from app.sample_models import SpreadsheetModel, SpreadsheetResponse from fastapi import APIRouter, UploadFile, File, HTTPException import logging from app.services.spreadsheet_service import ( SampleSpreadsheetImporter, SpreadsheetImportError, ) from fastapi.responses import FileResponse import os from pydantic import ValidationError # Import ValidationError here from app.row_storage import row_storage # Import the RowStorage instance router = APIRouter() logger = logging.getLogger(__name__) importer = ( SampleSpreadsheetImporter() ) # assuming this is a singleton or manageable instance @router.get("/download-template", response_class=FileResponse) async def download_template(): """Serve a template file for spreadsheet upload.""" current_dir = os.path.dirname(__file__) template_path = os.path.join( current_dir, "../../downloads/V7_TELLSamplesSpreadsheetTemplate.xlsx" ) if not os.path.exists(template_path): raise HTTPException(status_code=404, detail="Template file not found.") return FileResponse( template_path, filename="template.xlsx", media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet", ) @router.post("/upload", response_model=SpreadsheetResponse) async def upload_file(file: UploadFile = File(...)): """Process the uploaded spreadsheet and return validation results.""" try: logger.info(f"Received file: {file.filename}") # Validate file format if not file.filename.endswith(".xlsx"): logger.error("Invalid file format") raise HTTPException( status_code=400, detail="Invalid file format. Please upload an .xlsx file.", ) # Initialize the importer and process the spreadsheet ( validated_model, errors, raw_data, headers, ) = importer.import_spreadsheet_with_errors(file) # Extract unique values for dewars, pucks, and samples dewars = {sample.dewarname for sample in validated_model if sample.dewarname} pucks = {sample.puckname for sample in validated_model if sample.puckname} samples = { sample.crystalname for sample in validated_model if sample.crystalname } # Construct the response model with the processed data response_data = SpreadsheetResponse( data=validated_model, errors=errors, raw_data=raw_data, dewars_count=len(dewars), dewars=list(dewars), pucks_count=len(pucks), pucks=list(pucks), samples_count=len(samples), samples=list(samples), headers=headers, # Include headers in the response ) # Store row data for future use for idx, row in enumerate(validated_model): row_num = idx + 4 # Adjust row numbering if necessary row_storage.set_row(row_num, row.dict()) logger.info( f"Returning response with {len(validated_model)}" f"records and {len(errors)} errors." ) return response_data except SpreadsheetImportError as e: logger.error(f"Spreadsheet import error: {str(e)}") raise HTTPException( status_code=400, detail=f"Error processing spreadsheet: {str(e)}" ) except Exception as e: logger.error(f"Unexpected error occurred: {str(e)}") raise HTTPException( status_code=500, detail=f"Failed to upload file. Please try again. Error: {str(e)}", ) @router.post("/validate-cell") async def validate_cell(data: dict): row_num = data.get("row") col_name = data.get("column") value = data.get("value") # Get the full data for the row current_row_data = row_storage.get_row(row_num) # Update the cell value current_row_data[col_name] = importer._clean_value( value, importer.get_expected_type(col_name) ) # Temporarily store the updated row data row_storage.set_row(row_num, current_row_data) logger.info(f"Validating cell: row {row_num}, column {col_name}, value {value}") try: # Ensure we're using the full row data context for validation SpreadsheetModel( **current_row_data ) # Instantiates the Pydantic model, performing validation logger.info(f"Validation succeeded for row {row_num}, column {col_name}") return {"is_valid": True, "message": ""} except ValidationError as e: # Extract the first error message message = e.errors()[0]["msg"] logger.error( f"Validation failed for row {row_num}, column {col_name}: {message}" ) return {"is_valid": False, "message": message}