136 lines
5.5 KiB
Python
136 lines
5.5 KiB
Python
import logging
|
|
import openpyxl
|
|
from pydantic import ValidationError
|
|
from typing import Union
|
|
from io import BytesIO
|
|
from app.sample_models import SpreadsheetModel
|
|
|
|
logging.basicConfig(level=logging.DEBUG)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class SpreadsheetImportError(Exception):
|
|
pass
|
|
|
|
|
|
class SampleSpreadsheetImporter:
|
|
def __init__(self):
|
|
self.filename = None
|
|
self.model = None
|
|
|
|
def _clean_value(self, value, expected_type=None):
|
|
"""Clean value by converting it to the expected type and stripping whitespace for strings."""
|
|
if value is None:
|
|
return None
|
|
if expected_type == str:
|
|
return str(value).strip()
|
|
if expected_type in [float, int]:
|
|
try:
|
|
return expected_type(value)
|
|
except ValueError:
|
|
return None
|
|
if isinstance(value, str):
|
|
try:
|
|
if '.' in value:
|
|
return float(value)
|
|
else:
|
|
return int(value)
|
|
except ValueError:
|
|
return value.strip()
|
|
return value
|
|
|
|
def import_spreadsheet(self, file):
|
|
self.model = []
|
|
self.filename = file.filename
|
|
logger.info(f"Importing spreadsheet from .xlsx file: {self.filename}")
|
|
|
|
contents = file.file.read()
|
|
file.file.seek(0) # Reset file pointer to the beginning
|
|
|
|
if not contents:
|
|
logger.error("The uploaded file is empty.")
|
|
raise SpreadsheetImportError("The uploaded file is empty.")
|
|
|
|
try:
|
|
workbook = openpyxl.load_workbook(BytesIO(contents))
|
|
logger.debug("Workbook loaded successfully")
|
|
if "Samples" not in workbook.sheetnames:
|
|
logger.error("The file is missing 'Samples' worksheet.")
|
|
raise SpreadsheetImportError("The file is missing 'Samples' worksheet.")
|
|
sheet = workbook["Samples"]
|
|
except Exception as e:
|
|
logger.error(f"Failed to read the file: {str(e)}")
|
|
raise SpreadsheetImportError(f"Failed to read the file: {str(e)}")
|
|
|
|
return self.process_spreadsheet(sheet)
|
|
|
|
def process_spreadsheet(self, sheet):
|
|
model = []
|
|
|
|
# Skip the first 3 rows
|
|
rows = list(sheet.iter_rows(min_row=4, values_only=True))
|
|
logger.debug(f"Starting to process {len(rows)} rows from the sheet")
|
|
|
|
if not rows:
|
|
logger.error("The 'Samples' worksheet is empty.")
|
|
raise SpreadsheetImportError("The 'Samples' worksheet is empty.")
|
|
|
|
expected_columns = 32 # Number of columns expected based on the model
|
|
|
|
for index, row in enumerate(rows):
|
|
if not any(row):
|
|
logger.debug(f"Skipping empty row at index {index}")
|
|
continue
|
|
|
|
# Pad the row to ensure it has the expected number of columns
|
|
if len(row) < expected_columns:
|
|
row = list(row) + [None] * (expected_columns - len(row))
|
|
|
|
record = {
|
|
'dewarname': self._clean_value(row[0], str),
|
|
'puckname': self._clean_value(row[1], str),
|
|
'pucktype': self._clean_value(row[2], str),
|
|
'crystalname': self._clean_value(row[3], str),
|
|
'positioninpuck': self._clean_value(row[4], int),
|
|
'priority': self._clean_value(row[5], int),
|
|
'comments': self._clean_value(row[6], str),
|
|
'directory': self._clean_value(row[7], str),
|
|
'proteinname': self._clean_value(row[8], str),
|
|
'oscillation': self._clean_value(row[9], float),
|
|
'aperture': self._clean_value(row[10], str),
|
|
'exposure': self._clean_value(row[11], float),
|
|
'totalrange': self._clean_value(row[12], float),
|
|
'transmission': self._clean_value(row[13], int),
|
|
'dose': self._clean_value(row[14], float),
|
|
'targetresolution': self._clean_value(row[15], float),
|
|
'datacollectiontype': self._clean_value(row[16], str),
|
|
'processingpipeline': self._clean_value(row[17], str),
|
|
'spacegroupnumber': self._clean_value(row[18], int),
|
|
'cellparameters': self._clean_value(row[19], str),
|
|
'rescutkey': self._clean_value(row[20], str),
|
|
'rescutvalue': self._clean_value(row[21], str),
|
|
'userresolution': self._clean_value(row[22], str),
|
|
'pdbid': self._clean_value(row[23], str),
|
|
'autoprocfull': self._clean_value(row[24], str),
|
|
'procfull': self._clean_value(row[25], str),
|
|
'adpenabled': self._clean_value(row[26], str),
|
|
'noano': self._clean_value(row[27], str),
|
|
'ffcscampaign': self._clean_value(row[28], str),
|
|
'trustedhigh': self._clean_value(row[29], str),
|
|
'autoprocextraparams': self._clean_value(row[30], str),
|
|
'chiphiangles': self._clean_value(row[31], str)
|
|
}
|
|
|
|
try:
|
|
validated_record = SpreadsheetModel(**record)
|
|
model.append(validated_record)
|
|
logger.debug(f"Row {index + 4} processed and validated successfully")
|
|
except ValidationError as e:
|
|
error_message = f"Validation error in row {index + 4}: {e}"
|
|
logger.error(error_message)
|
|
raise SpreadsheetImportError(error_message)
|
|
|
|
self.model = model
|
|
logger.info(f"Finished processing {len(model)} records")
|
|
return self.model
|