aaredb/backend/app/services/spreadsheet_service.py
2024-11-11 21:37:59 +01:00

221 lines
9.4 KiB
Python

import logging
import openpyxl
from pydantic import ValidationError
from typing import Union, List, Tuple
from io import BytesIO
from app.sample_models import SpreadsheetModel
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
class SpreadsheetImportError(Exception):
pass
class SampleSpreadsheetImporter:
def __init__(self):
self.filename = None
self.model = None
def _clean_value(self, value, expected_type=None):
"""Clean value by converting it to the expected type and handle edge cases."""
if value is None:
return None
if expected_type == str:
# Ensure value is converted to string and stripped of whitespace
return str(value).strip()
if expected_type in [float, int]:
try:
return expected_type(value)
except (ValueError, TypeError):
# If conversion fails, return None
return None
if isinstance(value, str):
try:
# Handle numeric strings
if '.' in value:
return float(value)
else:
return int(value)
except ValueError:
pass
# In case of failure, return the stripped string
return value.strip()
# If no expected type or value type match, return the original value
return value
def import_spreadsheet(self, file):
return self.import_spreadsheet_with_errors(file)
def get_expected_type(self, col_name):
type_mapping = {
'dewarname': str,
'puckname': str,
'positioninpuck': int,
'priority': int,
'oscillation': float,
# Add all other mappings based on model requirements
}
return type_mapping.get(col_name, str) # Default to `str`
def import_spreadsheet_with_errors(self, file) -> Tuple[List[SpreadsheetModel], List[dict], List[dict], List[str]]:
self.model = []
self.filename = file.filename
logger.info(f"Importing spreadsheet from .xlsx file: {self.filename}")
contents = file.file.read()
file.file.seek(0) # Reset file pointer to the beginning
if not contents:
logger.error("The uploaded file is empty.")
raise SpreadsheetImportError("The uploaded file is empty.")
try:
workbook = openpyxl.load_workbook(BytesIO(contents))
logger.debug("Workbook loaded successfully")
if "Samples" not in workbook.sheetnames:
logger.error("The file is missing 'Samples' worksheet.")
raise SpreadsheetImportError("The file is missing 'Samples' worksheet.")
sheet = workbook["Samples"]
except Exception as e:
logger.error(f"Failed to read the file: {str(e)}")
raise SpreadsheetImportError(f"Failed to read the file: {str(e)}")
# Unpack four values from the process_spreadsheet method
model, errors, raw_data, headers = self.process_spreadsheet(sheet)
# Now, return the values correctly
return model, errors, raw_data, headers
def process_spreadsheet(self, sheet) -> Tuple[List[SpreadsheetModel], List[dict], List[dict], List[str]]:
model = []
errors = []
raw_data = []
headers = []
# Skip the first 3 rows
rows = list(sheet.iter_rows(min_row=4, values_only=True))
logger.debug(f"Starting to process {len(rows)} rows from the sheet")
if not rows:
logger.error("The 'Samples' worksheet is empty.")
raise SpreadsheetImportError("The 'Samples' worksheet is empty.")
expected_columns = 32 # Number of columns expected based on the model
# Add the headers (the first row in the spreadsheet or map them explicitly)
headers = [
'dewarname', 'puckname', 'pucktype', 'crystalname', 'positioninpuck', 'priority',
'comments', 'directory', 'proteinname', 'oscillation', 'aperture', 'exposure',
'totalrange', 'transmission', 'dose', 'targetresolution', 'datacollectiontype',
'processingpipeline', 'spacegroupnumber', 'cellparameters', 'rescutkey', 'rescutvalue',
'userresolution', 'pdbid', 'autoprocfull', 'procfull', 'adpenabled', 'noano',
'ffcscampaign', 'trustedhigh', 'autoprocextraparams', 'chiphiangles'
]
for index, row in enumerate(rows):
if not any(row):
logger.debug(f"Skipping empty row at index {index}")
continue
# Record raw data for later use
raw_data.append({"row_num": index + 4, "data": row})
# Pad the row to ensure it has the expected number of columns
if len(row) < expected_columns:
row = list(row) + [None] * (expected_columns - len(row))
# Prepare the record with the cleaned values
record = {
'dewarname': self._clean_value(row[0], str),
'puckname': self._clean_value(row[1], str),
'pucktype': self._clean_value(row[2], str),
'crystalname': self._clean_value(row[3], str),
'positioninpuck': self._clean_value(row[4], int),
'priority': self._clean_value(row[5], int),
'comments': self._clean_value(row[6], str),
'directory': self._clean_value(row[7], str),
'proteinname': self._clean_value(row[8], str),
'oscillation': self._clean_value(row[9], float),
'aperture': self._clean_value(row[10], str),
'exposure': self._clean_value(row[11], float),
'totalrange': self._clean_value(row[12], float),
'transmission': self._clean_value(row[13], int),
'dose': self._clean_value(row[14], float),
'targetresolution': self._clean_value(row[15], float),
'datacollectiontype': self._clean_value(row[16], str),
'processingpipeline': self._clean_value(row[17], str),
'spacegroupnumber': self._clean_value(row[18], int),
'cellparameters': self._clean_value(row[19], str),
'rescutkey': self._clean_value(row[20], str),
'rescutvalue': self._clean_value(row[21], str),
'userresolution': self._clean_value(row[22], str),
'pdbid': self._clean_value(row[23], str),
'autoprocfull': self._clean_value(row[24], str),
'procfull': self._clean_value(row[25], str),
'adpenabled': self._clean_value(row[26], str),
'noano': self._clean_value(row[27], str),
'ffcscampaign': self._clean_value(row[28], str),
'trustedhigh': self._clean_value(row[29], str),
'autoprocextraparams': self._clean_value(row[30], str),
'chiphiangles': self._clean_value(row[31], str)
}
try:
validated_record = SpreadsheetModel(**record)
model.append(validated_record)
logger.debug(f"Row {index + 4} processed and validated successfully")
except ValidationError as e:
logger.error(f"Validation error in row {index + 4}: {e}")
for error in e.errors():
field = error['loc'][0]
msg = error['msg']
# Map field name (which is the key in `record`) to its index in the row
field_to_col = {
'dewarname': 0,
'puckname': 1,
'pucktype': 2,
'crystalname': 3,
'positioninpuck': 4,
'priority': 5,
'comments': 6,
'directory': 7,
'proteinname': 8,
'oscillation': 9,
'aperture': 10,
'exposure': 11,
'totalrange': 12,
'transmission': 13,
'dose': 14,
'targetresolution': 15,
'datacollectiontype': 16,
'processingpipeline': 17,
'spacegroupnumber': 18,
'cellparameters': 19,
'rescutkey': 20,
'rescutvalue': 21,
'userresolution': 22,
'pdbid': 23,
'autoprocfull': 24,
'procfull': 25,
'adpenabled': 26,
'noano': 27,
'ffcscampaign': 28,
'trustedhigh': 29,
'autoprocextraparams': 30,
'chiphiangles': 31
}
column_index = field_to_col[field]
error_info = {
'row': index + 4,
'cell': column_index,
'value': row[column_index], # Value that caused the error
'message': msg
}
errors.append(error_info)
self.model = model
logger.info(f"Finished processing {len(model)} records with {len(errors)} errors")
return self.model, errors, raw_data, headers # Include headers in the response