maxon ‘ zub

PSI
TCP-IP to CANopen Gateway
documentation
Author Matthias Kamber / Sven Schlienger

Date 10.12.2024
Revision 1.8

S
<

Initial version

Change of UserUnits factor

Some Units updated in list

New units for “Axis Inversion” and “Slave Axis direction” (1=normal / -1=inverted)

Device code “C_DC_COBLEY” added. New command (16, 17, 80, 81, 82, 83, 84, 85) added.

New command (56, 91) added. “Control Brake” feature

New command (86, 33, 34) added. Limits in UserUnits.

Description for integrating an CANopen 10 module.

Internal definitions for PSI, improvements to the communication process, detailed description of individual commands, add command (60, 99)

AAA—____\AI
N hRAwWNROR

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 1/18
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

2 Introduction

maxon ‘ zub

This documentation covers the interface and some information for the TCP-IP to CANopen gateway application.

2.1 Set IP address and CAN baudrate

Connect Aposs-IDE to the MasterMACS and choose <Controller> -> <Parameters> -> <Global / Axis>. In the block “IP Address” the required settings can be
done. The CAN baudrate can be set in the block “CAN Bus”. The lower digit represents CAN1 and the higher CAN2. The baudrate is given with a number
between 0 and 8 (see below).

Controller - Parameters

Global |
Mame: CELL LR
CAMN Bus
CAN ID: 3

CAN Baudrate: a8
SYNC Period [ms]: |1

IP Address

IP Mode: { DIP Switch
" DHCP
{* Fixed IP Address
~

(" Digital Inputs

IP Address: ,E ,ﬁ ,1_ ,3_
veski [0 [0 [0 [0

Activate prog#: -1
Analogue filter: [t}
Inputs
Program start: ,D—
Prog. choice: ’D—
Break: 0
Continue: ’D—
Error dear: ,D—
Outputs

’D—

Error condition:

Virtual Master Encoder

Type: 0
Gateway: ’U_ ’U_ ’D_ ’D_ Resolution: 500

Marker type: 0

lTl Cancel

Controller:

-2 Hwa17019
-5 USB

----- E 1- <<<<>>>> 150

Axis:

Number Baudrate Used in PSI
0 5 kBaud -

1 10 kBaud -

2 20 kBaud -

3 50 kBaud -

4 100 kBaud -

5 125 kBaud YES

6 250 kBaud YES

7 500 kBaud YES

8 1000 kBaud | YES

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

2/18

maxon ‘ zub

3 TCP communication

3.1 Open TCP Port

For open the TCP socket a client must open it with the standard TCP handshake with the correct IP address and port number. The MasterMACS acts as TCP
server. MasterMACS supports the following port numbers.

23 Telnet / Aposs

1914 NICOS / EPICS

1915 Elektronik-Maintenance
1916

1917

1918

TCP communication is shown in the following picture.

Etherbet/ 1P Moduls Dewice
Controller 10.10.10.10 10.10.10.11
Create Sackpt———————————— -
_ Create Sacket Response . ————
- Iestamicz = 102
—— (OpenConnection _
ST T0UR0U T Pt =40000" - —_— [:lpenT_ED
Connedtion ———_pu. Accept Connection
& e —— " I
- — DpenCenmection Response
T WieData = abc __
o —

TR L Fieceree Data

ah——————— Wite Response————— -
The response is retumed to the controller 2
zo0n & the data is sent.

TRl —

i Send Data
pr— __ Pead Respomse Data=wyr

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 3/18

H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

maxon ‘ zub

3.2 Write Data to MasterMACS
3.2.1 Transmit PDO over TCP

After a socket is open successfully the client can write a packet. The transmit packet must have the following structure in the pay load of the TCP telegram.
Most socket driver add the correct header of the telegram by themselves. Inside the MasterMACS this telegram is received as an PDO and the PDO data are
stored in a specific array. The application checks for new incoming messages and parses the string inside the array.

See the sample of a transmit telegram below. The red part is for the MasterMACS firmware to receive this telegram as a PDO message. Only the green part is
the PDO data which holds the string with ASCII characters for this application. Note that the size of the telegram can be different depending on the command
string. It is also possible to keep the size of the transmit telegram constant and fill in the rest after the <CR> with 0x00.

The command to write is always composed as follows:
ENQ + Message Length LSB + Message Length MSB + 0x19 + Axis Number + “S” + Command + “=” + Value + CR + ETX

Number writeBuffer Value Explanation

1 0 0x05 Start of Protocol frame ENQ (always the same)

2 1 0x0B (11) Message Length LSB (number of bytes between ENQ und ETX)
3 2 0x00 Message Length MSB (number of bytes between ENQ und ETX)
4 3 0x19 Data type (0x19 = PDO1)

5 4 0x33 PDO data1 "3" (Axis Number)

6 5 0x53 PDO data2 "S" (0x53); work also with "s"(0x73)!

7 6 0x30 PDO data3 "0" (Command)

8 7 0x34 PDO data4 "2" (Command)

9 8 0x3D PDO data5 "="

10 9 0x31 PDO data6 "1" (Value)

11 10 0x32 PDO data7 "2" (Value)

12 11 0x0D PDO data9 <CR>

13 12 0x03 End of protocol frame ETX (always the same)

This example sets the target position of axis 3 to 12.

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 4/18
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

maxon ‘ zub

3.2.2 Receive PDO over TCP

The string that are replied by the application could look something like:

3 S 02<ACK><CR>
3 S 02<NAK><CR>
3 S 10<CAN><CR> (STATUS is not writable)

Note that there is always a <CR> to signal the end of the string. The MasterMACS returns always data of 30 bytes. Therefore, the header for this receive
telegram looks the same all the time. The expected response when setting the target position is shown below.

The MasterMACS repeats the command and indicates with the ACK or NAK whether it has been executed successfully. “CAN” indicates when a command is
not valid.

The ACK/NAK is only relevant for a statement as to whether a driver is connected to the bus or not if the field in the “SDO (ACK/NAK)” column in section “5
Commands and Parameters” is colored.

Number writeBuffer Value Explanation
1 0 0x05 Start of Protocol frame ENQ (always the same)
2 1 0x21 (33) Message Length LSB (number of bytes between ENQ und ETX)
3 2 0x00 Message Length MSB (number of bytes between ENQ und ETX)
4 3 0x19 Data type (0x19 = PDO1)
5 4 0x33 PDO data0 "3" (Axis Number)
6 5 0x20 PDOdata1 "" (space
7 6 0x53 PDO data2 "S"
8 7 0x20 PDOdata3 "" (space)
9 8 0x32 PDO data4 "2" (Command)
10 9 0x06 PDO data5 "ACK" (0x06); “NAK” (0x15); “CAN” (0x18)
11 10 0x0D PDO data6 <CR>
12 11 0x00 PDO data 7 “NULL” (0x00)
13 12 0x00 PDO data 8 “NULL” (0x00)
14 13 0x00 PDO data9 “NULL” (0x00)
15 14 0x00 PDO data 10 “NULL” (0x00)
16 15 0x00 PDO data 11 “NULL” (0x00)
17 16 0x00 PDO data 12 “NULL” (0x00)
18 17 0x00 PDO data 13 “NULL” (0x00)
(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 5/18

H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

mMmaxon ‘ zub

19 18 0x00 PDO data 14 “NULL” (0x00)
20 19 0x00 PDO data 15 “NULL” (0x00)
21 20 0x00 PDO data 16 “NULL” (0x00)
22 21 0x00 PDO data 17 “NULL” (0x00)
23 22 0x00 PDO data 18 “NULL” (0x00)
24 23 0x00 PDO data 19 “NULL” (0x00)
25 24 0x00 PDO data 20 “NULL” (0x00)
26 25 0x00 PDO data 21 “NULL” (0x00)
27 26 0x00 PDO data 22 “NULL” (0x00)
28 27 0x00 PDO data 23 “NULL” (0x00)
29 28 0x00 PDO data 24 “NULL” (0x00)
30 29 0x00 PDO data 25 “NULL” (0x00)
31 30 0x00 PDO data 26 “NULL” (0x00)
32 31 0x00 PDO data 27 “NULL” (0x00)
33 32 0x00 PDO data 28 “NULL” (0x00)
34 33 0x00 PDO data 29 “NULL” (0x00)
35 34 0x03 End of protocol frame ETX (always the same)

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland

H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

6/18

3.3 Read Data from MasterMACS

3.3.1 Transmit PDO over TCP

maxon ‘ zub

Below you can see a telegram showing the read command. Again, the red parts are for the MasterMACS firmware and the green parts contain the PDOs with
ASCII character for this application

The command to write is always composed as follows:

ENQ + Message Length LSB + Message Length MSB + 0x19 + Axis Number + “R” + Command + CR + ETX

Number writeBuffer Value Explanation

1 0 0x05 Start of Protocol frame ENQ (always the same)

2 1 0x08 Message Length LSB (number of bytes between ENQ und ETX)
3 2 0x00 Message Length MSB (number of bytes between ENQ und ETX)
4 3 0x19 Data type (0x19 = PDO1)

5 4 0x33 PDO data1 "3" (Axis Number)

6 5 0x52 PDOdata2 "R" (0x52); work also with "r"(0x72)!

7 6 0x30 PDO data3 "0" (Command)

8 7 0x32 PDO data4 "2" (Command)

9 8 0x0D PDO data5 <CR>

10 9 0x03 End of protocol frame ETX (always the same)

This example read the target position of axis 3.

3.3.2 Receive PDO over TCP

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland

H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

7118

maxon ‘ zub

The string that are replied by the application could look something like:

3 R 2=12.819<ACK><CR>
3 R 2<ACK><CR>
3 R 2<NAK><CR>

3 R 0<CAN><CR> (MOVE is not readable)

There are four ways in which a response to a read request can be validated. Either with a return value, an ACK, a NAK or a CAN (invalid). “CAN” indicates when
a command is not permitted.

The ACK/NAK is only relevant for a statement as to whether a driver is connected to the bus or not if the field in the “SDO (ACK/NAK)” column in section “5

Commands and Parameters” is colored.

In this table you can see a request that returns a value. If a value can be read,
this is equivalent to an ACK.

This table shows the response if no value is returned, a slave is not connected
or a command is not permitted.

Number | writeBuffer | Value Explanation Number | writeBuffer | Value Explanation
1 0 0x05 Start of Protocol frame ENQ (always 1 0 0x05 Start of Protocol frame ENQ (always
the same) the same)

2 1 0x21 Message Length LSB (number of 2 1 0x21 Message Length LSB (number of
(33) bytes between ENQ und ETX) (33) bytes between ENQ und ETX)

3 2 0x00 Message Length MSB (number of 3 2 0x00 Message Length MSB (number of

bytes between ENQ und ETX) bytes between ENQ und ETX)

4 3 0x19 Data type (0x19 = PDOA1) 4 3 0x19 Data type (0x19 = PDOA1)

5 4 0x33 PDO data 0 "3" (Axis Number) 5 4 0x33 PDO data0 "3" (Axis Number)

6 5 0x20 PDOdata1 "" (space 6 5 0x20 PDOdata1 "" (space

7 6 0x52 PDOdata2 "R” 7 6 0x52 PDOdata2 "R”

8 7 0x20 PDOdata3 "" (space) 8 7 0x20 PDOdata3 "" (space)

9 8 0x32 PDO data4 "2" (Command) 9 8 0x32 PDO data4 "2" (Command)

10 9 0x3D PDO data5 "=" 10 9 0x06 PDO data5 "ACK" (0x06);

11 10 0x31 PDOdata6 *“1” “‘NAK” (0x15) ;

12 11 0x32 PDOdata7 *2” “CAN” (0x18)

13 12 0x2E PDOdata8 *“~ 11 10 0x0D PDO data6 <CR>

14 13 0x38 PDOdata9 “8” 12 11 0x00 PDOdata7 “NULL” (0x00)

15 14 0x06 PDO data 10 “ACK” (0x06) 13 12 0x00 PDOdata8 “NULL” (0x00)

16 15 0x0D PDO data 11 <CR> 14 13 0x00 PDOdata9 “NULL” (0x00)

17 16 0x00 PDO data 12 “NULL” (0x00) 15 14 0x00 PDO data 10 “NULL” (0x00)

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

8/18

mMaxon

zub

18 17 0x00 PDO data 13 “NULL” (0x00) 16 15 0x00 PDO data 11 “NULL” (0x00)
19 18 0x00 PDO data 14 “NULL” (0x00) 17 16 0x00 PDO data 12 “NULL” (0x00)
20 19 0x00 PDO data 15 “NULL” (0x00) 18 17 0x00 PDO data 13 “NULL” (0x00)
21 20 0x00 PDO data 16 “NULL” (0x00) 19 18 0x00 PDO data 14 “NULL” (0x00)
22 21 0x00 PDO data 17 “NULL” (0x00) 20 19 0x00 PDO data 15 “NULL” (0x00)
23 22 0x00 PDO data 18 “NULL” (0x00) 21 20 0x00 PDO data 16 “NULL” (0x00)
24 23 0x00 PDO data 19 “NULL” (0x00) 22 21 0x00 PDO data 17 “NULL” (0x00)
25 24 0x00 PDO data 20 “NULL” (0x00) 23 22 0x00 PDO data 18 “NULL” (0x00)
26 25 0x00 PDO data 21 “NULL” (0x00) 24 23 0x00 PDO data 19 “NULL” (0x00)
27 26 0x00 PDO data 22 “NULL” (0x00) 25 24 0x00 PDO data 20 “NULL” (0x00)
28 27 0x00 PDO data 23 “NULL” (0x00) 26 25 0x00 PDO data 21 “NULL” (0x00)
29 28 0x00 PDO data 24 “NULL” (0x00) 27 26 0x00 PDO data 22 “NULL” (0x00)
30 29 0x00 PDO data 25 “NULL” (0x00) 28 27 0x00 PDO data 23 “NULL” (0x00)
31 30 0x00 PDO data 26 “NULL” (0x00) 29 28 0x00 PDO data 24 “NULL” (0x00)
32 31 0x00 PDO data 27 “NULL” (0x00) 30 29 0x00 PDO data 25 “NULL” (0x00)
33 32 0x00 PDO data 28 “NULL” (0x00) 31 30 0x00 PDO data 26 “NULL” (0x00)
34 33 0x00 PDO data 29 “NULL” (0x00) 32 31 0x00 PDO data 27 “NULL” (0x00)
35 34 0x03 End of protocol frame ETX (always 33 32 0x00 PDO data 28 “NULL” (0x00)

the same) 34 33 0x00 PDO data 29 “NULL” (0x00)

35 34 0x03 End of protocol frame ETX (always

the same)

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland

H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

9/18

maxon ‘ zub

4 Internal Parameter for the system

In the application the axis settings and the axis parameters are stored in an array. For each axis there is an array and the system supports up to 60 axes. Below

a sample is shown about a setting with different devices.

AxAddr | Device | Internal Ax BusOffset Node-Id Explanation
Code

1 0 0 0 Internal Axis to show LINR/LINA command
2 0 0 0 Internal Axis to show LINR/LINA command
3 3 0 1000000 1 Technosoft EtherCAT (fist in the EtherCAT Bus)
4 2 0 0 5 Technosoft
5 1 0 0 1 Nanotec
6 1 0 0 2 Nanotec
7
60

4.1 AxAddr

The first internal parameter is the AxAddr this number is automatically filled in at start-up and represents the axis address number. This axis address is used in
the command string to select the axis. Further parameter that had to set when setting up the system are

¢ Internal Ax
e BusOffset
e Node-ld

4.2 Internal Axes

The parameter “internal Ax” is a bit to set this axis as an internal axis. Please make sure that all marked internal axes are at the beginning because the AxAddr
is used for the internal axis number.

The idea behind the internal axes is that those axes can be controlled from the MasterMACS directly. The CAN or EtherCAT drives are then used in CSP (cyclic
synchronous position) or CSV (cyclic synchronous velocity) mode. This allows that the MasterMACS can execute the profile of the movement. Doing so the

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 10/ 18
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

maxon ‘ zub

features as of a MACS controller can be used. The features are CAM curves, path moves, kinematics, jerk limited moves, or simply synchronous moves among
axes.

To show how to use internal axes a command for a combined LINA and LINR move is implemented. Check for Command 90.
4.3 BusOffset

BusOffset defines the used bus for the device. CAN1, CAN2 or EtherCAT.
Because the MasterMACS offers two CAN busses there is a BusOffset value of 0 when the device is connected on the first CAN bus. The value must be
100’000 when the device is on the second CAN bus. Is the device connected to the EtherCAT bus a BusOffset of 1°000’000 is used.

4.4 Node-ld
Node-Id is the CAN-Id of the device. On the EtherCAT bus it is the position along the bus.

4.5 Device Codes

The device code is an internal parameter that holds the information about the device. This is important because not all device behave the same way. The
following devices are defined:

#define C_DC_NOT_DEFINED 0
#define C_DC_NANOTEC 1
#define C_DC_TECHNOSOFT _CAN 2
#define C_DC_TECHNOSOFT EC 3
#define C_DC_COBLEY_CAN 4

4.6 Position UserUnit Factor

The “Position UserUnit factor” is an internal parameter that holds the information on how the “Target Position” and “Offset” are scaled and stored in SDO
objects.The reason for this is that we can only store integer values in the DIM arrays.

1 =1 (the positions are stored in mm)

10 =10 (the positions are stored in 10" of mm)

100 =100 (the positions are stored in 100" of mm)

1000 =1000 (the positions are stored in 1000t of mm)

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 1/18

H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

5 Commands and Parameters

maxon |

zub

TCP DeviceCode Internal Internal | SDO Read/ | Unit Explanation

Cmd parameter | only (ACK/NAK) Write

00 Move - 0x6040 w 1 = Absolute move
2 = Relative move This command is a whole
8 = Stop move sequence
9 = Home move

02 Target Position (0x607A) RwW UserUnits Target position is converted

- before writing SDO

04 Inhibit - 0x6040 RW 0 = Power OFF This command is a whole
1 = Power ON sequence

05 Velocity - (0x6081) RW UserUnits / sec

06 Acceleration 0x6083 (0x6084) | RW UserUnits / sec”2

07 Mode of operation - 0x6060 RwW 1 = profile position This command is a whole
6 = Homing mode sequence

09 Quick-Stop option - 0x605A RW -

10 Status - 0x6041 R -

11 Detailed Error - R -

12 Position - 0x6064 R UserUnits with offset Nanotec reads 0x6062
and inversion

15 Mode of operation - 0x6061 R -

display
16 Reset Node - - w - Reset Node with NMT (CAN
only)

17 Reset Error - 0x6040 w - Error reset in cmd-word

18 General Error - R -

19 Device Code - RW -

20 Scale_N - RW -

21 Scale Z - RW -

22 Axis Inversion - RW 1=normal / -1=inverted

23 Limit Positive 0x607D /2 RW UserUnits

24 Limit Negative 0x607D /1 RW UserUnits

25 Offset - RW UserUnits Offset position is converted

before writing SDO
26 Max Velocity 0x607F RW UserUnits / sec Only Internal for Technosoft and

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

12/18

maxon ‘ zub

Copley

27 Max Acceleration 0x60C5 RW UserUnits / sec”2

28 QuickStop Accel 0x6085 RW UserUnits / sec”2

29 Slave Axis (AxAddr) - RW -

30 Slave Axis direction - RW 1=normal / -1=inverted

33 Display Limit Positive 0x607D/2 R UserUnits Calculated with offset and axis

(0x607D/1) inversion
34 Display Limit Negative 0x607D/1 R UserUnits Calculated with offset and axis
(0x607D/2) inversion
40 Homig Mode 0x6098 RwW
41 Homing Velocity 0x6099 /1 RwW UserUnits / sec
(switch)

42 Homing Velocity (index) 0x6099 /2 RW UserUnits / sec

43 Homing Acceleration 0x609A RwW UserUnits / sec*2

50 Read Inputs 0x60FD R -

52 Set Digital Outputs 0x60FE / 1 RwW -

53 Output function 0x60FE / 2 RW -

54 Output delay time - RW ms

56 Control Brake - RwW 1=control brake Different handling of “enable”

0=no controlled brake and “switched on”

60 Encoder Type - RW 0=INC, 1=S8I, 2=BiSS

61 Encoder Position 0x6064 R System units

62 Following Error settin 0x6065 RwW -

63 Encoder direction 0x200D RW - Only Nanotec

80 Set SDO Index - RW OXxXXXXSSLL Set index/subindex/len for SDO
access

81 Perform SDO Access OXXXXX [XX RwW - perform SDO access to given
SDO object. (see Cmd 80)

82 Motion /Target reached 0x6041 R 0 = motion / 1 = in target | Direct status-bit access

83 Endswitch hit 0x6041 R 0 = no hit/ 1 = switch hit | Direct status-bit access

84 Error Bit 0x6041 R 0 =0k /1= error Direct status-bit access

85 Write Parameters - Wi Write all parameters to controller

86 Moving - RwW 0 = Not started Set 0 before moving

Acknowledgement

1 = started

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

13/18

mMaxon

zub

90 Combined Move - - w - For demonstration with internal
0 = stop combined move axes
1 =LINR move
2 = LINAto zero
91 Debug Print - - RwW 1=active / O=inactive Global parameter; default= 0
99 SW Version - - R - PSI command interpreter

Version ...

*internally stored as an integer value, the factor is given in parameter “Position UserUnit factor”.

5.1 Interpreting Statusbits (TCP Command R10)

Bit Number

Description

15

Manufacturer specific (not to use

14

13

)
Manufacturer specific (not to use)
Manufacturer specific (not to use)

12

Manufacturer specific (not to use)

11

Internal Limit Active (current, voltage, velocity or position)

10

Target reached (This bit is set when the drive is finished running a trajectory. The bit is not cleared until a new trajectory is

started.)

Remote (Is 1 when drive is controlled by the CANopen interface.)

Manufacturer specific (not to use)

Warning (1 when a warning occurs)

Switch On Disabled

Quick Stop. When this bit is zero, the drive is performing a quick stop.

Voltage Enabled

Fault. If set, a fault condition is or was present in the drive.

Operation Enabled. Set when the drive is enabled.

Switched On

O [NWAOMO®| N[O

Ready to switch on

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

14/18

5.2 Interpreting Detailed Error Register (TCP Command R11)

mMmaxon ‘ zub

Bit Number | Description

15 STO fault (STO input is on disable state)
14

13 Under-Voltage

12 Over-Voltage

11 Over temperature drive

10 Over-current

9 Negative Software Limit

8 Positive Software Limit

7 Negative Limit Switch

6 Positive Limit Switch

5 Feedback Error

4 Communication Error

3 Following Error

2 Encoder Error (Collective error BISS / Encoder broken wire
1 Short Circuit

0

5.3 Interpreting General Error Register (TCP Command R18)

Bit Number Description

Manufacturer specific (do not use)

Reserved (always 0)

Manufacturer specific (do not use)

Communication Error

Temperature Error

Voltage Error

Current Error

o= INWwW|~lO|O®O (N

Generic Error

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

15/18

6 Error Handling

Any error will be clear automatically and a transition in the RUN state is performed.

6.1 Common Aposs Error Numbers

maxon ‘ zub

Number | Name Description Group

8 ERROR_TRACK Track error Aposs-Error
57 ERROR_STATE_MACHINE State machine error Aposs-Error
76 ERROR_ARRAY_SIZE Array size is not correct. Aposs-Error
89 ERROR_CAN _SDO SDO send or receive error Aposs-Error
91 ERROR_CURVE Curve Array is not correct. Aposs-Error
1-103 ERROR_APOSS Unusual Aposs Error (please see Aposs help file) Aposs-Error

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

16 /18

maxon ‘ zub

7 Further information

7.1 Enable / Disable EtherCAT

There is a define in the application to enable or disable EtherCAT bus scan. This is important because the MasterMACS generates an error in case of no
EtherCAT slaves.

#define EtherCAT _Active 0 // EtherCAT Master active = 1; disabled = 0;

7.2 Integrating CANopen 10 Module

For more digital inputs and outputs a CANopen IO module/device can be integrated in the CAN bus. The CANopen device must have the same CAN baudrate
settings as the other devices within the CAN bus.

In the TCP-IP to CANopen application a MACS internal Busmodule is used to do all the communication to and from the CANopen 10 device in the background.
Furthermore, the mapping of the communication object to the virtual inputs or virtual outputs is done. This gives the user the ability to use standard ApossC
commands for accessing those inputs and outputs the same way as internal hardware [0s.

The commands are “DigOutputByte()”, “DigOutput ()", “DiglnputByte()”, “Diglnput()”. The DigOutputByte coming from the CAN bus starts at byte 4. The
DigOutput number starting with number 33.
The Diglnput number starts with 33 and the DiglnputByte with byte 4.

In the application there is a function “void SetupCAN_10Omodule(long module_no)” that can be called with “SetupCAN_IOmodule(0);” Call this function with the
parameter of an available module number. The module number must be unique within the whole application program. The Node-Id of the CANopen 10 module
is given in the #define CAN_NODE_ID_IO_MODULE. An offset of 100000 is used when the CAN device is connected on CAN2.

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 17/ 18
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

maxon ‘ zub

7.3 MiniMACS as CANopen IO Module

When using a MiniMACS (001586) as a CANopen 10 Module, a special application must be loaded to the MiniMACS. This application “IO_Module_SIM.mc”
simulates all the CiA401 functionality. If this application is booted the “device type” (0x1000) is also changed. The device type of an IO module is different from a
MACS so ApossIDE does not connect to this MiniMACS anymore. For connecting with ApossIDE use the MiniMACS DIP switch 5,6,7 in (ON) position CAN-Id
0x7n and reboot. A node-Id in this range is not possible when using as CANopen 10 module.

(c) 2017 zub machine control AG, 6023 Rothenburg, Switzerland 18/ 18
H:\MCU-doku\MCU-500_FieldBus\MCU-510 Master Modules\02 MasterMACS SW\PSI_TCP_Interface_Copy_V1-8_2.doc

	2 Introduction
	2.1 Set IP address and CAN baudrate

	3 TCP communication
	3.1 Open TCP Port
	3.2 Write Data to MasterMACS
	3.2.1 Transmit PDO over TCP
	3.2.2 Receive PDO over TCP
	3.3 Read Data from MasterMACS
	3.3.1 Transmit PDO over TCP
	3.3.2 Receive PDO over TCP

	4 Internal Parameter for the system
	4.1 AxAddr
	4.2 Internal Axes
	4.3 BusOffset
	4.4 Node-Id
	4.5 Device Codes
	4.6 Position UserUnit Factor

	5 Commands and Parameters
	5.1 Interpreting Statusbits (TCP Command R10)
	5.2 Interpreting Detailed Error Register (TCP Command R11)
	5.3 Interpreting General Error Register (TCP Command R18)
	6 Error Handling
	6.1 Common Aposs Error Numbers

	7 Further information
	7.1 Enable / Disable EtherCAT
	7.2 Integrating CANopen IO Module
	7.3 MiniMACS as CANopen IO Module

