Refactor spreadsheet processing to improve validation logic
Enhanced value cleaning and validation for spreadsheet data with dynamic handling of columns and corrections. Improved feedback for users with detailed error messages and visual indicators for corrected or defaulted values. Simplified backend and frontend logic for better maintainability and usability.
This commit is contained in:
@ -1,5 +1,6 @@
|
||||
import logging
|
||||
import openpyxl
|
||||
import re
|
||||
from pydantic import ValidationError
|
||||
from typing import List, Tuple
|
||||
from io import BytesIO
|
||||
@ -61,14 +62,40 @@ class SampleSpreadsheetImporter:
|
||||
# Return type if column exists, else default to str
|
||||
return column_type_mapping.get(column_name, str)
|
||||
|
||||
def _clean_value(self, value, expected_type=None):
|
||||
if value is None:
|
||||
def _clean_value(self, value, expected_type=None, column_name=None):
|
||||
"""
|
||||
Cleans and validates the given value based on its expected type.
|
||||
Different behavior is applied to specific columns if needed.
|
||||
"""
|
||||
if value is None or (isinstance(value, str) and value.strip() == ""):
|
||||
# Handle empty or None values
|
||||
if column_name == "directory":
|
||||
logger.warning("Directory value is empty. Assigning default value.")
|
||||
self.default_set = True # Flag to indicate a default value is set.
|
||||
return "{sgPuck}/{sgPosition}" # Default directory
|
||||
self.default_set = False
|
||||
return None
|
||||
|
||||
# Convert to string and strip whitespaces
|
||||
cleaned_value = str(value).strip()
|
||||
|
||||
# Handle specific column behaviors
|
||||
if expected_type == str:
|
||||
return str(value).strip()
|
||||
if expected_type in [float, int]:
|
||||
if expected_type == str:
|
||||
if column_name is None:
|
||||
logger.warning(f"Missing column_name for value: {value}")
|
||||
elif column_name == "comments":
|
||||
return " ".join(cleaned_value.split()) # Normalize excessive spaces
|
||||
|
||||
else:
|
||||
# Replace spaces with underscores for general string columns
|
||||
return cleaned_value.replace(" ", "_")
|
||||
|
||||
elif expected_type in [int, float]:
|
||||
try:
|
||||
return expected_type(value)
|
||||
# Remove any invalid characters and cast to the expected type
|
||||
cleaned_value = re.sub(r"[^\d.]", "", cleaned_value)
|
||||
return expected_type(cleaned_value)
|
||||
except (ValueError, TypeError) as e:
|
||||
logger.error(
|
||||
f"Failed to cast value '{value}' to {expected_type}. Error: {e}"
|
||||
@ -76,9 +103,9 @@ class SampleSpreadsheetImporter:
|
||||
raise ValueError(
|
||||
f"Invalid value: '{value}'. Expected type: {expected_type}."
|
||||
)
|
||||
# Fallback for unhandled types
|
||||
logger.warning(f"Unhandled type for value: '{value}'. Returning as-is.")
|
||||
return value
|
||||
|
||||
# Return cleaned value for other types
|
||||
return cleaned_value
|
||||
|
||||
def import_spreadsheet(self, file):
|
||||
return self.import_spreadsheet_with_errors(file)
|
||||
@ -180,67 +207,67 @@ class SampleSpreadsheetImporter:
|
||||
if len(row) < expected_columns:
|
||||
row = list(row) + [None] * (expected_columns - len(row))
|
||||
|
||||
# Prepare the record with cleaned values
|
||||
record = {
|
||||
"dewarname": self._clean_value(row[0], str),
|
||||
"puckname": self._clean_value(row[1], str),
|
||||
"pucktype": self._clean_value(row[2], str),
|
||||
"crystalname": self._clean_value(row[3], str),
|
||||
"positioninpuck": self._clean_value(row[4], int),
|
||||
"priority": self._clean_value(row[5], int),
|
||||
"comments": self._clean_value(row[6], str),
|
||||
"proteinname": self._clean_value(row[8], str),
|
||||
}
|
||||
# Prepare the record dynamically based on headers
|
||||
record = {}
|
||||
for col_idx, column_name in enumerate(headers):
|
||||
original_value = row[col_idx] if col_idx < len(row) else None
|
||||
expected_type = self.get_expected_type(column_name)
|
||||
|
||||
# Call _clean_value dynamically with the correct column_name
|
||||
try:
|
||||
cleaned_value = self._clean_value(
|
||||
original_value, expected_type, column_name
|
||||
)
|
||||
record[column_name] = cleaned_value
|
||||
except (ValueError, TypeError) as e:
|
||||
logger.error(
|
||||
f"Validation error for row {index + 4},"
|
||||
f" column '{column_name}': "
|
||||
f"{str(e)}"
|
||||
)
|
||||
errors.append(
|
||||
{
|
||||
"row": index + 4,
|
||||
"column": column_name,
|
||||
"value": original_value,
|
||||
"message": str(e),
|
||||
}
|
||||
)
|
||||
|
||||
# Nested processing for data_collection_parameters
|
||||
record["data_collection_parameters"] = {
|
||||
"directory": self._clean_value(row[7], str),
|
||||
"oscillation": self._clean_value(row[9], float),
|
||||
"aperture": self._clean_value(row[10], str),
|
||||
"exposure": self._clean_value(row[11], float),
|
||||
"totalrange": self._clean_value(row[12], float),
|
||||
"transmission": self._clean_value(row[13], int),
|
||||
"dose": self._clean_value(row[14], float),
|
||||
"targetresolution": self._clean_value(row[15], float),
|
||||
"datacollectiontype": self._clean_value(row[16], str),
|
||||
"processingpipeline": self._clean_value(row[17], str),
|
||||
"spacegroupnumber": self._clean_value(row[18], int),
|
||||
"cellparameters": self._clean_value(row[19], str),
|
||||
"rescutkey": self._clean_value(row[20], str),
|
||||
"rescutvalue": self._clean_value(row[21], str),
|
||||
"userresolution": self._clean_value(row[22], str),
|
||||
"pdbid": self._clean_value(row[23], str),
|
||||
"autoprocfull": self._clean_value(row[24], str),
|
||||
"procfull": self._clean_value(row[25], str),
|
||||
"adpenabled": self._clean_value(row[26], str),
|
||||
"noano": self._clean_value(row[27], str),
|
||||
"ffcscampaign": self._clean_value(row[28], str),
|
||||
"trustedhigh": self._clean_value(row[29], str),
|
||||
"autoprocextraparams": self._clean_value(row[30], str),
|
||||
"chiphiangles": self._clean_value(row[31], str),
|
||||
"directory": record.get("directory"),
|
||||
"oscillation": record.get("oscillation"),
|
||||
"aperture": record.get("aperture"),
|
||||
"exposure": record.get("exposure"),
|
||||
"totalrange": record.get("totalrange"),
|
||||
"transmission": record.get("transmission"),
|
||||
"dose": record.get("dose"),
|
||||
"targetresolution": record.get("targetresolution"),
|
||||
"datacollectiontype": record.get("datacollectiontype"),
|
||||
"processingpipeline": record.get("processingpipeline"),
|
||||
"spacegroupnumber": record.get("spacegroupnumber"),
|
||||
"cellparameters": record.get("cellparameters"),
|
||||
"rescutkey": record.get("rescutkey"),
|
||||
"rescutvalue": record.get("rescutvalue"),
|
||||
"userresolution": record.get("userresolution"),
|
||||
"pdbid": record.get("pdbid"),
|
||||
"autoprocfull": record.get("autoprocfull"),
|
||||
"procfull": record.get("procfull"),
|
||||
"adpenabled": record.get("adpenabled"),
|
||||
"noano": record.get("noano"),
|
||||
"ffcscampaign": record.get("ffcscampaign"),
|
||||
"trustedhigh": record.get("trustedhigh"),
|
||||
"autoprocextraparams": record.get("autoprocextraparams"),
|
||||
"chiphiangles": record.get("chiphiangles"),
|
||||
}
|
||||
|
||||
try:
|
||||
# Validate the record
|
||||
validated_record = SpreadsheetModel(**record)
|
||||
|
||||
# Get the corrected `directory`
|
||||
corrected_directory = (
|
||||
validated_record.data_collection_parameters.directory
|
||||
)
|
||||
|
||||
# Update `raw_data` to reflect the corrected value
|
||||
raw_data[-1]["data"][
|
||||
7
|
||||
] = corrected_directory # Replace directory in raw data
|
||||
raw_data[-1][
|
||||
"directory"
|
||||
] = corrected_directory # Add a top-level "directory" key
|
||||
raw_data[-1]["default_set"] = (
|
||||
corrected_directory == "{sgPuck}/{sgPosition}"
|
||||
)
|
||||
|
||||
# Add validated record to the model
|
||||
model.append(validated_record)
|
||||
|
||||
except ValidationError as e:
|
||||
logger.error(f"Validation error in row {index + 4}: {e}")
|
||||
for error in e.errors():
|
||||
|
Reference in New Issue
Block a user