from app.sample_models import SpreadsheetModel, SpreadsheetResponse from fastapi import APIRouter, UploadFile, File, HTTPException import logging from app.services.spreadsheet_service import SampleSpreadsheetImporter, SpreadsheetImportError from fastapi.responses import FileResponse import os from pydantic import ValidationError # Import ValidationError here router = APIRouter() logger = logging.getLogger(__name__) @router.get("/download-template", response_class=FileResponse) async def download_template(): """Serve a template file for spreadsheet upload.""" current_dir = os.path.dirname(__file__) template_path = os.path.join(current_dir, "../../downloads/V7_TELLSamplesSpreadsheetTemplate.xlsx") if not os.path.exists(template_path): raise HTTPException(status_code=404, detail="Template file not found.") return FileResponse(template_path, filename="template.xlsx", media_type="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet") @router.post("/upload", response_model=SpreadsheetResponse) async def upload_file(file: UploadFile = File(...)): """Process the uploaded spreadsheet and return validation results.""" try: logger.info(f"Received file: {file.filename}") # Validate file format if not file.filename.endswith('.xlsx'): logger.error("Invalid file format") raise HTTPException(status_code=400, detail="Invalid file format. Please upload an .xlsx file.") # Initialize the importer and process the spreadsheet importer = SampleSpreadsheetImporter() validated_model, errors, raw_data, headers = importer.import_spreadsheet_with_errors(file) # Extract unique values for dewars, pucks, and samples dewars = {sample.dewarname for sample in validated_model if sample.dewarname} pucks = {sample.puckname for sample in validated_model if sample.puckname} samples = {sample.crystalname for sample in validated_model if sample.crystalname} # Construct the response model with the processed data response_data = SpreadsheetResponse( data=validated_model, errors=errors, raw_data=raw_data, dewars_count=len(dewars), dewars=list(dewars), pucks_count=len(pucks), pucks=list(pucks), samples_count=len(samples), samples=list(samples), headers=headers # Include headers in the response ) logger.info(f"Returning response with {len(validated_model)} records and {len(errors)} errors.") return response_data except SpreadsheetImportError as e: logger.error(f"Spreadsheet import error: {str(e)}") raise HTTPException(status_code=400, detail=f"Error processing spreadsheet: {str(e)}") except Exception as e: logger.error(f"Unexpected error occurred: {str(e)}") raise HTTPException(status_code=500, detail=f"Failed to upload file. Please try again. Error: {str(e)}") @router.post("/validate-cell") async def validate_cell(data: dict): """Validate a single cell value based on expected column type.""" row_num = data.get("row") col_name = data.get("column") value = data.get("value") importer = SampleSpreadsheetImporter() # Ensure we've cleaned the value before validation expected_type = importer.get_expected_type(col_name) cleaned_value = importer._clean_value(value, expected_type) logger.info(f"Validating cell: row {row_num}, column {col_name}, value {cleaned_value}") try: # Construct a dictionary with the expected format for validation validation_data = {col_name: cleaned_value} SpreadsheetModel(**validation_data) logger.info(f"Validation succeeded for row {row_num}, column {col_name}") return {"is_valid": True, "message": ""} except ValidationError as e: # Extract the first error message message = e.errors()[0]['msg'] logger.error(f"Validation failed for row {row_num}, column {col_name}: {message}") return {"is_valid": False, "message": message}