Update convergence criterion for denoise
Some checks failed
Gitea Actions Demo / build_test (3.11.12) (push) Failing after 8s
Gitea Actions Demo / build_test (3.10.17) (push) Successful in 11s
Gitea Actions Demo / build_test (3.13.3) (push) Failing after 9s
Gitea Actions Demo / build_test (3.12.10) (push) Successful in 11s
Gitea Actions Demo / build_test (3.9.22) (push) Successful in 10s
Some checks failed
Gitea Actions Demo / build_test (3.11.12) (push) Failing after 8s
Gitea Actions Demo / build_test (3.10.17) (push) Successful in 11s
Gitea Actions Demo / build_test (3.13.3) (push) Failing after 9s
Gitea Actions Demo / build_test (3.12.10) (push) Successful in 11s
Gitea Actions Demo / build_test (3.9.22) (push) Successful in 10s
This commit is contained in:
parent
00ad81aba6
commit
9fb35dfda4
@ -612,11 +612,12 @@ class background():
|
|||||||
Me = self.set_e_design_matrix(mu_)
|
Me = self.set_e_design_matrix(mu_)
|
||||||
|
|
||||||
# Loss function
|
# Loss function
|
||||||
loss = np.zeros(n_epochs, dtype=self.dtype)
|
loss = []#np.zeros(n_epochs, dtype=self.dtype)
|
||||||
loss[1] = 1.0
|
old_loss = 2000000
|
||||||
k = 1
|
new_loss = 1000000
|
||||||
|
k = 0
|
||||||
|
|
||||||
while (np.abs(loss[k] - loss[k-1]) > 1e-3) and (k < n_epochs-1):
|
while (np.abs(old_loss - new_loss) > 1e-3) and (k < n_epochs):
|
||||||
# Compute A = Y - B by filling the nans with 0s
|
# Compute A = Y - B by filling the nans with 0s
|
||||||
A = np.where(np.isnan(Y_r - b_tmp) == True, 0.0, Y_r - b_tmp)
|
A = np.where(np.isnan(Y_r - b_tmp) == True, 0.0, Y_r - b_tmp)
|
||||||
|
|
||||||
@ -640,17 +641,18 @@ class background():
|
|||||||
b_tmp = self.R_operator(self.b)
|
b_tmp = self.R_operator(self.b)
|
||||||
|
|
||||||
# ######################### Compute loss function ##################
|
# ######################### Compute loss function ##################
|
||||||
loss[k] = 0.5 * np.nansum((Y_r - self.X - b_tmp) ** 2) + lambda_ * np.nansum(np.abs(self.X))
|
loss.append(0.5 * np.nansum((Y_r - self.X - b_tmp) ** 2) + lambda_ * np.nansum(np.abs(self.X)))
|
||||||
|
|
||||||
for e in range(self.E_size):
|
for e in range(self.E_size):
|
||||||
loss[k] += (beta_/2) * np.matmul(self.b[e, :], np.matmul(Lb_lst[e], self.b[e, :].T))
|
loss[-1] += (beta_/2) * np.matmul(self.b[e, :], np.matmul(Lb_lst[e], self.b[e, :].T))
|
||||||
|
|
||||||
loss[k] += (mu_ / 2) * np.trace(np.matmul(self.X.T, np.matmul(Le, self.X)))
|
loss[-1] += (mu_ / 2) * np.trace(np.matmul(self.X.T, np.matmul(Le, self.X)))
|
||||||
|
|
||||||
if verbose:
|
if verbose:
|
||||||
print(" Iteration ", str(k))
|
print(" Iteration ", str(k+1))
|
||||||
print(" Loss function: ", loss[k].item())
|
print(" Loss function: ", loss[-1].item())
|
||||||
|
old_loss = new_loss
|
||||||
|
new_loss = loss[-1]
|
||||||
k += 1
|
k += 1
|
||||||
|
|
||||||
# Compute the propagated background
|
# Compute the propagated background
|
||||||
|
Loading…
x
Reference in New Issue
Block a user