EPICS Array

EPICS v4 Working Group, Working Draft, 28-Jun-2013

Latest version:
pvArray.html
This version:
none
Previous version:
None
Editors:
Marty Kraimer, BNL
Michael Davidsaver, BNL

Table of Contents

Changes

Since the last version of this document the following changes have been made to the proposed interface definitionsi for PVValueArray:

put(const svector &from)
This has been removed. shareData can be used instead.
get
The get methods has been replaced by two methods. One allows write access to array elements and the other does not.

The stream operator++ methods were changed so that they only appear in PVField. All the complexity should be hidden in the implementation and, perhaps like Java, in the convert facility.

A few minor changes were made because of mistakes in documenting existing API descriptions.

Introduction

This is the documentation for pvData.h as defined by pvDataCPP-md. When complete it will be merged into pvDataCPP.html. This document proposes an implementation of the PVXXX interfaces that are different than the existing pvDataCPP-md interfaces. See the next section for a comparison of the four interface descriptions. The main reason for proposing a different definition is the primary purpose for pvData:

pvData (Process Variable Data) defines and implements an efficent way to store, access, and communicate memory resident data structures.
This statement appears as the first sentence of pvDataJava.html. A few sentances later the document makes clear that communication includes network communication. Thus pvData provides an interface for network accessible structured data. If the interfaces for C++ and Java are similar then someone who understands the interface in one of the languages and knows both languages will quickly understand the interface of the other language. With only a few exceptions the naming and other conventions do not follow the C++ standard library conventions. The pvData.h API is similar to the definition for Java. The differences are mainly related to language differences. Some differences are:
shared pointers
Java has a garbage collector. In C++ the implementation manages memory. An important tool is std::tr1::shared_ptr.
PVArray
The Java garbage collector allows raw data arrays, e. g. int[], to be shared. For C++ a shared_vector holds the raw data.
ostream replaces toString
In Java every object has method toString(). For C++ stream operator<< replaces toString
shared_vector
This is similar to std::vector but uses a shared_ptr to wrap the raw data and also supports a window into the raw data. It does follow the naming and other conventions for C++ standard library containers. Code that wants to use features of the C++ standard library like iterators and algorithms can get the shared_vector.

There is one big difference from the existing Java API: The method PVValueArray::get. As an example the Java definition for PVDoubleArray is currently:

    int get(int offset, int length, DoubleArrayData data);
This document assumes this will be replaced by:
    double[] get();

The existing version allowed the data source to provide the array in chunks. The new version assumes that the data source always provides contiguous storage for the entire raw array. If this is accepted it simplifies a lot of code.

Three topics not discussed in this document are:

pvDataCreate
There should be a new method something like:
PVScalarArrayPtr createPVScalarArray(const PVScalarArray &, size_t offset, size_t length);
      
This will share the raw data array but allow a new window.
convert
This will be changed to do conversions itself instead of calling methods like getAs. It will again support methods toXXXArray and fromXXXArray. Templates should be used to minimize the code required.
PVStructureArray
This should also be able to use shared_vector to hold elements.

PVXXX: pvDataJava, pvDataCPP, pvDataCPP-md, and proposed interface

The following compares the definitions of the following: PVField, PVScalar and extensions, PVArray and extensions. PVStructureArray is not discussed.

PVField

This is the base for all the PVXXX iterfaces. It provides basic methods for allowing network transfer and for traversing structured data. The pvDataJava and pvDataCPP definitions are similar. pvDataCPP-md added method getFullName. The proposed interface is like the existing pvDataCPP except that the dumpValue method is replaced by the stream operator<<.

Java

interface PVField extends Requester, Serializable {
    String getFieldName();
    void setRequester(Requester requester);
    int getFieldOffset();
    int getNextFieldOffset();
    int getNumberFields();
    PVAuxInfo getPVAuxInfo();
    boolean isImmutable();
    void setImmutable();
    Field getField();
    PVStructure getParent();
    void renameField(String newName);
    void postPut(); // calls PVRecordField.postPut if this is a field of a record
    void setPostHandler(PostHandler postHandler);
    void toString(StringBuilder buf);
    void toString(StringBuilder buf,int indentLevel);
    String toString();
}

pvDataCPP

class PVField
: virtual public Serializable,
  public std::tr1::enable_shared_from_this<PVField>
{
public:
   POINTER_DEFINITIONS(PVField);
   virtual ~PVField();
   virtual void message(String message,MessageType messageType);
   String getFieldName() const ;
   virtual void setRequester(RequesterPtr const &prequester);
   std::size_t getFieldOffset() const;
   std::size_t getNextFieldOffset() const;
   std::size_t getNumberFields() const;
   PVAuxInfoPtr & getPVAuxInfo()
   bool isImmutable() const;
   virtual void setImmutable();
   const FieldConstPtr & getField() const ;
   PVStructure * getParent() const
   void replacePVField(const PVFieldPtr&  newPVField);
   void renameField(String const &newName);
   void postPut() ;
   void setPostHandler(PostHandlerPtr const &postHandler);
   virtual bool equals(PVField &pv);
   virtual void toString(StringBuilder buf) ;
   virtual void toString(StringBuilder buf,int indentLevel);
   virtual std::ostream& dumpValue(std::ostream& o) const =0;
 ...
}

std::ostream& operator<<(std::ostream& o, const PVFieldPtr & f);

pvDataCPP-md

class PVField
: virtual public Serializable,
  public std::tr1::enable_shared_from_this<PVField>
{
public:
   POINTER_DEFINITIONS(PVField);
   virtual ~PVField();
   virtual void message(String message,MessageType messageType);
   String getFieldName() const ;
   virtual void setRequester(RequesterPtr const &prequester);
   std::size_t getFieldOffset() const;
   std::size_t getNextFieldOffset() const;
   std::size_t getNumberFields() const;
   PVAuxInfoPtr & getPVAuxInfo()
   bool isImmutable() const;
   virtual void setImmutable();
   const FieldConstPtr & getField() const ;
   PVStructure * getParent() const
   void replacePVField(const PVFieldPtr&  newPVField);
   void renameField(String const &newName);
   void postPut() ;
   void setPostHandler(PostHandlerPtr const &postHandler);
   virtual bool equals(PVField &pv);
   virtual void toString(StringBuilder buf) ;
   virtual void toString(StringBuilder buf,int indentLevel);
   std::ostream& dumpValue(std::ostream& o) const;
   // not in pvDataCPP
   String getFullName() const;
 ...
}

std::ostream& operator<<(std::ostream& o, const PVFieldPtr & f);

proposed

class PVField
: virtual public Serializable,
  public std::tr1::enable_shared_from_this
{
public:
    POINTER_DEFINITIONS(PVField);
    virtual ~PVField();
    virtual void message(String message,MessageType messageType);
    const String& getFieldName() const;
    virtual void setRequester(RequesterPtr const &prequester);
    std::size_t getFieldOffset() const;
    std::size_t getNextFieldOffset() const;
    std::size_t getNumberFields() const;
    PVAuxInfoPtr & getPVAuxInfo();
    bool isImmutable() const;
    void setImmutable();
    const FieldConstPtr & getField() const;
    PVStructure * getParent() const;
    void replacePVField(const PVFieldPtr&  newPVField);
    void renameField(String const & newName);
    void postPut();
    void setPostHandler(PostHandlerPtr const &postHandler);
    virtual bool equals(PVField &pv);
    void toString(StringBuilder buf) ;
    void toString(StringBuilder buf,int indentLevel);
    std::ostream& operator<<(std::ostream& o) const;
...
};

PVScalar

The Java and pvDataCPP versions differ in that Java has an interface definition for each scalar type, i. e. PVBoolean, ..., PVString, and the CPP versions provide a template PVValue for the implementation.

pvDataCPP-md differs from pvDataCPP in that it implements three additional methods:

getAs
This is used to implement the Convert::toXXX methods. This belongs in the Convert implementation not in PVScalar.
putFrom
This is used to implement the Convert::fromXXX scalar methods. This belongs in the Convert implementation not in PVScalar.
assign
This does the same thing as the Convert::fromXXX methods except that it does not go through Convert. This belongs in the Convert implementation not in PVScalar.

The proposed version is like the pvDataCPP version except for dumpValue and the stream interators.

pvDataJava

interface PVScalar extends PVField {
    Scalar getScalar();
}

interface PVBoolean extends PVScalar {
    boolean get();
    void put(boolean value);
}

interface PVByte extends PVScalar {
    byte get();
    void put(byte value);
}
...
interface PVDouble extends PVScalar {
    double get();
    void put(double value);
}
interface PVString extends PVScalar, SerializableArray {
    String get();
    void put(String value);
}

pvDataCPP

class PVScalar : public PVField {
public:
    POINTER_DEFINITIONS(PVScalar);
    virtual ~PVScalar();
    typedef PVScalar &reference;
    typedef const PVScalar& const_reference;
    const ScalarConstPtr getScalar() const ;
 ...
}

template<typename T>
class PVScalarValue : public PVScalar {
public:
    POINTER_DEFINITIONS(PVScalarValue);
    typedef T value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    virtual ~PVScalarValue() {}
    virtual T get() const = 0;
    virtual void put(T value) = 0;
    std::ostream& dumpValue(std::ostream& o) const
    void operator>>=(T& value) const;
    void operator<<=(T value);
 ...
}

typedef PVScalarValue PVBoolean;
typedef PVScalarValue PVByte;
...typedef PVScalarValue PVDouble;
typedef std::tr1::shared_ptr PVBooleanPtr;
typedef std::tr1::shared_ptr PVBytePtr;
...
typedef std::tr1::shared_ptr PVDoublePtr;


// PVString is special case, since it implements SerializableArray
class PVString : public PVScalarValue<String>, SerializableArray {
public:
    virtual ~PVString() {}
 ...
};

pvDataCPP-md

class PVScalar : public PVField {
public:
    POINTER_DEFINITIONS(PVScalar);
    virtual ~PVScalar();
    typedef PVScalar &reference;
    typedef const PVScalar& const_reference;
    const ScalarConstPtr getScalar() const ;

    // not in pvDataCPP
    template<ScalarType ID>
    inline typename ScalarTypeTraits<ID>::type getAs() const;

    virtual void getAs(void *, ScalarType) const = 0;
    template<ScalarType ID>
    inline void putFrom(typename ScalarTypeTraits<ID>::type val)

    virtual void putFrom(const void *, ScalarType) = 0;
    virtual void assign(const PVScalar&) = 0;

 ...
}

template<typename T>
class PVScalarValue : public PVScalar {
public:
    POINTER_DEFINITIONS(PVScalarValue);
    typedef T value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    virtual ~PVScalarValue() {}
    virtual T get() const = 0;
    virtual void put(T value) = 0;
    std::ostream& dumpValue(std::ostream& o) const
    void operator>>=(T& value) const;
    void operator<<=(T value);

    // not in pvDataCPP
    static const ScalarType typeCode;
 ...
}

typedef PVScalarValue PVBoolean;
typedef PVScalarValue PVByte;
...typedef PVScalarValue PVDouble;
typedef std::tr1::shared_ptr PVBooleanPtr;
typedef std::tr1::shared_ptr PVBytePtr;
...
typedef std::tr1::shared_ptr PVDoublePtr;


// PVString is special case, since it implements SerializableArray
class PVString : public PVScalarValue<String>, SerializableArray {
public:
    virtual ~PVString() {}
 ...
};

proposed

class PVScalar : public PVField {
public:
    POINTER_DEFINITIONS(PVScalar);
    virtual ~PVScalar();

    typedef PVScalar &reference;
    typedef const PVScalar& const_reference;

    const ScalarConstPtr getScalar() const;
...
};

template<typename T>
class PVScalarValue : public PVScalar {
public:
    POINTER_DEFINITIONS(PVScalarValue);
    typedef T value_type;
    typedef T* pointer;
    typedef const T* const_pointer;

    virtual ~PVScalarValue() {}
    virtual T get() const = 0;
    virtual void put(T value) = 0;

    void operator>>=(T& value) const;
    void operator<<=(T value);
...
};
typedef PVScalarValue<uint8> PVBoolean;
typedef PVScalarValue<int8> PVByte;
typedef PVScalarValue<double> PVDouble;
...
typedef std::tr1::shared_ptr<PVBoolean> PVBooleanPtr;
typedef std::tr1::shared_ptr<PVByte> PVBytePtr;
...
typedef std::tr1::shared_ptr<PVDouble> PVDoublePtr;

// PVString is special case, since it implements SerializableArray
class PVString : public PVScalarValue<String>, SerializableArray {
public:
    virtual ~PVString() {}
 ...
};

PVArray

The Java and pvDataCPP versions differ in that Java has an interface definition for each scalarArray type, i. e. PVBooleanArray, ..., PVStringArray, and the CPP versions provide a template PVValueArray for the implementation.

pvDataCPP-md differs from pvDataCPP in that it implements additional methods:

getAs
This is used to implement the Convert::toXXXArray methods. This belongs in the Convert implementation not in PVArray.
putFrom
This is used to implement the Convert::fromXXXArray scalar methods. This belongs in the Convert implementation not in PVArray.
assign
This does the same thing as the Convert::fromXXXArray methods except that it does not go through Convert. This belongs in the Convert implementation not in PVArray.
copyOut
This is used to copy data to a raw array.
copyIn
This is used to copy data in from a raw array.

The proposed version is differs from pvJava, pvDataCPP, and pvCPP-md. It is like the Java version if the Java get method is simplified as discussed above. For example PVDoubleArray::get becomes:

    double[] get();
The corresponding C++ version becomes:
    const svector & get();
    const const_svector & get() const;

The remaining difference is that dumpValue is replaced by the stream operator<<.

The main difference from the pvDataJava version is that PVValueArray "wraps" shared_vector. Thus shared_vector takes the place of the raw arrays in Java. This allows the C++ interface to be more similar to Java.

The main difference from the pvDataCPP-md version is that it does not implement the extra methods and allows the client access to the shared_vector. The client is then able to perform C++ specific things to the data. BUT it also means that if the client modifies the shared_vector the client is also responsible for ensuring that the immutable and capacity related features of PVField and PVArray are respected and the postPut is properly handled.

Note that two get methods exist. One allows write access to the raw data and the other doesn't/

pvDataJava

interface PVArray extends PVField, SerializableArray {
    int getLength();
    void setLength(int length);
    int getCapacity();
    void setCapacity(int length);
    boolean isCapacityMutable();
    void setCapacityMutable(boolean isMutable);
}

interface PVScalarArray extends PVArray {
    ScalarArray getScalarArray();
}

For each scalar type an associated array data interface is defined. Each has a get and put method. For example:

public class DoubleArrayData {
    public double[] data;
    public int offset;
}

interface PVDoubleArray extends PVArray {
    int get(int offset, int len, DoubleArrayData data);
    int put(int offset,int len, double[] from, int fromOffset);
    void shareData(double[] from);
}

pvDataCPP

class PVArray : public PVField, public SerializableArray {
public:
    POINTER_DEFINITIONS(PVArray);
    virtual ~PVArray();
    virtual void setImmutable();
    std::size_t getLength() const;
    virtual void setLength(std::size_t length);
    std::size_t getCapacity() const;
    bool isCapacityMutable() const;
    void setCapacityMutable(bool isMutable);
    virtual void setCapacity(std::size_t capacity) = 0;
    virtual std::ostream& dumpValue(std::ostream& o, std::size_t index) const = 0;

 ...
};


template<typename T>
class PVArrayData {
private:
    std::vector<T> init;
public:
    POINTER_DEFINITIONS(PVArrayData);
    typedef T  value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    std::vector<T> & data;
    std::size_t offset;
    PVArrayData()
    : data(init)
    {}
};

class PVScalarArray : public PVArray {
public:
    POINTER_DEFINITIONS(PVScalarArray);
    virtual ~PVScalarArray();
    typedef PVScalarArray &reference;
    typedef const PVScalarArray& const_reference;
    const ScalarArrayConstPtr getScalarArray() const ;
 ...
}

template<typename T>
class PVValueArray : public PVScalarArray {
public:
    POINTER_DEFINITIONS(PVValueArray);
    typedef T  value_type;
    typedef T* pointer;
    typedef const T* const_pointer;

    typedef PVArrayData<T> ArrayDataType;
    typedef std::vector<T> vector;
    typedef const std::vector<T> const_vector;
    typedef std::tr1::shared_ptr<vector> shared_vector;
    typedef PVValueArray & reference;
    typedef const PVValueArray & const_reference;

    virtual ~PVValueArray() {}
    virtual std::size_t get(
         std::size_t offset, std::size_t length, ArrayDataType &data) = 0;
    virtual std::size_t put(std::size_t offset,
        std::size_t length, const_pointer from, std::size_t fromOffset) = 0;
    virtual std::size_t put(std::size_t offset,
        std::size_t length, const_vector &from, std::size_t fromOffset);
    virtual void shareData(
         shared_vector const & value,
         std::size_t capacity,
         std::size_t length) = 0;
    virtual pointer get() = 0;
    virtual pointer get() const = 0;
    virtual vector const & getVector() = 0;
    virtual shared_vector const & getSharedVector() = 0;
    std::ostream& dumpValue(std::ostream& o) const;
    std::ostream& dumpValue(std::ostream& o, size_t index) const;

...
};

/**
 * Definitions for the various scalarArray types.
 */
typedef PVArrayData<uint8> BooleanArrayData;
typedef PVValueArray<uint8> PVBooleanArray;
typedef std::tr1::shared_ptr<PVBooleanArray> PVBooleanArrayPtr;
...
typedef PVArrayData<String> StringArrayData;
typedef PVValueArray<String> PVStringArray;
typedef std::tr1::shared_ptr<PVStringArray> PVStringArrayPtr;i

pvDataCPP-md

class PVArray : public PVField, public SerializableArray {
public:
    POINTER_DEFINITIONS(PVArray);
    virtual ~PVArray();
    virtual void setImmutable();
    std::size_t getLength() const;
    virtual void setLength(std::size_t length);
    std::size_t getCapacity() const;
    bool isCapacityMutable() const;
    void setCapacityMutable(bool isMutable);
    virtual void setCapacity(std::size_t capacity) = 0;
    virtual std::ostream& dumpValue(std::ostream& o, std::size_t index) const = 0;
 ...
};

std::ostream& operator<<(format::array_at_internal const& manip, const PVArray& array);

template<typename T>
class PVArrayData {
private:
    std::vector<T> init;
public:
    POINTER_DEFINITIONS(PVArrayData);
    typedef T  value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    std::vector<T> & data;
    std::size_t offset;
    PVArrayData()
    : data(init)
    {}
};

class PVScalarArray : public PVArray {
public:
    POINTER_DEFINITIONS(PVScalarArray);
    virtual ~PVScalarArray();
    typedef PVScalarArray &reference;
    typedef const PVScalarArray& const_reference;
    const ScalarArrayConstPtr getScalarArray() const ;

    // in pvDataCPP but not in pvDataCPP=md
    //virtual std::ostream& dumpValue(std::ostream& o, size_t index) const = 0;

    // not in pvDataCPP
    template<ScalarType ID>
    virtual void
    getAs(shared_vector<typename ScalarTypeTraits<ID>::type>& out) const;

    virtual void
    getAs(ScalarType, shared_vector<void>& out) const = 0;

    template<ScalarType ID>
    inline size_t copyOut(typename ScalarTypeTraits<ID>::type* inp, size_t len) const;

    virtual size_t copyOut(ScalarType id, void* ptr, size_t olen) const = 0;

    template<ScalarType ID>
    inline void putFrom(const shared_vector<typename ScalarTypeTraits<ID>::type>& inp);

    virtual void putFrom(ScalarType, const shared_vector<void>&) = 0;

    template<ScalarType ID>
    inline void copyIn(const typename ScalarTypeTraits<ID>::type* inp, size_t len);

    virtual void copyIn(ScalarType, const void*, size_t) = 0;

    virtual void assign(PVScalarArray& pv) = 0;
    
 ...
}

template<typename T>
class PVValueArray : public detail::PVVectorStorage {
    typedef detail::PVVectorStorage base_t;
public:
    POINTER_DEFINITIONS(PVValueArray);
    typedef T  value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    typedef PVArrayData<T> ArrayDataType;
    typedef std::vector<T> vector;
    typedef const std::vector<T> const_vector;
    typedef std::tr1::shared_ptr<vector> shared_vector;
    typedef PVValueArray & reference;
    typedef const PVValueArray & const_reference;

    virtual ~PVValueArray() {}
    virtual std::size_t get(
         std::size_t offset, std::size_t length, ArrayDataType &data) = 0;
    virtual std::size_t put(std::size_t offset,
        std::size_t length, const_pointer from, std::size_t fromOffset) = 0;
    virtual std::size_t put(std::size_t offset,
        std::size_t length, const_vector &from, std::size_t fromOffset);
    virtual void shareData(
         shared_vector const & value,
         std::size_t capacity,
         std::size_t length) = 0;
    virtual pointer get() = 0;
    virtual pointer get() const = 0;
    virtual vector const & getVector() = 0;
    virtual shared_vector const & getSharedVector() = 0;
    std::ostream& dumpValue(std::ostream& o) const;
    std::ostream& dumpValue(std::ostream& o, size_t index) const;

    /// not in pvDataCPP
    static const ScalarType typeCode;
    typedef ::epics::pvData::shared_vector<T> svector;
    typedef ::epics::pvData::shared_vector<const T> const_svector;

     virtual void
    getAs(ScalarType id, ::epics::pvData::shared_vector<void>& out) const;
    virtual size_t copyOut(ScalarType id, void* ptr, size_t olen) const;
    virtual void
    putFrom(ScalarType id, const ::epics::pvData::shared_vector<void>& inp);
    virtual void copyIn(ScalarType id, const void* ptr, size_t len);
    virtual void assign(PVScalarArray& pv);


protected:
    PVValueArray(ScalarArrayConstPtr const & scalar)
    : PVScalarArray(scalar) {}
    friend class PVDataCreate;
};
template<typename T>
std::size_t PVValueArray<T>::put(
    std::size_t offset,
    std::size_t length,
    const_vector &from,
    std::size_t fromOffset)
{ return put(offset,length, &from[0], fromOffset); }

/**
 * Definitions for the various scalarArray types.
 */
typedef PVArrayData<uint8> BooleanArrayData;
typedef PVValueArray<uint8> PVBooleanArray;
typedef std::tr1::shared_ptr<PVBooleanArray> PVBooleanArrayPtr;
...
typedef PVArrayData<String> StringArrayData;
typedef PVValueArray<String> PVStringArray;
typedef std::tr1::shared_ptr<PVStringArray> PVStringArrayPtr;i

proposed

class PVArray : public PVField, public SerializableArray {
public:
    POINTER_DEFINITIONS(PVArray);
    virtual ~PVArray();
    virtual std::size_t getLength() const = 0;
    virtual void setLength(std::size_t length) = 0;
    bool isCapacityMutable() const;
    void setCapacityMutable(bool isMutable);
    virtual std::size_t getCapacity() const = 0;
    virtual void setCapacity(std::size_t capacity) = 0;
 ...
};


class PVScalarArray : public PVArray {
public:
    POINTER_DEFINITIONS(PVScalarArray);
    typedef PVScalarArray &reference;
    typedef const PVScalarArray& const_reference;

    virtual ~PVScalarArray();
    const ScalarArrayConstPtr getScalarArray() const;
 ...
};

template<typename T>
class PVValueArray : public PVScalarArray
{
public:
    POINTER_DEFINITIONS(PVValueArray);
    typedef T  value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    typedef PVValueArray & reference;
    typedef const PVValueArray & const_reference;

    typedef shared_vector<T> svector;
    typedef shared_vector<const T> const_svector;

    virtual ~PVValueArray() {}
    const svector & get() ;
    const const_svector &get() const;
    size_t put(size_t offset,size_t length, const_pointer from, size_t fromOffset);

    void shareData(const svector &from);

...
};

typedef PVValueArray<uint8> PVBooleanArray;
typedef std::tr1::shared_ptr<PVBooleanArray> PVBooleanArrayPtr;
...
typedef PVValueArray<String> PVStringArray;
typedef std::tr1::shared_ptr<PVStringArray> PVStringArrayPtr;

pvDataApp/pv

pvData.h

This provides the interface for network accessible data. Although templates are used to minimize the amount of code, the interface is not meant to be extended. Only the types defined by pvIntrospect are implemented.

PVField

class PVField
: virtual public Serializable,
  public std::tr1::enable_shared_from_this
{
public:
    POINTER_DEFINITIONS(PVField);
    virtual ~PVField();
    virtual void message(String message,MessageType messageType);
    const String& getFieldName() const;
    virtual void setRequester(RequesterPtr const &prequester);
    std::size_t getFieldOffset() const;
    std::size_t getNextFieldOffset() const;
    std::size_t getNumberFields() const;
    PVAuxInfoPtr & getPVAuxInfo();
    bool isImmutable() const;
    void setImmutable();
    const FieldConstPtr & getField() const;
    PVStructure * getParent() const;
    void replacePVField(const PVFieldPtr&  newPVField);
    void renameField(String const & newName);
    void postPut();
    void setPostHandler(PostHandlerPtr const &postHandler);
    virtual bool equals(PVField &pv);
    void toString(StringBuilder buf) ;
    void toString(StringBuilder buf,int indentLevel);
    std::ostream& operator<<(std::ostream& o) const;
...
};

std::ostream& operator<<(std::ostream& o, const PVFieldPtr & f);
std::ostream& operator<<(std::ostream& o, const PVFieldPtr & f, size_t index);

The public methods for PVField are:

~PVField
Destructor. Since shared pointers are used it should never be called by user code.
message
Code attached to this field can call this method to report problems.
getFieldName
Get the field name. If the field is a top level structure the field name will be an empty string.
setRequester
Sets a requester to be called when message or getRequesterName are called. This is only legal for the top level PVField.
getFieldOffset
Get offset of the PVField field within top level structure. Every field within the PVStructure has a unique offset. The top level structure has an offset of 0. The first field within the structure has offset equal to 1. The other offsets are determined by recursively traversing each structure of the tree.
getNextFieldOffset
Get the next offset. If the field is a scalar or array field then this is just offset + 1. If the field is a structure it is the offset of the next field after this structure. Thus (nextOffset - offset) is always equal to the total number of fields within the field.
getNumberFields
Get the total number of fields in this field. This is nextFieldOffset - fieldOffset.
getPVAuxInfo
Get the PVAuxInfo for this field. PVAuxInfo is described below.
isImmutable
Is the field immutable?
setImmutable
Make the field immutable. Once a field is immutable it can never be changed since there is no method to again make it mutable. This is an important design decision since it allows immutable array fields to share the internal primitive data array.
getField
Get the reflection interface for the data.
getParent
Get the interface for the parent or null if this is the top level PVStructure.
replacePVField
Replace the data implementation for the field.
renameField
Rename the field name.
postPut
If a postHandler is registered it is called otherwise no action is taken.
setPostHandler
Set the postHandler for the record. Only a single handler can be registered.
operator<<
Stream output

PVScalar

class PVScalar : public PVField {
public:
    POINTER_DEFINITIONS(PVScalar);
    virtual ~PVScalar();

    typedef PVScalar &reference;
    typedef const PVScalar& const_reference;

    const ScalarConstPtr getScalar() const;
...
};

where

getScalar
Get the introspection interface for the PVScalar.

PVScalarValue

template
class PVScalarValue : public PVScalar {
public:
    POINTER_DEFINITIONS(PVScalarValue);
    typedef T value_type;
    typedef T* pointer;
    typedef const T* const_pointer;

    virtual ~PVScalarValue() {}
    virtual T get() const = 0;
    virtual void put(T value) = 0;
    void operator>>=(T& value) const;
    void operator<<=(T value);
...
};
typedef PVScalarValue<uint8> PVBoolean;
typedef PVScalarValue<int8> PVByte;
typedef PVScalarValue<int16> PVShort;
typedef PVScalarValue<int32> PVInt;
typedef PVScalarValue<int64> PVLong;
typedef PVScalarValue<uint8> PVUByte;
typedef PVScalarValue<uint16> PVUShort;
typedef PVScalarValue<uint32> PVUInt;
typedef PVScalarValue<uint64> PVULong;
typedef PVScalarValue<float> PVFloat;
typedef PVScalarValue<double> PVDouble;
typedef std::tr1::shared_ptr<PVBoolean> PVBooleanPtr;
typedef std::tr1::shared_ptr<PVByte> PVBytePtr;
typedef std::tr1::shared_ptr<PVShort> PVShortPtr;
typedef std::tr1::shared_ptr<PVInt> PVIntPtr;
typedef std::tr1::shared_ptr<PVLong> PVLongPtr;
typedef std::tr1::shared_ptr<PVUByte> PVUBytePtr;
typedef std::tr1::shared_ptr<PVUShort> PVUShortPtr;
typedef std::tr1::shared_ptr<PVUInt> PVUIntPtr;
typedef std::tr1::shared_ptr<PVULong> PVULongPtr;
typedef std::tr1::shared_ptr<PVFloat> PVFloatPtr;
typedef std::tr1::shared_ptr<PVDouble> PVDoublePtr;

// PVString is special case, since it implements SerializableArray
class PVString : public PVScalarValue<String>, SerializableArray {
public:
    virtual ~PVString() {}
 ...
};

where

get
Get the value stored in the object.
put
Change the value stored in the object.
operator<<
operator>>
Methods for stream I/O.

PVArray

PVArray is the base interface for all the other PV Array interfaces. It extends PVField and provides the additional methods:

class PVArray : public PVField, public SerializableArray {
public:
    POINTER_DEFINITIONS(PVArray);
    virtual ~PVArray();
    virtual std::size_t getLength() const = 0;
    virtual void setLength(std::size_t length) = 0;
    bool isCapacityMutable() const;
    void setCapacityMutable(bool isMutable);
    virtual std::size_t getCapacity() const = 0;
    virtual void setCapacity(std::size_t capacity) = 0;
 ...
};
getLength
Get the current length. This is less than or equal to the capacity.
setLength
Set the length. If the PVField is not mutable then an exception is thrown. If this is greater than the capacity setCapacity is called.
isCapacityMutable
Is the capacity mutable
setCapacityMutable
Specify if the capacity can be changed.
getCapacity
Get the capacity, i.e. this is the size of the underlying data array.
setCapacity
Set the capacity. The semantics are implementation dependent but typical semantics are as follows: If the capacity is not mutable an exception is thrown. A new data array is created and data is copied from the old array to the new array.

PVScalarArray

PVScalarArray is the base class for scalar array data. PVValueArray is a templete for the various scalar array data classes. There is a class for each possible scalar type, i. e. PVBooleanArray, ..., PVStringArray.

class PVScalarArray : public PVArray {
public:
    POINTER_DEFINITIONS(PVScalarArray);
    typedef PVScalarArray &reference;
    typedef const PVScalarArray& const_reference;

    virtual ~PVScalarArray();
    const ScalarArrayConstPtr getScalarArray() const;
 ...
};

where

getScalarArray
Get the introspection interface.

PVValueArray

This is a template class plus instances for PVBooleanArray, ..., PVStringArray.

template<typename T>
class PVValueArray : public PVScalarArray {
public:
    POINTER_DEFINITIONS(PVValueArray);
    typedef T  value_type;
    typedef T* pointer;
    typedef const T* const_pointer;
    typedef PVValueArray & reference;
    typedef const PVValueArray & const_reference;

    typedef shared_vector<T> svector;
    typedef shared_vector<const T> const_svector;

    virtual ~PVValueArray() {}
    const svector & get() ;
    const const_svector &get() const;
    size_t put(size_t offset,size_t length, const_pointer from, size_t fromOffset);

    void shareData(const svector &from);
...
};

typedef PVValueArray<uint8> PVBooleanArray;
typedef std::tr1::shared_ptr<PVBooleanArray> PVBooleanArrayPtr;

typedef PVValueArray<int8> PVByteArray;
typedef std::tr1::shared_ptr<PVByteArray> PVByteArrayPtr;

typedef PVValueArray<int16> PVShortArray;
typedef std::tr1::shared_ptr<PVShortArray> PVShortArrayPtr;

typedef PVValueArray<int32> PVIntArray;
typedef std::tr1::shared_ptr<PVIntArray> PVIntArrayPtr;

typedef PVValueArray<int64> PVLongArray;
typedef std::tr1::shared_ptr<PVLongArray> PVLongArrayPtr;

typedef PVValueArray<uint8> PVUByteArray;
typedef std::tr1::shared_ptr<PVUByteArray> PVUByteArrayPtr;

typedef PVValueArray<uint16> PVUShortArray;
typedef std::tr1::shared_ptr<PVUShortArray> PVUShortArrayPtr;

typedef PVValueArray<uint32> PVUIntArray;
typedef std::tr1::shared_ptr<PVUIntArray> PVUIntArrayPtr;

typedef PVValueArray<uint64> PVULongArray;
typedef std::tr1::shared_ptr<PVULongArray> PVULongArrayPtr;

typedef PVValueArray<float> PVFloatArray;
typedef std::tr1::shared_ptr<PVFloatArray> PVFloatArrayPtr;

typedef PVValueArray<double> PVDoubleArray;
typedef std::tr1::shared_ptr<PVDoubleArray> PVDoubleArrayPtr;

typedef PVValueArray<String> PVStringArray;
typedef std::tr1::shared_ptr<PVStringArray> PVStringArrayPtr;

where

get
Get the shared_vector that holds the data. Code that calls this is able to modify the array elements but should be very careful if it does. For example it must call postPut after modifying the array elements. It must also respect isImmutable().
size_t put(size_t offset,size_t length, const_pointer from, size_t fromOffset);
put
This is the recommended method for modifying the array elements. It may change the capacity if len asks for more elements than the cureent capacity allows. It does not change the current length.
shareData
Share data with an existing shared_vector. Note that if capacity is ever changed then data will no longer be shared. This method can also be called to force the PVValueArray to have a new raw array. This is usefull for implementing Copy On Write.

shared_vector

Status

I think that all public components of sharedVector.h are now documented, but not all have a description or example. Thus the documentation needs more work.

When NOTE EXISTING appears it means that there is a question about the existing shared_vector implementation.

Introduction

A shared_vector is a container as defined by the C++ standard library. It is like std::vector but provides two additional features 1) shared raw array and 2) a window into the raw array.

To support these two features a shared_vector keeps the following private data:

m_data
This is a std::tr1::shared_ptr for the actual data array.
m_offset
This is the offset of the first element seen by the window.
m_count
This is the size, i. e. total number of elements, seen by the window.
m_total
This is the number of elements between offset and the end of the array referenced by m_data.
Note that only m_data is shared. Thus each shared_vector has it's own window.

The following subsections are organized as follows:

shared_vector example
The example code is based on a shared_vector<int32> This subsection show the C++ definitions that are assumed by the example code. The source that contains the example code will be part of this project but not yet.
std::vector compatible subsections
The types and methods that have the same names as std::vector.
share_vector specific
The methods that are not part of std::vector.

The subsections that are compatible with std::vector are organized and start with a brief summary modeled after Section 31.3(STL Containers) in:
"The C++ Programming Language, C++11, Fourth Edition", Bjarne Stroustrup,2013
The subsection names are the same names that Stroustrup uses. Each subsection starts with a brief summary that is similar to the summary Stroustrup has at the beginnining of each subsection.

The comparison is always with std::vector. In addition it shows what is defined by by std::vector but not by shared_vector.

Someone who already understand the C++ STL can understand shared_vector by just looking at the brief summarys. For others the brief summary is followed by tutorial information.

shared_vector example

The examples all assume that the following has been defined:

typedef shared_vector<int32> Int32Array;
...
static void dumpArray(String const &message,Int32Array const& int32Array);

The following:

Int32Array int32Array(5);
dumpArray("example",int32Array);
creates a shared vector that holds an array of five elements where each element is a 32 bit signed integer. The call to dumpArray displays the message and the array elements on standard out:
example 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

exampleSharedVector is a main program that has the code for the examples shown below.

Member Types

Brief Summary

value_type              Type of element
size_type               Unsigned type of subscripts, element counts, etc.
difference_type         Signed type of difference between iterators
iterator                Behaves like value_type*
const_iterator          Behaves like const value_type*
reverse_iterator        Behaves like value_type*
const_reverse_iterator  Behaves like const value_type*
reference               value_types&
const_reference         const_value_type&
pointer                 Behaves like value_type *
const_pointer           Behaves like const value_type*
//not part of std::vector
element_type            same as value_type
shared_pointer_type     std::tr1::shared_ptr<value_type>
// defined by std::vector but not by shared_vector
allocator_type

The typedefs are compatible with the STL container member types. These define types for various types of variables that belong to a container or are used to access a container.

value_type, reference, and const_reference

These three typedefs define the same types as the equivalent types for an element of the shared_vector.

Int32Array::value_type value;
//is the same as
int32 value;

Int32Array::reference rvalue = value;
//is the same as
int32 & rvalue = value;

Int32Array::const_reference rvalue = value;
//is the same as
const int32 & rvalue = value;

pointer and const_pointer

The following is an example of code that uses the pointer typedef:

Int32Array int32Array(5);
Int32Array::pointer pint32Array = int32Array.data();
size_t len = int32Array.size();
for(size_t i=0; i<len; ++i) pint32Array[i] = i;

A const_pointer is like a pointer except that only read access to the array elements is allowed.

NOTE: data The above code is better implemented as:

Int32Array int32Array(5);
size_t len = int32Array.size();
for(size_t i=0; i<len; ++i) int32Array[i] = i;

difference_type

This is used to get the number of elements between two elements. For example:

Int32Array::difference_type pdiff = int32Array[3] - int32Array[1];
// pdiff will have the value 2

element_type and shared_pointer_type

These are member types defined by std::tr1::shared_ptr. These are not used by any of the client methods.

Constructors, Destructor, and Assignments

Brief Summary

C c();         Default constructor; c is empty.
C c(n);        c is initialized with n elementis with the value value_type{};
               offset is 0; size is n;
C c(n,e);      Initialize c with n copies of e.
               offset is 0; size is n;

C c(c);        Copy an existing shared_vector of the same type.
               offset and taken same as v.
               shared_ptr is copied; not the raw array
C operator=(c) Assignment constructor.
               shared_ptr is copied; not the raw array
C c(c,o,n);    Copy an existing std::tr1::shared_ptr<value_type>
               offset is o; size is c;
C c(r,o,n);    Use an existing raw pointer.
               default deleter use "delete[]" to delete.
               offset is o; size is c;
C c(r,d,o,n);  Use an existing raw pointer and deleter d;
               offset is o; size is c;

not implemented
~C()           The C++ default destructor is used.
C++11 specific
&& constructor move constructor
{} constructor uniform initializer constructor
where
C
The class name, e. g. shared_vector<int32>
c
shared_vector instance
n
size, i. e. the number of elements
o
offset
e
element instance
r
raw pointer, e. g. int32 *
d
a deleter, i. e. object that destroys the raw array.

Construct by creating new raw array

shared_vector();
shared_vector(size_t n);
shared_vector(size_t n, value_type e);

The first three constructors all create a new shared_vector by also creating a new raw array, The difference is the size of the array, i.e. how many elements it contains, and how the elements are initalized.

shared_vector()
The array is empty, i.e. it has no elements.
shared_vector(size_t n)
The array has n elements. Each element is initialized by the default constructor for the element type. For numeric elements, like int32, this means 0.
shared_vector(size_t n, value_type e)
The array has n elements. Each element has the initial value e.

The following:

    cout << "***exampleConstructors***" << endl;
    Int32Array emptyArray();
    Int32Array zeroArray(16);
    int32 value = 1;
    Int32Array oneArray(8, value);
    dumpArray("emptyArray",emptyArray);
    dumpArray("zeroArray",zeroArray);
    dumpArray("oneArray",oneArray);
produces
***exampleConstructors***
emptyArray 1
zeroArray {16}[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...]
oneArray {8}[1, 1, 1, 1, 1, 1, 1, 1]

NOTE EXISTING: Why did emptyArray disply the above. Should it be "emptyArray {0} []"?

Construct by sharing raw array from a shared_vector

shared_vector(const shared_vector& o);
shared_vector_base& operator=(const shared_vector_base& o);

These create a vector by coping the contents of an existing shared_vector of the same type into the newly created vector. Note that the complete raw array is not copied but just the std::tr1:: shared_ptr that holds the array.

The following:

    cout << "***exampleCopyConstructors***" << endl;
    size_t max = 16;
    Int32Array int32Array(max);
    for(size_t i=0; i<max; ++i) int32Array[i] = i+1;
    Int32Array xxx(int32Array);    //copy constructor
    Int32Array yyy = int32Array;   //copy assignment
    cout << "dataPtr int32Array " << int32Array.dataPtr();
    cout << " xxx " << xxx.dataPtr();
    cout << " yyy " << yyy.dataPtr() << endl;
    dumpArray("int32Array",emptyArray);
    dumpArray("xxx",emptyArray);
    dumpArray("yyy",emptyArray);
produces
***exampleConstructors***
dataPtr int32Array 0x136ea90 xxx 0x136ea90 yyy 0x136ea90
int32Array {16}[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...]
xxx {16}[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...]
yyy {16}[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...]

Construct by wrapping an existing raw array

shared_vector(A v, size_t o, size_t c)
shared_vector(A d, B b, size_t o, size_t c)

NOTE EXISTING: Are these constructors necessary? If code wants to wrap an existing raw array then a std::tr1::shared_ptr can first be created and the constructor in the next section can be called.

These "wrap" an existing raw pointer. They allows access to a sub-array starting at offset o> and has size c The second provides a destructor and the first has a default deleter.

The default deleter does the following: When the shared_vector is deleted, i. e. when no code references it, the statement "delete[] a;" is executed.

An example of wrapping a raw array without using these constructors is:

class Int32ArrayDeleter
{
//Note that this an example that does nothing.
//But it could have private data
public:
     Int32ArrayDeleter() {}
     virtual ~Int32ArrayDeleter() {}
     void operator()(int32* a){
         // MUST HANDLE DELETION
         // default is "delete[] a;"
     }
};
...
int32 *pother; // something managed by other code
size_t capacity; // size of array managed by other code

Int32Array int32Array(pother,int32array_deleter,0,capacity);

This is used to wrap arrays that are managed by other code. This should only be used if You understand the other code and know what your deleter has to do. An example, exampleShareRawArray, gives a more complete example.

Create a shared_vector from an existing shared_ptr

shared_vector(const std::tr1::shared_ptr<E1>& d, size_t o, size_t c)

This creates a vector from an existing smart pointer. Thus the vector will share reference counting with the existing smart pointer. This is useful for creating "windows" into the array that the smart pointer references.

Create a shared_vector from an existing shared_vector

 template<typename E1>
    shared_vector(const shared_vector<E1>& o) :base_t(o) {}

NOTE EXISTING: I do not understand how this works or what it does.

This create a vector by coping the contents of an existing shared_vector of the same or a different but related type into the newly created vector. This constructor creates a new raw array and copies the elements from the existing array to the new array.

Size and Capacity

Brief Summary

size()      Return the number of elements in the window
empty()     Is the window empty? this means shared_ptr is empty
max_size()  The maximum possible number of elements.
capacity()  The number of possible elements without re-allocating raw array.
reserve(n)  Reserve at least n elements in raw array; May cause reallocation.
resize(n)   Change size to n; May cause reallocation
clear()     shared_ptr is reset, Window will be empty.

not implemented
resize(n,v)
shrink_to_fit()

Details

size_t size() const;
bool empty() const;
size_t max_size() const;
size_t capacity() const;
void reserve(size_t n);
void resize(size_t n);
void clear();

size
The current number of elements in the window.
empty
(true,false) if size is (0,>0)
max_size
Maximum possible number of elements. NOTE EXISTING; Should be ((size_t)-1)/sizeof(T)
capacity
The maximum size the window can be without reallocating raw array
reserve
Set the maximum number of element that the window can see. If the caller is the only user of the window and the number of elements specified does not cause the number of elements to change then this method just returns. In all other cases a new raw array is allocated.

resize
Change the window size: may cause a reallocation of the raw array.
clear
If the shared_vector is not already empty the shared_ptr will be reset. The new size will be 0.

The following:

static void exampleSizeEtc()
{
    cout << "***exampleSizeEtc***" << endl;
    size_t max = 16;
    Int32Array int32Array(max);
    size_t capacity = int32Array.capacity();
    size_t size = int32Array.size();
    bool empty = int32Array.empty();
    size_t max_size = int32Array.max_size();
    cout<< "capacity" << capacity;
    cout<< " size " << size;
    cout<< " empty " << (empty ? true : false) ;
    cout<< " max_size " << max_size << endl;
}

produces:
***exampleSizeEtc***
capacity16 size 16 empty 0 max_size 18446744073709551615

Iterators

Brief Summary

begin()      First element
end()        One past last element
cbegin()     Constant first element
cend()       Constant last element
rbegin()     First element of reverse sequence
rend()       One past last element of reverse sequence
crbegin()    Constant first element of reverse sequence
crend()      Constant last element of reverse sequence

shared_vector supports both iterators and reverse iterators as defined by the STL. For both constant iterators are also defined. A constant iterator does not allow an array elemnent to be modified.

The following is an example of a constant iterator.

int32 sum = 0;
for(Int32Array::const_iterator iter=int32Array.begin(); iter<int32Array.end(); ++iter )
{
     sum += *iter;
}

The following is an example of a non constant iterator.

int32 value = 0;
for(Int32Array::iterator iter=int32Array.begin(); iter<int32Array.end(); ++iter )
{
     *iter += ++value;
}

Element Access

Brief Summary

operator[i]    random element access 
data()         return the raw array

implemented by std::vector but not implemented
front()
back()
at()

Note that:

Int32Array::pointer pint32= int32Array.data();
is guaranteed to be the same as
int32 * pint32 = int32Array.data();

NOTE EXISTING: data() should be defined to return a const_pointer. It is currently defined to return a plain pointer.

Stack Operations

Brief Summary

push_back(x)     Add an element after the last element
pop_back(x)      Remove the last element.

List operations

shared_vector does not support the standard list operations like:

implemented by std::vector but not by shared_vector

insert(p,x)   Add x before p
...

Other Operations

Brief Summary

operator==       Do all elements of both containers compare equal.
operator!=       Does any element not compare equal.
operator<<       ostream operator
swap(c2)         Swap the contents of two shared_vectors of the same type.
swap(c1,c2)      Swap the contents of two shared_vectors of the same type.

not implemented
operator<
operator<=
operator>
operator>=

operators equals, not equals, and ostream

template<typename A, typename B>
bool operator==(const epics::pvData::shared_vector<A>& a,
                const epics::pvData::shared_vector<B>& b);

template<typename A, typename B>
bool operator!=(const epics::pvData::shared_vector<A>& a,
                const epics::pvData::shared_vector<B>& b);

template<typename E>
std::ostream& operator<<(
    std::ostream& strm, const epics::pvData::shared_vector<E>& arr);

swap

Swap the contents of two shared_vectors. The following code:

    cout << "***exampleSwap***" << endl;
    Int32Array first(8);
    Int32Array second(16);
    cout << " before swap  size ";
    cout<< "first " << first.size() << " second " << second.size() << endl;
    first.swap(second);
    cout << " after swap   size ";
    cout<< "first " << first.size() << " second " << second.size() << endl;
    swap(first,second);
    cout << " swap again   size ";
    cout<< "first " << first.size() << " second " << second.size() << endl;
produces:
***exampleSwap***
 before swap  size first 8 second 16
 after swap   size first 16 second 8
 swap again   size first 8 second 16

shared_vector specific operations

Brief Summary

void make_unique()         Make caller the only user of std::tr1::shared_ptr
bool unique()              Is the caller the only user of std::tr1::shared_ptr
void slice(offset,length)  Change window offset andsize

// following should only be used for debugging
const std::tr1::shared_ptr<E>&
       dataPtr()           Return const  shared_ptr
size_t dataOffset()        Return offset.
size_t dataCount()         Return count which is also the size
size_t dataTotal()         Return total number of elements between
                           offset and end of the raw array

// following converts from type FROM to type TO
shared_vector static_shared_vector_cast(const shared_vector<FROM>& src);

// following casts from const Type to Type
shared_vector
const_shared_vector_cast(const shared_vector<const TYPE>& src)

NOTE EXISTING: The C++ standard library considers a slice to be every nth element of some part of an array, i. e., slice has arguments (offset,length,stride). shared_vector only has offset and length. Perhaps it should have another name like rewindow.

make_unique and unique

void make_unique();
bool unique() const;
make_unique
Makes sure that caller is the only user of this standard_vector. If the caller is not already the only user a new raw array is allocated.
unique
Returns (true,false) if there is only one user of the shared_vector.

slice

void slice(size_t offset, size_t length=(size_t)-1);

This modifies the "window" into the raw array starting at offset and of the specified length. The offset and length are forced to be within the raw array. Note that this method never reallocates the underlying raw array.

The following code:

static void exampleSlice()
{
    cout << "***exampleSlice***" << endl;
    size_t max = 16;
    Int32Array int32Array(max);
    int32 value = 0;
    for(Int32Array::iterator iter = int32Array.begin(); iter!=int32Array.end(); ++iter)
    {
        *iter = ++value;
    }
    dumpArray("int32Array",int32Array);
    size_t offset = 0;
    size_t length = 8;
    Int32Array window1(int32Array);
    window1.slice(offset,length);
    dumpArray("window1",window1);
    offset = 8;
    length = 8;
    Int32Array window2(int32Array);
    window2.slice(offset,length);
    dumpArray("window2",window2);
    offset = 2;
    length = 4;
    Int32Array window3(window2);
    window3.slice(offset,length);
    dumpArray("window3",window3);
}
produces the following output:
***exampleSlice***
int32Array 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
window1 1 2 3 4 5 6 7 8
window2 9 10 11 12 13 14 15 16
window3 11 12 13 14

dataPtr, dataOffset, dataCount, and dataTotal

dataPtr
Returns the shared_ptr that holds the raw array.
dataOffset
Offset in the data array of first element
dataCount
Number of visible elements. Same as size.
dataTotal
Total number of elements between m_offset and the end of data. Same as capacity.

The following:

static void exampleDataEtc()
{
    cout << "***exampleDataEtc***" << endl;
    size_t max = 16;
    Int32Array int32Array(max);
    long use_count = int32Array.dataPtr().use_count();
    long offset = int32Array.dataOffset();
    long count = int32Array.dataCount();
    long total = int32Array.dataTotal();
    cout << "use_count " << use_count;
    cout << " offset " << offset;
    cout << " count " << count;
    cout << " total " <<  total << endl;
}
produces:
***exampleDataEtc***
use_count 1 offset 0 count 16 total 16

static_shared_vector_cast

Not yet documented

const_shared_vector_cast

Not yet documented

specialization for untyped pointers

Not yet documented