def init(self, samples_per_record=None, number_of_records=None):
|
||||
"""initialize dimensions"""
|
||||
if samples_per_record:
|
||||
self.samples_per_record = samples_per_record
|
||||
if number_of_records:
|
||||
self.number_of_records = number_of_records
|
||||
# Setup target buffers for data
|
||||
self.target_buffers = (ct.POINTER(ct.c_int16 * self.samples_per_record * self.number_of_records)
|
||||
* self.max_number_of_channels)()
|
||||
for bufp in self.target_buffers:
|
||||
bufp.contents = (ct.c_int16 * self.samples_per_record * self.number_of_records)()
|
||||
|
||||
def deletecu(self):
|
||||
# Only disarm trigger after data is collected
|
||||
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
||||
ADQAPI.ADQ_MultiRecordClose(self.adq_cu, self.adq_num)
|
||||
# Delete ADQControlunit
|
||||
ADQAPI.DeleteADQControlUnit(self.adq_cu)
|
||||
|
||||
def start(self):
|
||||
# Start acquisition
|
||||
ADQAPI.ADQ_MultiRecordSetup(self.adq_cu, self.adq_num,
|
||||
self.number_of_records,
|
||||
self.samples_per_record)
|
||||
|
||||
ADQAPI.ADQ_DisarmTrigger(self.adq_cu, self.adq_num)
|
||||
ADQAPI.ADQ_ArmTrigger(self.adq_cu, self.adq_num)
|
||||
self.status = self.BUSY
|
||||
|
||||
def get_status(self):
|
||||
"""check if ADQ card is busy"""
|
||||
if self.status == self.BUSY:
|
||||
if ADQAPI.ADQ_GetAcquiredAll(self.adq_cu, self.adq_num):
|
||||
self.status = self.READY
|
||||
else:
|
||||
if self.trigger == SW_TRIG:
|
||||
ADQAPI.ADQ_SWTrig(self.adq_cu, self.adq_num)
|
||||
return self.status
|
||||
|
||||
def get_data(self, dataclass, **kwds):
|
||||
"""when ready, get raw data from card, else return cached data
|
||||
|
||||
return
|
||||
"""
|
||||
if self.get_status() == self.READY:
|
||||
# Get data from ADQ
|
||||
if not ADQAPI.ADQ_GetData(self.adq_cu, self.adq_num, self.target_buffers,
|
||||
self.samples_per_record * self.number_of_records, 2,
|
||||
0, self.number_of_records, ADQ_CHANNELS_MASK,
|
||||
0, self.samples_per_record, ADQ_TRANSFER_MODE_NORMAL):
|
||||
raise RuntimeError('no success from ADQ_GetDATA')
|
||||
self.data = dataclass(self, **kwds)
|
||||
self.status = self.IDLE
|
||||
if self.status == self.UNDEFINED:
|
||||
raise RuntimeError('no data available yet')
|
||||
return self.data
|
||||
|
||||
|
||||
class PEdata:
|
||||
def __init__(self, adq):
|
||||
self.sample_rate = adq.sample_rate
|
||||
self.samp_freq = self.sample_rate / GHz
|
||||
self.number_of_records = adq.number_of_records
|
||||
data = []
|
||||
for ch in range(2):
|
||||
onedim = np.frombuffer(adq.target_buffers[ch].contents, dtype=np.int16)
|
||||
data.append(onedim.reshape(adq.number_of_records, adq.samples_per_record) / float(2**14)) # 14 bits ADC
|
||||
# Now this is an array with all records, but the time is artificial
|
||||
self.data = data
|
||||
|
||||
def sinW(self, sig, freq, ti, tf):
|
||||
# sig: signal array
|
||||
# freq
|
||||
# ti, tf: initial and end time
|
||||
si = int(ti * self.samp_freq)
|
||||
nperiods = freq * (tf - ti)
|
||||
n = int(round(max(2, int(nperiods)) / nperiods * (tf-ti) * self.samp_freq))
|
||||
self.nperiods = n
|
||||
t = np.arange(si, len(sig)) / self.samp_freq
|
||||
t = t[:n]
|
||||
self.pulselen = n / self.samp_freq
|
||||
sig = sig[si:si+n]
|
||||
a = 2*np.sum(sig*np.cos(2*np.pi*freq*t))/len(sig)
|
||||
b = 2*np.sum(sig*np.sin(2*np.pi*freq*t))/len(sig)
|
||||
return a, b
|
||||
|
||||
def mix(self, sigin, sigout, freq, ti, tf):
|
||||
# sigin, sigout: signal array, incomping, output
|
||||
# freq
|
||||
# ti, tf: initial and end time of sigin
|
||||
a, b = self.sinW(sigin, freq, ti, tf)
|
||||
amp = np.sqrt(a**2 + b**2)
|
||||
a, b = a/amp, b/amp
|
||||
# si = int(ti * self.samp_freq)
|
||||
t = np.arange(len(sigout)) / self.samp_freq
|
||||
wave1 = sigout * (a * np.cos(2*np.pi*freq*t) + b * np.sin(2*np.pi*freq*t))
|
||||
wave2 = sigout * (a * np.sin(2*np.pi*freq*t) - b * np.cos(2*np.pi*freq*t))
|
||||
return wave1, wave2
|
||||
|
||||
def averageiq(self, data, freq, ti, tf):
|
||||
"""Average over records"""
|
||||
iorq = np.array([self.mix(data[0][i], data[1][i], freq, ti, tf) for i in range(self.number_of_records)])
|
||||
return iorq.sum(axis=0) / self.number_of_records
|
||||
|
||||
def filtro(self, iorq, cutoff):
|
||||
# butter lowpass
|
||||
nyq = 0.5 * self.sample_rate
|
||||
normal_cutoff = cutoff / nyq
|
||||
order = 5
|
||||
b, a = butter(order, normal_cutoff, btype='low', analog=False)
|
||||
iqf = [filtfilt(b, a, iorq[i]) for i in np.arange(len(iorq))]
|
||||
return iqf
|
||||
|
||||
def box(self, iorq, ti, tf):
|
||||
si = int(self.samp_freq * ti)
|
||||
sf = int(self.samp_freq * tf)
|
||||
bxa = [sum(iorq[i][si:sf])/(sf-si) for i in np.arange(len(iorq))]
|
||||
return bxa
|
||||
|
||||
def gates_and_curves(self, freq, pulse, roi, bw_cutoff):
|
||||
"""return iq values of rois and prepare plottable curves for iq"""
|
||||
self.ndecimate = int(round(self.sample_rate / freq))
|
||||
# times = []
|
||||
# times.append(('aviq', time.time()))
|
||||
iq = self.averageiq(self.data, freq / GHz, *pulse)
|
||||
# times.append(('filtro', time.time()))
|
||||
iqf = self.filtro(iq, bw_cutoff)
|
||||
m = len(iqf[0]) // self.ndecimate
|
||||
ll = m * self.ndecimate
|
||||
iqf = [iqfx[0:ll] for iqfx in iqf]
|
||||
# times.append(('iqdec', time.time()))
|
||||
iqd = np.average(np.resize(iqf, (2, m, self.ndecimate)), axis=2)
|
||||
t_axis = np.arange(m) * self.ndecimate / self.samp_freq
|
||||
pulsig = np.abs(self.data[0][0])
|
||||
# times.append(('pulsig', time.time()))
|
||||
pulsig = np.average(np.resize(pulsig, (m, self.ndecimate)), axis=1)
|
||||
self.curves = (t_axis, iqd[0], iqd[1], pulsig)
|
||||
# print(times)
|
||||
return [self.box(iqf, *r) for r in roi]
|
||||
|
||||
|
||||
class RUSdata:
|
||||
def __init__(self, adq, freq, periods):
|
||||
self.sample_rate = adq.sample_rate
|
||||
self.freq = freq
|
||||
self.periods = periods
|
||||
self.samples_per_record = adq.samples_per_record
|
||||
input_signal = np.frombuffer(adq.target_buffers[0].contents, dtype=np.int16)
|
||||
output_signal = np.frombuffer(adq.target_buffers[1].contents, dtype=np.int16)
|
||||
complex_sinusoid = np.exp(1j * 2 * np.pi * self.freq / self.sample_rate * np.arange(len(input_signal)))
|
||||
self.input_mixed = input_signal * complex_sinusoid
|
||||
self.output_mixed = output_signal * complex_sinusoid
|
||||
self.input_mean = self.input_mixed.mean()
|
||||
self.output_mean = self.output_mixed.mean()
|
||||
self.iq = self.output_mean / self.input_mean
|
||||
|
||||
def get_reduced(self, mixed):
|
||||
"""get reduced array and normalize"""
|
||||
nper = self.samples_per_record // self.periods
|
||||
mean = mixed.mean()
|
||||
return mixed[:self.period * nper].reshape((-1, nper)).mean(axis=0) / mean
|
||||
|
||||
def calc_quality(self):
|
||||
"""get signal quality info
|
||||
|
||||
quality info (small values indicate good quality):
|
||||
- input_std and output_std:
|
||||
the imaginary part indicates deviations in phase
|
||||
the real part indicates deviations in amplitude
|
||||
- input_slope and output_slope:
|
||||
the imaginary part indicates a turning phase (rad/sec)
|
||||
the real part indicates changes in amplitude (0.01 ~= 1%/sec)
|
||||
"""
|
||||
reduced = self.get_reduced(self.input_mixed)
|
||||
self.input_stdev = reduced.std()
|
||||
|
||||
reduced = self.get_reduced(self.output_mixed)
|
||||
timeaxis = np.arange(len(reduced)) * self.sample_rate / self.freq
|
||||
self.output_slope = np.polyfit(timeaxis, reduced, 1)[0]
|
||||
|
Reference in New Issue
Block a user