Add column type mapping and enhance validation

Introduced a backend mapping for column expected types, improving validation and error handling. Updated UI to highlight default and corrected values, with additional detailed validation for data collection parameters.
This commit is contained in:
GotthardG
2025-01-07 16:07:13 +01:00
parent 92306fcfa6
commit 35369fd13c
4 changed files with 61 additions and 55 deletions

View File

@ -137,11 +137,12 @@ async def validate_cell(data: dict):
logger.info(f"Validating cell row {row_num}, column {col_name}, value {value}") logger.info(f"Validating cell row {row_num}, column {col_name}, value {value}")
# Get the full data for the row # Retrieve the full data for the row
current_row_data = row_storage.get_row(row_num) current_row_data = row_storage.get_row(row_num)
if not current_row_data: if not current_row_data:
logger.error(f"No data found for row {row_num}") logger.error(f"No data found for row {row_num}")
# Explicitly return a 404 error if the row is missing
raise HTTPException(status_code=404, detail=f"No data found for row {row_num}") raise HTTPException(status_code=404, detail=f"No data found for row {row_num}")
try: try:
@ -152,33 +153,30 @@ async def validate_cell(data: dict):
cleaned_value = importer._clean_value(value, expected_type) cleaned_value = importer._clean_value(value, expected_type)
current_row_data[col_name] = cleaned_value # Update raw data current_row_data[col_name] = cleaned_value # Update raw data
# If the column belongs to the nested `data_collection_parameters` # Nested parameter handling for `DataCollectionParameters`
if col_name in DataCollectionParameters.model_fields: if col_name in DataCollectionParameters.model_fields:
# Ensure current_nested is a Pydantic model
nested_data = current_row_data.get("data_collection_parameters") nested_data = current_row_data.get("data_collection_parameters")
if isinstance( if isinstance(nested_data, dict):
nested_data, dict # Convert dict to Pydantic model
): # If it's a dict, convert it to a Pydantic model
current_nested = DataCollectionParameters(**nested_data) current_nested = DataCollectionParameters(**nested_data)
elif isinstance( elif isinstance(nested_data, DataCollectionParameters):
nested_data, DataCollectionParameters # Already a valid model
): # Already a valid model
current_nested = nested_data current_nested = nested_data
else: # If it's None or anything else, create a new instance else:
current_nested = DataCollectionParameters() current_nested = DataCollectionParameters()
# Convert the model to a dictionary, update the specific field, and # Update the nested model's field and reapply validation
# re-create the Pydantic model
nested_params = current_nested.model_dump() nested_params = current_nested.model_dump()
nested_params[col_name] = cleaned_value # Update the nested field nested_params[col_name] = cleaned_value
current_row_data["data_collection_parameters"] = DataCollectionParameters( current_row_data["data_collection_parameters"] = DataCollectionParameters(
**nested_params **nested_params
) )
return {"is_valid": True, "message": "", "corrected_value": cleaned_value} return {"is_valid": True, "message": "", "corrected_value": cleaned_value}
except ValidationError as e: except ValidationError as e:
# Handle and log errors # Handle validation errors
logger.error(f"Validation error details: {e.errors()}") logger.error(f"Validation error details: {e.errors()}")
column_error = next( column_error = next(
(err for err in e.errors() if err.get("loc")[0] == col_name), None (err for err in e.errors() if err.get("loc")[0] == col_name), None
@ -188,7 +186,21 @@ async def validate_cell(data: dict):
f"Validation failed for row {row_num}, column {col_name}. Error: {message}" f"Validation failed for row {row_num}, column {col_name}. Error: {message}"
) )
return {"is_valid": False, "message": message} return {"is_valid": False, "message": message}
except ValueError as e:
# Handle expected typecasting or value errors specifically
error_message = str(e)
logger.warning(
f"Failed to validate value '{value}' for row "
f"{row_num}, column {col_name}: {error_message}"
)
raise HTTPException(
status_code=400,
detail=f"Validation failed for row "
f"{row_num}, column {col_name}: {error_message}",
)
except Exception as e: except Exception as e:
# Log unexpected issues # Log unexpected issues and re-raise HTTP 500
logger.error(f"Unexpected error during validation: {str(e)}") logger.error(f"Unexpected error during validation: {str(e)}")
raise HTTPException(status_code=500, detail=f"Error validating cell: {str(e)}") raise HTTPException(status_code=500, detail=f"Error validating cell: {str(e)}")

View File

@ -163,24 +163,19 @@ class DataCollectionParameters(BaseModel):
) from e ) from e
return v return v
@field_validator("oscillation", "targetresolution", mode="before") @field_validator("oscillation", mode="before")
@classmethod @classmethod
def positive_float_validator(cls, v): def positive_float_validator(cls, v):
logger.debug(f"Running positive_float_validator for value: {v}") if v is None:
if v is not None: return None
try: try:
v = float(v) v = float(v)
if v <= 0: if v <= 0:
logger.error(f"Validation failed: '{v}' is not greater than 0.") raise ValueError(f"'{v}' is not valid. Value must be a positive float.")
raise ValueError(
f"'{v}' is not valid. Value must be a positive float."
)
except (ValueError, TypeError) as e: except (ValueError, TypeError) as e:
logger.error(f"Validation failed: '{v}' caused error {str(e)}")
raise ValueError( raise ValueError(
f"'{v}' is not valid. Value must be a positive float." f"'{v}' is not valid. Value must be a positive float."
) from e ) from e
logger.debug(f"Validation succeeded for value: {v}")
return v return v
@field_validator("exposure", mode="before") @field_validator("exposure", mode="before")

View File

@ -62,30 +62,22 @@ class SampleSpreadsheetImporter:
return column_type_mapping.get(column_name, str) return column_type_mapping.get(column_name, str)
def _clean_value(self, value, expected_type=None): def _clean_value(self, value, expected_type=None):
"""Clean value by converting it to the expected type and handle edge cases."""
if value is None: if value is None:
return None return None
if expected_type == str: if expected_type == str:
# Ensure value is converted to string and stripped of whitespace
return str(value).strip() return str(value).strip()
if expected_type in [float, int]: if expected_type in [float, int]:
try: try:
return expected_type(value) return expected_type(value)
except (ValueError, TypeError): except (ValueError, TypeError) as e:
# If conversion fails, return None logger.error(
return None f"Failed to cast value '{value}' to {expected_type}. Error: {e}"
if isinstance(value, str): )
try: raise ValueError(
# Handle numeric strings f"Invalid value: '{value}'. Expected type: {expected_type}."
if "." in value: )
return float(value) # Fallback for unhandled types
else: logger.warning(f"Unhandled type for value: '{value}'. Returning as-is.")
return int(value)
except ValueError:
pass
# In case of failure, return the stripped string
return value.strip()
# If no expected type or value type match, return the original value
return value return value
def import_spreadsheet(self, file): def import_spreadsheet(self, file):

View File

@ -122,23 +122,22 @@ const SpreadsheetTable = ({
if (response && response.is_valid !== undefined) { if (response && response.is_valid !== undefined) {
if (response.is_valid) { if (response.is_valid) {
// Handle validation success (remove error) // If valid, update the value (and use corrected_value if returned)
const correctedValue = response.corrected_value ?? newValue; const correctedValue = response.corrected_value ?? newValue;
currentRow.data[colIndex] = correctedValue; currentRow.data[colIndex] = correctedValue;
updatedRawData[rowIndex] = currentRow; updatedRawData[rowIndex] = currentRow;
setRawData(updatedRawData); // Update table data setRawData(updatedRawData);
// Remove error associated with this cell // Remove the error and mark as non-editable
const updatedErrors = localErrors.filter( const updatedErrors = localErrors.filter(
(error) => !(error.row === currentRow.row_num && error.cell === colIndex) (error) => !(error.row === currentRow.row_num && error.cell === colIndex)
); );
setLocalErrors(updatedErrors); setLocalErrors(updatedErrors); // Update error list
// Update non-editable state
setNonEditableCells((prev) => new Set([...prev, `${rowIndex}-${colIndex}`])); setNonEditableCells((prev) => new Set([...prev, `${rowIndex}-${colIndex}`]));
} else { } else {
// Handle validation failure (add error) // If not valid, don't add to nonEditableCells and update the error list
const errorMessage = response.message || "Invalid value."; const errorMessage = response.message || "Invalid value.";
const newError = { const newError = {
row: currentRow.row_num, row: currentRow.row_num,
@ -147,10 +146,18 @@ const SpreadsheetTable = ({
}; };
const updatedErrors = [ const updatedErrors = [
...localErrors.filter((error) => !(error.row === newError.row && error.cell === newError.cell)), // Avoid duplicates ...localErrors.filter(
(error) => !(error.row === newError.row && error.cell === newError.cell)
),
newError, newError,
]; ];
setLocalErrors(updatedErrors); setLocalErrors(updatedErrors);
setNonEditableCells((prev) => {
const updatedSet = new Set(prev);
updatedSet.delete(`${rowIndex}-${colIndex}`); // Ensure it stays editable
return updatedSet;
});
} }
} else { } else {
console.error("Unexpected response from backend:", response); console.error("Unexpected response from backend:", response);