Files
pvData/testApp/misc/testSharedVector.cpp

724 lines
16 KiB
C++

/*
* Copyright information and license terms for this software can be
* found in the file LICENSE that is included with the distribution
*/
/* Author: Michael Davidsaver */
#include <stddef.h>
#include <stdlib.h>
#include <stddef.h>
#include <string.h>
#include <stdio.h>
#include <vector>
#include <pv/pvUnitTest.h>
#include <testMain.h>
#include "pv/sharedVector.h"
namespace {
namespace pvd = epics::pvData;
void testEmpty()
{
testDiag("Test empty vector");
pvd::shared_vector<pvd::int32> empty, empty2, empty3(0u);
testOk1(empty.size()==0);
testOk1(empty.empty());
testOk1(empty.begin()==empty.end());
testOk1(empty.unique());
testOk1(empty3.empty());
testOk1(empty3.unique());
testOk1(empty.data()==NULL);
testOk1(empty==empty);
testOk1(!(empty!=empty));
testOk1(empty==empty2);
testOk1(!(empty!=empty2));
}
void testInternalAlloc()
{
testDiag("Test vector alloc w/ new[]");
pvd::shared_vector<pvd::int32> internal(5);
testOk1(internal.size()==5);
testOk1(!internal.empty());
testOk1(internal.unique());
testOk1(internal.data()!=NULL);
testOk1(internal.begin()+5==internal.end());
testOk1(internal.begin()==internal.end()-5);
testOk1(internal.begin()+2==internal.end()-3);
testOk1(internal.end()-internal.begin()==5);
internal[2] = 42;
testOk1(internal[2]==42);
pvd::shared_vector<pvd::int32> internal2(15, 500);
testOk1(internal2.size()==15);
testOk1(internal2[1]==500);
internal.swap(internal2);
testOk1(internal2.size()==5);
testOk1(internal.size()==15);
internal.clear();
testOk1(internal.size()==0);
testOk1(internal.empty());
testOk1(internal.unique());
testOk1(internal.data()==NULL);
}
//Note: STL shared_ptr requires that deletors be copy constructable
template<typename E>
struct callCounter {
std::tr1::shared_ptr<pvd::int32> count;
callCounter():count(new pvd::int32){*count=0;}
callCounter(const callCounter& o):count(o.count) {}
callCounter& operator=(const callCounter& o){count=o.count;}
void operator()(E){(*count)++;}
};
void testExternalAlloc()
{
testDiag("Test vector external alloc");
// Simulate a failed malloc() or similar
pvd::int32 *oops=0;
pvd::shared_vector<pvd::int32> nullPtr(oops, 42, 100);
testOk1(nullPtr.size()==0);
testOk1(nullPtr.empty());
testOk1(nullPtr.begin()==nullPtr.end());
testOk1(nullPtr.unique());
testOk1(nullPtr.data()==NULL);
pvd::int32 *raw=new pvd::int32[5];
pvd::shared_vector<pvd::int32> newData(raw, 1, 4);
testOk1(newData.size()==4);
testOk1(!newData.empty());
// check that offset is used
raw[1]=14;
testOk1(newData[0]==14);
// Check use of custom deleter
pvd::int32 localVar[4] = {1,2,3,4};
callCounter<pvd::int32*> tracker;
testOk1(*tracker.count==0);
pvd::shared_vector<pvd::int32> locvar(localVar,
tracker,
0, 4);
testOk1(locvar[1]==2);
testOk1(*tracker.count==0);
newData.swap(locvar);
testOk1(*tracker.count==0);
newData.clear();
testOk1(*tracker.count==1);
}
void testShare()
{
testDiag("Test vector Sharing");
pvd::shared_vector<pvd::int32> one, two(15);
pvd::shared_vector<pvd::int32> three(two);
testOk1(one.unique());
testOk1(!two.unique());
testOk1(!three.unique());
testOk1(two.data() == three.data());
one = two;
testOk1(!one.unique());
testOk1(two.data() == one.data());
one = one; // no-op
testOk1(two.data() == one.data());
one[1] = 43;
testOk1(two[1]==43);
testOk1(three[1]==43);
one.make_unique();
testOk1(one[1]==43);
one[1] = 143;
testOk1(two[1]==43);
testOk1(three[1]==43);
two.resize(two.size());
testOk1(two[1]==43);
two[1] = 243;
testOk1(one[1]==143);
testOk1(three[1]==43);
testOk1(one.unique());
testOk1(two.unique());
testOk1(three.unique());
one.resize(2);
testOk1(one.size()==2);
testOk1(one[1]==143);
testOk1(two.size()==15);
testOk1(three.size()==15);
two.resize(20, 5000);
testOk1(two[1]==243);
testOk1(one.size()==2);
testOk1(two.size()==20);
testOk1(three.size()==15);
testOk1(two[19]==5000);
}
void testConst()
{
testDiag("Test constant vector");
pvd::shared_vector<pvd::int32> writable(15, 100);
pvd::shared_vector<pvd::int32>::reference wr = writable[0];
pvd::shared_vector<pvd::int32>::const_reference ror = writable[0];
testOk1(wr==ror);
pvd::int32 *compare = writable.data();
testOk1(writable.unique());
// can re-target container, but data is R/O
pvd::shared_vector<const pvd::int32> rodata(freeze(writable));
pvd::shared_vector<const pvd::int32>::reference wcr = rodata[0];
pvd::shared_vector<const pvd::int32>::const_reference rocr = rodata[0];
testOk1(wcr==rocr);
testOk1(rodata.data()==compare);
writable = thaw(rodata);
testOk1(writable.data()==compare);
rodata = freeze(writable);
testOk1(rodata.data()==compare);
pvd::shared_vector<const pvd::int32> rodata2(rodata);
testOk1(rodata.data()==rodata2.data());
rodata2.make_unique();
testOk1(rodata.data()!=rodata2.data());
}
void testSlice()
{
testDiag("Test vector slicing");
pvd::shared_vector<pvd::int32> original(10, 100);
pvd::shared_vector<pvd::int32> half1(original), half2(original), half2a(original);
half1.slice(0, 5);
half2.slice(5, 5);
half2a.slice(5);
testOk1(half1.dataOffset()==0);
testOk1(half2.dataOffset()==5);
testOk1(half2a.dataOffset()==5);
testOk1(half1.size()==5);
testOk1(half2.size()==5);
testOk1(half2a.size()==5);
testOk1(half1.dataTotal()==10);
testOk1(half2.dataTotal()==5);
testOk1(half2a.dataTotal()==5);
testOk1(original.data() == half1.data());
testOk1(half2.data() == half2a.data());
half1.slice(100000);
half2.slice(1);
half2a.slice(1,1);
testOk1(half1.dataOffset()==5);
testOk1(half2.dataOffset()==6);
testOk1(half2a.dataOffset()==6);
testOk1(half1.size()==0);
testOk1(half2.size()==4);
testOk1(half2a.size()==1);
testOk1(half1.dataTotal()==5);
testOk1(half2.dataTotal()==4);
testOk1(half2a.dataTotal()==4);
half2.clear();
testOk1(half2.dataOffset()==0);
testOk1(half2.dataCount()==0);
testOk1(half2.dataTotal()==0);
testOk1(half2.data()==NULL);
}
void testCapacity()
{
testDiag("Test vector capacity");
pvd::shared_vector<pvd::int32> vect(10, 100);
pvd::int32 *peek = vect.dataPtr().get();
vect.slice(0, 5);
testOk1(vect.size()==5);
testOk1(vect.dataTotal()==10);
testOk1(vect.dataPtr().get() == peek);
vect.resize(6);
testOk1(vect.dataPtr().get() == peek);
testOk1(vect.size()==6);
testOk1(vect.dataTotal()==10);
vect.resize(10);
testOk1(vect.dataPtr().get() == peek);
testOk1(vect.size()==10);
testOk1(vect.dataTotal()==10);
vect.resize(11);
testOk1(vect.dataPtr().get() != peek);
testOk1(vect.size()==11);
testOk1(vect.dataTotal()>=11);
vect[1] = 124;
vect.reserve(15);
testOk1(vect.size()==11);
testOk1(vect.dataTotal()>=15);
testOk1(vect[1]==124);
}
void testPush()
{
pvd::shared_vector<pvd::int32> vect;
testDiag("Test push_back optimizations");
size_t nallocs = 0;
size_t cap = vect.capacity();
for(size_t s=0; s<16*1024; s++) {
vect.push_back((int)s);
if(cap!=vect.capacity()) {
nallocs++;
cap = vect.capacity();
}
}
testDiag("push_back %ld times caused %ld re-allocations",
(unsigned long)vect.size(),
(unsigned long)nallocs);
testOk1(nallocs==26);
}
void testVoid()
{
testDiag("Test vector cast to/from void");
pvd::shared_vector<pvd::int32> IV(4);
pvd::shared_vector<void> VV(pvd::static_shared_vector_cast<void>(IV));
testOk1(IV.dataPtr().get()==VV.dataPtr().get());
testOk1(IV.size()*sizeof(pvd::int32)==VV.size());
VV.slice(sizeof(pvd::int32), 2*sizeof(pvd::int32));
IV = pvd::static_shared_vector_cast<pvd::int32>(VV);
testOk1(IV.dataOffset()==1);
testOk1(IV.size()==2);
VV.clear();
}
void testConstVoid()
{
testDiag("Test vector cast to/from const void");
pvd::shared_vector<const pvd::int32> CIV(4);
pvd::shared_vector<const void> CVV(pvd::static_shared_vector_cast<const void>(CIV));
// case const void to const void
pvd::shared_vector<const void> CVV2(pvd::static_shared_vector_cast<const void>(CVV));
testOk1(CIV.dataPtr().get()==CVV2.dataPtr().get());
testOk1(CIV.size()*sizeof(int)==CVV2.size());
CVV2.slice(sizeof(int), 2*sizeof(int));
CIV = pvd::static_shared_vector_cast<const pvd::int32>(CVV2);
testOk1(CIV.dataOffset()==1);
testOk1(CIV.size()==2);
pvd::shared_vector<void> VV;
// not possible to thaw() void as shared_vector<void> has no make_unique()
//VV = thaw(CVV);
CVV = freeze(VV);
}
struct dummyStruct {};
void testNonPOD()
{
testDiag("Test vector of non-POD types");
pvd::shared_vector<std::string> strings(6);
pvd::shared_vector<std::tr1::shared_ptr<dummyStruct> > structs(5);
testOk1(strings[0].empty());
testOk1(structs[0].get()==NULL);
structs[1].reset(new dummyStruct);
dummyStruct *temp = structs[1].get();
pvd::shared_vector<std::tr1::shared_ptr<dummyStruct> > structs2(structs);
testOk1(!structs.unique());
testOk1(structs[1].unique());
testOk1(structs2[1].get()==temp);
structs2.make_unique();
testOk1(structs.unique());
testOk1(!structs[1].unique());
testOk1(structs2[1].get()==temp);
}
void testVectorConvert()
{
testDiag("Test shared_vector_convert");
pvd::shared_vector<pvd::int32> ints(6, 42), moreints;
pvd::shared_vector<float> floats;
pvd::shared_vector<std::string> strings;
pvd::shared_vector<void> voids;
testOk1(ints.unique());
// no-op convert. Just returns another reference
moreints = pvd::shared_vector_convert<pvd::int32>(ints);
testOk1(!ints.unique());
moreints.clear();
// conversion when both types are known.
// returns a new vector
floats = pvd::shared_vector_convert<float>(ints);
testOk1(ints.unique());
testOk1(floats.size()==ints.size());
testOk1(floats.at(0)==42.0);
// convert to void is static_shared_vector_cast<void>()
// returns a reference
voids = pvd::shared_vector_convert<void>(ints);
testOk1(!ints.unique());
testOk1(voids.size()==ints.size()*sizeof(pvd::int32));
// convert from void uses shared_vector<void>::original_type()
// to find that the actual type is 'int32'.
// returns a new vector
testOk1(voids.original_type()==pvd::pvInt);
strings = pvd::shared_vector_convert<std::string>(voids);
voids.clear();
testOk1(ints.unique());
testOk1(strings.size()==ints.size());
testOk1(strings.at(0)=="42");
}
void testWeak()
{
testDiag("Test weak_ptr counting");
pvd::shared_vector<pvd::int32> data(6);
testOk1(data.unique());
std::tr1::shared_ptr<pvd::int32> pdata(data.dataPtr());
testOk1(!data.unique());
pdata.reset();
testOk1(data.unique());
std::tr1::weak_ptr<pvd::int32> wdata(data.dataPtr());
testOk1(data.unique()); // True, but I wish it wasn't!!!
pdata = wdata.lock();
testOk1(!data.unique());
}
void testICE()
{
testDiag("Test freeze and thaw");
pvd::shared_vector<pvd::int32> A(6, 42), C;
pvd::shared_vector<const pvd::int32> B, D;
pvd::int32 *check = A.data();
// check freeze w/ unique reference
// clears A and moves reference to B
// no copy
B = pvd::freeze(A);
testOk1(A.unique());
testOk1(B.unique());
testOk1(A.size()==0);
testOk1(B.size()==6);
testOk1(A.data()!=check);
testOk1(B.data()==check);
D = B; // create second const reference
// clears D, but reference to B
// remains, so a copy is made
C = pvd::thaw(D);
testOk1(B.unique());
testOk1(C.unique());
testOk1(B.size()==6);
testOk1(C.size()==6);
testOk1(B.data()==check);
testOk1(C.data()!=NULL);
testOk1(C.at(0)==42);
C.clear();
// clears B and moves reference to A
// no copy
A = pvd::thaw(B);
testOk1(A.unique());
testOk1(B.unique());
testOk1(A.size()==6);
testOk1(B.size()==0);
testOk1(A.data()==check);
testOk1(B.data()!=check);
C = A; // create second non-const reference
testOk1(!A.unique());
try {
// would clear A, but remaining reference C
// fails operation. A not cleared
// and exception thrown
B = pvd::freeze(A);
testFail("Froze non-unique vector!");
} catch(std::runtime_error& e) {
testPass("freeze of non-unique throws runtime_error as expected");
}
}
void testBad()
{
pvd::shared_vector<int> I;
pvd::shared_vector<const int> CI;
pvd::shared_vector<float> F;
pvd::shared_vector<const float> CF;
pvd::shared_vector<void> V;
pvd::shared_vector<const void> CV;
(void)I;
(void)CI;
(void)F;
(void)CF;
(void)V;
(void)CV;
// Tests which should result in compile failure.
// as there is no established way to test this automatically,
// uncomment one at a time
// No copy from const to non-const
//CI = I;
//I = CI;
//pvd::shared_vector<const int> CI2(I);
//pvd::shared_vector<int> I2(CI);
// shared_vector_convert can't thaw()
//I = pvd::shared_vector_convert<int>(CI);
//V = pvd::shared_vector_convert<void>(CV);
// shared_vector_convert can't freeze()
//CI = pvd::shared_vector_convert<const int>(I);
//CV = pvd::shared_vector_convert<const void>(V);
// static_shared_vector_cast can't thaw()
//I = pvd::static_shared_vector_cast<int>(CI);
//V = pvd::static_shared_vector_cast<void>(CV);
// static_shared_vector_cast can't freeze()
//CI = pvd::static_shared_vector_cast<const int>(I);
//CV = pvd::static_shared_vector_cast<const void>(V);
// freeze() can't change type.
// the error here will be with the assignment
//I = pvd::freeze(CV);
//I = pvd::freeze(CF);
//CI = pvd::freeze(V);
//CI = pvd::freeze(F);
// that() can't change type.
// the error here will be with the assignment
//CI = pvd::thaw(V);
//CI = pvd::thaw(F);
//I = pvd::thaw(CV);
//I = pvd::that(CF);
}
void testAutoSwap()
{
epics::auto_ptr<int> A(new int(42)), B(new int(43));
epics::swap(A, B);
testOk1(43==*A);
testOk1(42==*B);
}
void testCXX11Move()
{
#if __cplusplus>=201103L
testDiag("Check std::move()");
pvd::shared_vector<pvd::int32> A(4, 42),
B(std::move(A));
testOk1(A.unique());
testOk1(B.unique());
testOk1(A.empty());
testOk1(B.size()==4);
testOk1(!B.empty() && B[0]==42);
A = std::move(B);
testOk1(A.unique());
testOk1(B.unique());
testOk1(B.empty());
testOk1(A.size()==4);
testOk1(!A.empty() && A[0]==42);
pvd::shared_vector<void> C(pvd::shared_vector_convert<void>(A)),
D(std::move(C));
A.clear();
testOk1(C.unique());
testOk1(D.unique());
testOk1(C.empty());
testOk1(D.size()==4*4);
C = std::move(D);
testOk1(C.unique());
testOk1(D.unique());
testOk1(C.size()==4*4);
testOk1(D.empty());
#else
testSkip(18, "Not -std=c++11");
#endif
}
void testCXX11Init()
{
#if __cplusplus>=201103L
testDiag("Check c++11 style array initialization");
pvd::shared_vector<const pvd::int32> A = {1.0, 2.0, 3.0};
testOk1(A.size()==3);
pvd::int32 sum = 0;
for (auto V: A) {
sum += V;
}
testOk1(sum==6);
#else
testSkip(2, "Not -std=c++11");
#endif
}
} // namespace
MAIN(testSharedVector)
{
testPlan(191);
testDiag("Tests for shared_vector");
testDiag("sizeof(shared_vector<pvd::int32>)=%lu",
(unsigned long)sizeof(pvd::shared_vector<pvd::int32>));
testEmpty();
testInternalAlloc();
testExternalAlloc();
testCapacity();
testShare();
testConst();
testSlice();
testPush();
testVoid();
testConstVoid();
testNonPOD();
testVectorConvert();
testWeak();
testICE();
testBad();
testAutoSwap();
testCXX11Move();
testCXX11Init();
return testDone();
}