added error recognition in spreadsheet
This commit is contained in:
@ -1,5 +1,3 @@
|
||||
# sample_spreadsheet_importer.py
|
||||
|
||||
import logging
|
||||
import openpyxl
|
||||
from pydantic import ValidationError
|
||||
@ -10,11 +8,9 @@ from app.sample_models import SpreadsheetModel
|
||||
logging.basicConfig(level=logging.DEBUG)
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class SpreadsheetImportError(Exception):
|
||||
pass
|
||||
|
||||
|
||||
class SampleSpreadsheetImporter:
|
||||
def __init__(self):
|
||||
self.filename = None
|
||||
@ -44,7 +40,18 @@ class SampleSpreadsheetImporter:
|
||||
def import_spreadsheet(self, file):
|
||||
return self.import_spreadsheet_with_errors(file)
|
||||
|
||||
def import_spreadsheet_with_errors(self, file) -> Tuple[List[SpreadsheetModel], List[dict], List[dict]]:
|
||||
def get_expected_type(self, col_name):
|
||||
type_mapping = {
|
||||
'dewarname': str,
|
||||
'puckname': str,
|
||||
'positioninpuck': int,
|
||||
'priority': int,
|
||||
'oscillation': float,
|
||||
# Add all other mappings based on model requirements
|
||||
}
|
||||
return type_mapping.get(col_name, str) # Default to `str`
|
||||
|
||||
def import_spreadsheet_with_errors(self, file) -> Tuple[List[SpreadsheetModel], List[dict], List[dict], List[str]]:
|
||||
self.model = []
|
||||
self.filename = file.filename
|
||||
logger.info(f"Importing spreadsheet from .xlsx file: {self.filename}")
|
||||
@ -67,12 +74,17 @@ class SampleSpreadsheetImporter:
|
||||
logger.error(f"Failed to read the file: {str(e)}")
|
||||
raise SpreadsheetImportError(f"Failed to read the file: {str(e)}")
|
||||
|
||||
return self.process_spreadsheet(sheet)
|
||||
# Unpack four values from the process_spreadsheet method
|
||||
model, errors, raw_data, headers = self.process_spreadsheet(sheet)
|
||||
|
||||
def process_spreadsheet(self, sheet) -> Tuple[List[SpreadsheetModel], List[dict], List[dict]]:
|
||||
# Now, return the values correctly
|
||||
return model, errors, raw_data, headers
|
||||
|
||||
def process_spreadsheet(self, sheet) -> Tuple[List[SpreadsheetModel], List[dict], List[dict], List[str]]:
|
||||
model = []
|
||||
errors = []
|
||||
raw_data = []
|
||||
headers = []
|
||||
|
||||
# Skip the first 3 rows
|
||||
rows = list(sheet.iter_rows(min_row=4, values_only=True))
|
||||
@ -84,6 +96,16 @@ class SampleSpreadsheetImporter:
|
||||
|
||||
expected_columns = 32 # Number of columns expected based on the model
|
||||
|
||||
# Add the headers (the first row in the spreadsheet or map them explicitly)
|
||||
headers = [
|
||||
'dewarname', 'puckname', 'pucktype', 'crystalname', 'positioninpuck', 'priority',
|
||||
'comments', 'directory', 'proteinname', 'oscillation', 'aperture', 'exposure',
|
||||
'totalrange', 'transmission', 'dose', 'targetresolution', 'datacollectiontype',
|
||||
'processingpipeline', 'spacegroupnumber', 'cellparameters', 'rescutkey', 'rescutvalue',
|
||||
'userresolution', 'pdbid', 'autoprocfull', 'procfull', 'adpenabled', 'noano',
|
||||
'ffcscampaign', 'trustedhigh', 'autoprocextraparams', 'chiphiangles'
|
||||
]
|
||||
|
||||
for index, row in enumerate(rows):
|
||||
if not any(row):
|
||||
logger.debug(f"Skipping empty row at index {index}")
|
||||
@ -96,6 +118,7 @@ class SampleSpreadsheetImporter:
|
||||
if len(row) < expected_columns:
|
||||
row = list(row) + [None] * (expected_columns - len(row))
|
||||
|
||||
# Prepare the record with the cleaned values
|
||||
record = {
|
||||
'dewarname': self._clean_value(row[0], str),
|
||||
'puckname': self._clean_value(row[1], str),
|
||||
@ -186,4 +209,4 @@ class SampleSpreadsheetImporter:
|
||||
|
||||
self.model = model
|
||||
logger.info(f"Finished processing {len(model)} records with {len(errors)} errors")
|
||||
return self.model, errors, raw_data
|
||||
return self.model, errors, raw_data, headers # Include headers in the response
|
||||
|
Reference in New Issue
Block a user