aaredb/backend/app/routers/spreadsheet.py
GotthardG 7861082a02 Set default values for empty "priority" column in spreadsheets.
Added logic to assign a default value of 1 to empty "priority" fields in the spreadsheet service. Adjusted the router to correctly track columns explicitly marked as defaulted.
2025-01-14 22:18:14 +01:00

341 lines
13 KiB
Python

from app.sample_models import SpreadsheetResponse
from app.schemas import DataCollectionParameters
from fastapi import APIRouter, UploadFile, File, HTTPException
import logging
from app.services.spreadsheet_service import (
SampleSpreadsheetImporter,
SpreadsheetImportError,
)
from fastapi.responses import FileResponse
import os
from pydantic import ValidationError # Import ValidationError here
from app.row_storage import row_storage # Import the RowStorage instance
router = APIRouter()
logger = logging.getLogger(__name__)
importer = (
SampleSpreadsheetImporter()
) # assuming this is a singleton or manageable instance
@router.get("/download-template", response_class=FileResponse)
async def download_template():
"""Serve a template file for spreadsheet upload."""
current_dir = os.path.dirname(__file__)
template_path = os.path.join(
current_dir, "../../downloads/V7_TELLSamplesSpreadsheetTemplate.xlsx"
)
if not os.path.exists(template_path):
raise HTTPException(status_code=404, detail="Template file not found.")
return FileResponse(
template_path,
filename="template.xlsx",
media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet",
)
@router.post("/upload", response_model=SpreadsheetResponse)
async def upload_file(file: UploadFile = File(...)):
"""Process the uploaded spreadsheet and return validation results."""
try:
logger.info(f"Received file: {file.filename}")
# Validate file format
if not file.filename.endswith(".xlsx"):
logger.error("Invalid file format")
raise HTTPException(
status_code=400,
detail="Invalid file format. Please upload an .xlsx file.",
)
# Initialize the importer and process the spreadsheet
(
validated_model,
errors,
raw_data,
headers,
) = importer.import_spreadsheet_with_errors(file)
# Extract unique values for dewars, pucks, and samples
dewars = {sample.dewarname for sample in validated_model if sample.dewarname}
pucks = {sample.puckname for sample in validated_model if sample.puckname}
samples = {
sample.crystalname for sample in validated_model if sample.crystalname
}
# Construct the response model with the processed data
# Update raw_data with corrected directory values
# Iterate through raw_data rows
updated_raw_data = []
for row in raw_data:
corrected = False # Tracks changes made in this row.
corrected_columns = [] # Stores names of columns corrected.
default_set = row.get("default_set", False)
# Ensure raw data rows are padded to match the headers length.
if len(row["data"]) < len(headers):
padding_length = len(headers) - len(row["data"])
logger.info(
f"Padding row {row.get('row_num')} with "
f"{padding_length} None values."
)
row["data"].extend([None] * padding_length)
# Validate data and apply corrections column by column.
for col_index, col_name in enumerate(headers):
original_value = row["data"][col_index]
expected_type = importer.get_expected_type(col_name)
try:
# Pass col_name explicitly to _clean_value
cleaned_value = importer._clean_value(
original_value, expected_type, col_name
)
corrected = False
# Check if a correction was applied
if cleaned_value[0] != original_value:
corrected = True
corrected_columns.append(col_name)
# Update "directory" metadata explicitly, if applicable
if col_name == "directory":
row["directory"] = cleaned_value
# Update the raw data with the corrected value
row["data"][col_index] = cleaned_value
# Log the correction
logger.info(
f"Corrected field '{col_name}' in row {row['row_num']}: "
f"Original='{original_value}', Corrected='{cleaned_value}'"
)
except (ValueError, TypeError) as e:
# Handle and log validation errors specific to this column
logger.error(
f"Validation failed for row "
f"{row['row_num']}, column '{col_name}': "
f"{str(e)}"
)
errors.append(
{
"row": row["row_num"],
"column": col_name,
"value": original_value,
"message": str(e),
}
)
# Special case: Check and handle if "directory" was auto-corrected.
if (
row.get("directory")
and len(row["data"]) > 7
and row["data"][7] != row["directory"]
):
corrected = True
corrected_columns.append("directory")
row["data"][7] = row["directory"]
# Add correction metadata to the row if changes were made.
if corrected:
row["corrected"] = True
row["corrected_columns"] = corrected_columns
row["default_set"] = default_set
# Add the processed row to the updated data list.
updated_raw_data.append(row)
logger.info(
"Processing completed. "
f"Total rows processed: {len(raw_data)}, "
f"Rows corrected: {sum(1 for r in updated_raw_data if r.get('corrected'))}"
)
updated_addinfo = [
{
"row_num": row["row_num"], # Identify row for the frontend
"corrected_columns": row.get("corrected_columns", []),
"default_set": [
col_name
for col_name in row.get("corrected_columns", [])
if row.get("default_set", False)
and col_name in row.get("defaulted_columns", [])
], # Specify which keys are explicitly `default_set`
}
for row in updated_raw_data
if row.get("corrected")
or row.get("default_set") # Only include rows with changes
]
logger.debug(f"Constructed addinfo: {updated_addinfo}")
# Clean updated raw data in place
for row in updated_raw_data:
# Remove unwanted metadata fields
row.pop("corrected", None)
row.pop("corrected_columns", None)
row.pop("default_set", None)
row.pop("defaulted_columns", None)
row.pop("directory", None)
# Sanitize nested data (e.g., replace directory tuples with strings)
if "data" in row:
for idx, value in enumerate(row["data"]):
if isinstance(value, tuple):
row["data"][idx] = value[0] # Extract the first item (string)
# Confirm cleanup worked
for row in updated_raw_data:
unexpected_keys = [
k
for k in row.keys()
if k
in [
"corrected",
"corrected_columns",
"default_set",
"defaulted_columns",
"directory",
]
]
if unexpected_keys:
logger.error(f"Unexpected keys persist: {unexpected_keys}")
# Construct stripped_raw_data from the cleaned updated_raw_data
stripped_raw_data = [
{
k: v
for k, v in row.items()
if k
not in [
"corrected",
"corrected_columns",
"default_set",
"defaulted_columns",
"directory",
]
}
for row in updated_raw_data
]
# Verify the final stripped raw data before returning
# logger.debug(f"Sanitized raw_data for response: {stripped_raw_data}")
response_data = SpreadsheetResponse(
data=validated_model,
errors=errors,
raw_data=stripped_raw_data, # Final submission data
addinfo=updated_addinfo, # Metadata for frontend display
dewars_count=len(dewars),
dewars=list(dewars),
pucks_count=len(pucks),
pucks=list(pucks),
samples_count=len(samples),
samples=list(samples),
headers=headers,
)
logger.debug(f"Final updated_raw_data sent in response: {updated_raw_data}")
# Store row data for future use
for idx, row in enumerate(validated_model):
row_num = idx + 4 # Adjust row numbering if necessary
row_storage.set_row(row_num, row.dict())
logger.info(
f"Returning response with {len(validated_model)}"
f"records and {len(errors)} errors."
)
return response_data
except SpreadsheetImportError as e:
logger.error(f"Spreadsheet import error: {str(e)}")
raise HTTPException(
status_code=400, detail=f"Error processing spreadsheet: {str(e)}"
)
except Exception as e:
logger.error(f"Unexpected error occurred: {str(e)}")
raise HTTPException(
status_code=500,
detail=f"Failed to upload file. Please try again. Error: {str(e)}",
)
@router.post("/validate-cell")
async def validate_cell(data: dict):
row_num = data.get("row")
col_name = data.get("column")
value = data.get("value")
logger.info(f"Validating cell row {row_num}, column {col_name}, value {value}")
# Retrieve the full data for the row
current_row_data = row_storage.get_row(row_num)
if not current_row_data:
logger.error(f"No data found for row {row_num}")
# Explicitly return a 404 error if the row is missing
raise HTTPException(status_code=404, detail=f"No data found for row {row_num}")
try:
# Determine the expected type for the column
expected_type = importer.get_expected_type(col_name)
# Clean and validate the specific field
cleaned_value = importer._clean_value(value, expected_type)
current_row_data[col_name] = cleaned_value # Update raw data
# Nested parameter handling for `DataCollectionParameters`
if col_name in DataCollectionParameters.model_fields:
nested_data = current_row_data.get("data_collection_parameters")
if isinstance(nested_data, dict):
# Convert dict to Pydantic model
current_nested = DataCollectionParameters(**nested_data)
elif isinstance(nested_data, DataCollectionParameters):
# Already a valid model
current_nested = nested_data
else:
current_nested = DataCollectionParameters()
# Update the nested model's field and reapply validation
nested_params = current_nested.model_dump()
nested_params[col_name] = cleaned_value
current_row_data["data_collection_parameters"] = DataCollectionParameters(
**nested_params
)
return {"is_valid": True, "message": "", "corrected_value": cleaned_value}
except ValidationError as e:
# Handle validation errors
logger.error(f"Validation error details: {e.errors()}")
column_error = next(
(err for err in e.errors() if err.get("loc")[0] == col_name), None
)
message = column_error["msg"] if column_error else "Validation failed."
logger.error(
f"Validation failed for row {row_num}, column {col_name}. Error: {message}"
)
return {"is_valid": False, "message": message}
except ValueError as e:
# Handle expected typecasting or value errors specifically
error_message = str(e)
logger.warning(
f"Failed to validate value '{value}' for row "
f"{row_num}, column {col_name}: {error_message}"
)
raise HTTPException(
status_code=400,
detail=f"Validation failed for row "
f"{row_num}, column {col_name}: {error_message}",
)
except Exception as e:
# Log unexpected issues and re-raise HTTP 500
logger.error(f"Unexpected error during validation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error validating cell: {str(e)}")