Make flake8 linting

Add gitignore
This commit is contained in:
Jakob Lass 2025-04-09 17:27:28 +02:00
parent c689f35b76
commit e57a01b9a1
4 changed files with 83 additions and 77 deletions

2
.gitignore vendored Normal file
View File

@ -0,0 +1,2 @@
tests/__pycache__/*
*.pyc

View File

@ -7,7 +7,8 @@ from scipy.sparse import lil_matrix, block_diag,csr_array,diags,csr_matrix
def create_laplacian_matrix(nx, ny=None): def create_laplacian_matrix(nx, ny=None):
""" """
Helper method to create the laplacian matrix for the laplacian regularization Helper method to create the laplacian matrix for the laplacian
regularization
Parameters Parameters
---------- ----------
@ -76,6 +77,7 @@ def delete_from_csr(mat, row_indices=[], col_indices=[]):
else: else:
return mat return mat
def remove_vertex(L, lst_rows=[], lst_cols=[]): def remove_vertex(L, lst_rows=[], lst_cols=[]):
""" """
Function that removes a vertex and adjust the graph laplacian matrix. Function that removes a vertex and adjust the graph laplacian matrix.
@ -85,9 +87,9 @@ def remove_vertex(L,lst_rows=[],lst_cols=[]):
L_cut = L_cut - diags(L_cut.sum(axis=1).A1) L_cut = L_cut - diags(L_cut.sum(axis=1).A1)
assert (L_cut.sum(axis=1).A1 == np.zeros(L_cut.shape[0])).all() assert (L_cut.sum(axis=1).A1 == np.zeros(L_cut.shape[0])).all()
return L_cut return L_cut
def laplacian(Y, nx, ny=None): def laplacian(Y, nx, ny=None):
""" """
Function that removes the vertices corresponding to Nan locations of tensor Y. Function that removes the vertices corresponding to Nan locations of tensor Y.
@ -96,7 +98,7 @@ def laplacian(Y,nx,ny=None):
- nx,ny: dimensions of the image (Int64) - nx,ny: dimensions of the image (Int64)
""" """
# find Nan indices # find Nan indices
Nan_indices = torch.where(torch.isnan(Y.ravel())==True)[0] Nan_indices = torch.where(torch.isnan(Y.ravel()) is True)[0]
# get list of indices # get list of indices
list_idx = list(Nan_indices.detach().numpy()) list_idx = list(Nan_indices.detach().numpy())
@ -106,6 +108,7 @@ def laplacian(Y,nx,ny=None):
L = remove_vertex(L, list_idx, list_idx) L = remove_vertex(L, list_idx, list_idx)
return L return L
def unnormalized_laplacian(y, nx, ny=None, method='inverse'): def unnormalized_laplacian(y, nx, ny=None, method='inverse'):
"""Construct numpy array with non zeros weights and non zeros indices. """Construct numpy array with non zeros weights and non zeros indices.
@ -118,7 +121,7 @@ def unnormalized_laplacian(y, nx, ny=None, method='inverse'):
lapl_tmp.setdiag(np.zeros(nx*ny)) lapl_tmp.setdiag(np.zeros(nx*ny))
# select the non nan indices # select the non nan indices
y_tmp = y[torch.isnan(y)==False] y_tmp = y[torch.isnan(y) is False]
# store non zero indices # store non zero indices
idx_rows = np.array(lapl_tmp.nonzero()[0]) idx_rows = np.array(lapl_tmp.nonzero()[0])
@ -144,6 +147,7 @@ def unnormalized_laplacian(y, nx, ny=None, method='inverse'):
return L return L
def laplacian_chain(nb_vertices): def laplacian_chain(nb_vertices):
""" """
Construct the Laplacian matrix of a chain. Construct the Laplacian matrix of a chain.
@ -174,6 +178,7 @@ def laplacian_chain(nb_vertices):
return L return L
def unnormalized_laplacian_chain(y, nx, method='inverse'): def unnormalized_laplacian_chain(y, nx, method='inverse'):
"""Construct numpy array with non zeros weights and non zeros indices. """Construct numpy array with non zeros weights and non zeros indices.
@ -192,7 +197,6 @@ def unnormalized_laplacian_chain(y, nx, method='inverse'):
idx_rows = np.array(lapl_tmp.nonzero()[0]) idx_rows = np.array(lapl_tmp.nonzero()[0])
idx_cols = np.array(lapl_tmp.nonzero()[1]) idx_cols = np.array(lapl_tmp.nonzero()[1])
# construct the set of weights # construct the set of weights
nnz_w = np.zeros_like(idx_rows, dtype=np.float32) nnz_w = np.zeros_like(idx_rows, dtype=np.float32)
@ -202,7 +206,6 @@ def unnormalized_laplacian_chain(y, nx, method='inverse'):
else: else:
nnz_w = np.exp(-np.abs(y_tmp[idx_rows] - y_tmp[idx_cols])) nnz_w = np.exp(-np.abs(y_tmp[idx_rows] - y_tmp[idx_cols]))
# construct the non diagonal terms of the Laplacian # construct the non diagonal terms of the Laplacian
lapl_nondiag = csr_array((nnz_w, (idx_rows, idx_cols)), shape=(lapl_tmp.shape[0], lapl_tmp.shape[0]), dtype=np.float32) lapl_nondiag = csr_array((nnz_w, (idx_rows, idx_cols)), shape=(lapl_tmp.shape[0], lapl_tmp.shape[0]), dtype=np.float32)

View File

@ -1,8 +1,6 @@
import unittest import unittest
import torch import torch
import numpy as np import numpy as np
import os import os
import sys import sys
maindir = os.getcwd() maindir = os.getcwd()
@ -11,7 +9,6 @@ sys.path.append(main_path+"/ds4ms/code/src")
from background import background from background import background
class TestBackground(unittest.TestCase): class TestBackground(unittest.TestCase):
def setUp(self): def setUp(self):
@ -19,7 +16,7 @@ class TestBackground(unittest.TestCase):
self.bg.load_data(verbose=True) self.bg.load_data(verbose=True)
self.bg.set_grid_volume(dqx=0.03, dqy=0.03, dE=0.08) self.bg.set_grid_volume(dqx=0.03, dqy=0.03, dE=0.08)
self.bg.set_binned_data() self.bg.set_binned_data()
self.bg.set_radial_bins(max_radius=6.0, n_bins=10 self.bg.set_radial_bins(max_radius=6.0, n_bins=10)
self.bg.Ygrid = torch.tensor(np.random.rand(10, 10), dtype=torch.float64) self.bg.Ygrid = torch.tensor(np.random.rand(10, 10), dtype=torch.float64)
def test_load_data(self): def test_load_data(self):
@ -166,12 +163,14 @@ class TestBackground(unittest.TestCase):
alpha_range = torch.tensor([1.0]) alpha_range = torch.tensor([1.0])
beta_range = torch.tensor([1.0]) beta_range = torch.tensor([1.0])
mu_range = torch.tensor([1.0]) mu_range = torch.tensor([1.0])
result = self.bg.cross_validation(lambda_range=lambda_range, alpha_range=alpha_range, beta_range=beta_range, mu_range=mu_range, n_epochs=1, verbose=False) result = self.bg.cross_validation(lambda_range=lambda_range, alpha_range=alpha_range,
beta_range=beta_range, mu_range=mu_range, n_epochs=1, verbose=False)
self.assertIsNotNone(result) self.assertIsNotNone(result)
def test_compute_mask(self): def test_compute_mask(self):
result = self.bg.compute_mask(q=0.75, e_cut=None) result = self.bg.compute_mask(q=0.75, e_cut=None)
self.assertIsNotNone(result) self.assertIsNotNone(result)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()

View File

@ -2,14 +2,15 @@ import unittest
import numpy as np import numpy as np
import torch import torch
from scipy.sparse import lil_matrix, csr_matrix, coo_matrix from scipy.sparse import lil_matrix, csr_matrix, coo_matrix
import os import os
import sys import sys
maindir = os.getcwd() maindir = os.getcwd()
main_path = maindir[:maindir.find('ds4ms/code')] main_path = maindir[:maindir.find('ds4ms/code')]
sys.path.append(main_path+"/ds4ms/code/src") sys.path.append(main_path+"/ds4ms/code/src")
from graph_laplacian import create_laplacian_matrix, delete_from_csr, remove_vertex, laplacian, unnormalized_laplacian, laplacian_chain, unnormalized_laplacian_chain from graph_laplacian import create_laplacian_matrix, delete_from_csr, \
remove_vertex, laplacian, unnormalized_laplacian, laplacian_chain, \
unnormalized_laplacian_chain
class TestGraphLaplacian(unittest.TestCase): class TestGraphLaplacian(unittest.TestCase):
@ -66,5 +67,6 @@ class TestGraphLaplacian(unittest.TestCase):
self.assertEqual(L.shape, (nx, nx)) self.assertEqual(L.shape, (nx, nx))
self.assertIsInstance(L, csr_matrix) self.assertIsInstance(L, csr_matrix)
if __name__ == '__main__': if __name__ == '__main__':
unittest.main() unittest.main()