Files
pvAccess/pvAccessApp/remote/codec.cpp
2014-06-04 10:22:04 +02:00

1660 lines
50 KiB
C++

/**
* Copyright - See the COPYRIGHT that is included with this distribution.
* pvAccessCPP is distributed subject to a Software License Agreement found
* in file LICENSE that is included with this distribution.
*/
#ifdef _WIN32
#define NOMINMAX
#endif
#include <pv/blockingTCP.h>
#include <pv/remote.h>
#include <pv/namedLockPattern.h>
#include <pv/hexDump.h>
#include <pv/logger.h>
#include <epicsThread.h>
#include <osiSock.h>
#include <sys/types.h>
#include <sstream>
#include <stdexcept>
#include <limits>
#include <pv/codec.h>
using namespace epics::pvData;
using namespace epics::pvAccess;
namespace epics {
namespace pvAccess {
namespace detail {
const std::size_t AbstractCodec::MAX_MESSAGE_PROCESS = 100;
const std::size_t AbstractCodec::MAX_MESSAGE_SEND = 100;
const std::size_t AbstractCodec::MAX_ENSURE_SIZE = 1024;
const std::size_t AbstractCodec::MAX_ENSURE_DATA_SIZE = MAX_ENSURE_SIZE/2;
const std::size_t AbstractCodec::MAX_ENSURE_BUFFER_SIZE = MAX_ENSURE_SIZE;
const std::size_t AbstractCodec::MAX_ENSURE_DATA_BUFFER_SIZE = 1024;
AbstractCodec::AbstractCodec(
std::tr1::shared_ptr<epics::pvData::ByteBuffer> const & receiveBuffer,
std::tr1::shared_ptr<epics::pvData::ByteBuffer> const & sendBuffer,
int32_t socketSendBufferSize,
bool blockingProcessQueue):
//PROTECTED
_readMode(NORMAL), _version(0), _flags(0), _command(0), _payloadSize(0),
_remoteTransportSocketReceiveBufferSize(MAX_TCP_RECV), _totalBytesSent(0),
_blockingProcessQueue(false), _senderThread(0),
_writeMode(PROCESS_SEND_QUEUE),
_writeOpReady(false),_lowLatency(false),
_socketBuffer(receiveBuffer),
_sendBuffer(sendBuffer),
//PRIVATE
_storedPayloadSize(0), _storedPosition(0), _startPosition(0),
_maxSendPayloadSize(0),
_lastMessageStartPosition(std::numeric_limits<size_t>::max()),_lastSegmentedMessageType(0),
_lastSegmentedMessageCommand(0), _nextMessagePayloadOffset(0),
_byteOrderFlag(EPICS_BYTE_ORDER == EPICS_ENDIAN_BIG ? 0x80 : 0x00),
_socketSendBufferSize(0)
{
if (receiveBuffer->getSize() < 2*MAX_ENSURE_SIZE)
throw std::invalid_argument(
"receiveBuffer.capacity() < 2*MAX_ENSURE_SIZE");
// require aligned buffer size
//(not condition, but simplifies alignment code)
if (receiveBuffer->getSize() % PVA_ALIGNMENT != 0)
throw std::invalid_argument(
"receiveBuffer.capacity() % PVAConstants.PVA_ALIGNMENT != 0");
if (sendBuffer->getSize() < 2*MAX_ENSURE_SIZE)
throw std::invalid_argument("sendBuffer() < 2*MAX_ENSURE_SIZE");
// require aligned buffer size
//(not condition, but simplifies alignment code)
if (sendBuffer->getSize() % PVA_ALIGNMENT != 0)
throw std::invalid_argument(
"sendBuffer() % PVAConstants.PVA_ALIGNMENT != 0");
// initialize to be empty
_socketBuffer->setPosition(_socketBuffer->getLimit());
_startPosition = _socketBuffer->getPosition();
// clear send
_sendBuffer->clear();
// start msg + control
_maxSendPayloadSize =
_sendBuffer->getSize() - 2*PVA_MESSAGE_HEADER_SIZE;
_socketSendBufferSize = socketSendBufferSize;
_blockingProcessQueue = blockingProcessQueue;
}
void AbstractCodec::processRead() {
switch (_readMode)
{
case NORMAL:
processReadNormal();
break;
case SEGMENTED:
processReadSegmented();
break;
case SPLIT:
throw std::logic_error("ReadMode == SPLIT not supported");
}
}
void AbstractCodec::processHeader() {
// magic code
int8_t magicCode = _socketBuffer->getByte();
// version
_version = _socketBuffer->getByte();
// flags
_flags = _socketBuffer->getByte();
// command
_command = _socketBuffer->getByte();
// read payload size
_payloadSize = _socketBuffer->getInt();
// check magic code
if (magicCode != PVA_MAGIC)
{
LOG(logLevelError,
"Invalid header received from the client at %s:%d: %s.,"
" disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw invalid_data_stream_exception("invalid header received");
}
}
void AbstractCodec::processReadNormal() {
try
{
std::size_t messageProcessCount = 0;
while (messageProcessCount++ < MAX_MESSAGE_PROCESS)
{
// read as much as available, but at least for a header
// readFromSocket checks if reading from socket is really necessary
if (!readToBuffer(PVA_MESSAGE_HEADER_SIZE, false)) {
return;
}
/*
hexDump("Header", (const int8*)_socketBuffer->getArray(),
_socketBuffer->getPosition(), PVA_MESSAGE_HEADER_SIZE);
*/
// read header fields
processHeader();
bool isControl = ((_flags & 0x01) == 0x01);
if (isControl) {
processControlMessage();
}
else
{
// segmented sanity check
bool notFirstSegment = (_flags & 0x20) != 0;
if (notFirstSegment)
{
// not-first segmented message with zero payload is "kind of" valid
// TODO this should check if previous message was first- or middle-segmented message
if (_payloadSize == 0)
continue;
LOG(logLevelWarn,
"Not-a-first segmented message received in normal mode"
" from the client at %s:%d: %s, disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw invalid_data_stream_exception(
"not-a-first segmented message received in normal mode");
}
_storedPayloadSize = _payloadSize;
_storedPosition = _socketBuffer->getPosition();
_storedLimit = _socketBuffer->getLimit();
_socketBuffer->setLimit(std::min<std::size_t>
(_storedPosition + _storedPayloadSize, _storedLimit));
bool postProcess = true;
try
{
// handle response
processApplicationMessage();
if (!isOpen())
return;
postProcess = false;
postProcessApplicationMessage();
}
catch(...)
{
if (!isOpen())
return;
if (postProcess)
{
postProcessApplicationMessage();
}
throw;
}
}
}
}
catch (invalid_data_stream_exception & )
{
// noop, should be already handled (and logged)
}
catch (connection_closed_exception & )
{
// noop, should be already handled (and logged)
}
}
void AbstractCodec::postProcessApplicationMessage()
{
// can be closed by now
// isOpen() should be efficiently implemented
while (true)
//while (isOpen())
{
// set position as whole message was read
//(in case code haven't done so)
std::size_t newPosition =
alignedValue(
_storedPosition + _storedPayloadSize, PVA_ALIGNMENT);
// aligned buffer size ensures that there is enough space
//in buffer,
// however data might not be fully read
// discard the rest of the packet
if (newPosition > _storedLimit)
{
// processApplicationMessage() did not read up
//quite some buffer
// we only handle unused alignment bytes
int bytesNotRead =
newPosition - _socketBuffer->getPosition();
if (bytesNotRead < PVA_ALIGNMENT)
{
// make alignment bytes as real payload to enable SPLIT
// no end-of-socket or segmented scenario can happen
// due to aligned buffer size
_storedPayloadSize += bytesNotRead;
// reveal currently existing padding
_socketBuffer->setLimit(_storedLimit);
ensureData(bytesNotRead);
_storedPayloadSize -= bytesNotRead;
continue;
}
// TODO we do not handle this for now (maybe never)
LOG(logLevelWarn,
"unprocessed read buffer from client at %s:%d: %s,"
" disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw invalid_data_stream_exception(
"unprocessed read buffer");
}
_socketBuffer->setLimit(_storedLimit);
_socketBuffer->setPosition(newPosition);
break;
}
}
void AbstractCodec::processReadSegmented() {
while (true)
{
// read as much as available, but at least for a header
// readFromSocket checks if reading from socket is really necessary
readToBuffer(PVA_MESSAGE_HEADER_SIZE, true);
// read header fields
processHeader();
bool isControl = ((_flags & 0x01) == 0x01);
if (isControl)
processControlMessage();
else
{
// last segment bit set (means in-between segment or last segment)
// we expect this, no non-control messages between
//segmented message are supported
// NOTE: for now... it is easy to support non-semgented
//messages between segmented messages
bool notFirstSegment = (_flags & 0x20) != 0;
if (!notFirstSegment)
{
LOG(logLevelWarn,
"Not-a-first segmented message expected from the client at"
" %s:%d: %s, disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw new invalid_data_stream_exception(
"not-a-first segmented message expected");
}
_storedPayloadSize = _payloadSize;
// return control to caller code
return;
}
}
}
bool AbstractCodec::readToBuffer(
std::size_t requiredBytes,
bool persistent) {
// do we already have requiredBytes available?
std::size_t remainingBytes = _socketBuffer->getRemaining();
if (remainingBytes >= requiredBytes) {
return true;
}
// assumption: remainingBytes < MAX_ENSURE_DATA_BUFFER_SIZE &&
// requiredBytes < (socketBuffer.capacity() - PVA_ALIGNMENT)
//
// copy unread part to the beginning of the buffer
// to make room for new data (as much as we can read)
// NOTE: requiredBytes is expected to be small (order of 10 bytes)
//
// a new start position, we are careful to preserve alignment
_startPosition =
MAX_ENSURE_SIZE + _socketBuffer->getPosition() % PVA_ALIGNMENT;
std::size_t endPosition = _startPosition + remainingBytes;
for (std::size_t i = _startPosition; i < endPosition; i++)
_socketBuffer->putByte(i, _socketBuffer->getByte());
// update buffer to the new position
_socketBuffer->setLimit(_socketBuffer->getSize());
_socketBuffer->setPosition(endPosition);
// read at least requiredBytes bytes
std::size_t requiredPosition = _startPosition + requiredBytes;
while (_socketBuffer->getPosition() < requiredPosition)
{
int bytesRead = read(_socketBuffer.get());
if (bytesRead < 0)
{
close();
throw connection_closed_exception("bytesRead < 0");
}
// non-blocking IO support
else if (bytesRead == 0)
{
if (persistent)
readPollOne();
else
{
// set pointers (aka flip)
_socketBuffer->setLimit(_socketBuffer->getPosition());
_socketBuffer->setPosition(_startPosition);
return false;
}
}
}
// set pointers (aka flip)
_socketBuffer->setLimit(_socketBuffer->getPosition());
_socketBuffer->setPosition(_startPosition);
return true;
}
void AbstractCodec::ensureData(std::size_t size) {
// enough of data?
if (_socketBuffer->getRemaining() >= size)
return;
// to large for buffer...
if (size > MAX_ENSURE_DATA_SIZE) {// half for SPLIT, half for SEGMENTED
std::ostringstream msg;
msg << "requested for buffer size " << size
<< ", but maximum " << MAX_ENSURE_DATA_SIZE << " is allowed.";
LOG(logLevelWarn,
"%s at %s:%d.,", msg.str().c_str(), __FILE__, __LINE__);
std::string s = msg.str();
throw std::invalid_argument(s);
}
try
{
// subtract what was already processed
std::size_t pos = _socketBuffer->getPosition();
_storedPayloadSize -= pos - _storedPosition;
// SPLIT message case
// no more data and we have some payload left => read buffer
// NOTE: (storedPayloadSize >= size) does not work if size
//spans over multiple messages
if (_storedPayloadSize >= (_storedLimit-pos))
{
// just read up remaining payload
// this will move current (<size) part of the buffer
// to the beginning of the buffer
ReadMode storedMode = _readMode; _readMode = SPLIT;
readToBuffer(size, true);
_readMode = storedMode;
_storedPosition = _socketBuffer->getPosition();
_storedLimit = _socketBuffer->getLimit();
_socketBuffer->setLimit(
std::min<std::size_t>(
_storedPosition + _storedPayloadSize, _storedLimit));
// check needed, if not enough data is available or
// we run into segmented message
ensureData(size);
}
// SEGMENTED message case
else
{
// TODO check flags
//if (flags && SEGMENTED_FLAGS_MASK == 0)
// throw IllegalStateException("segmented message expected,
//but current message flag does not indicate it");
// copy remaining bytes of payload to safe area
//[0 to MAX_ENSURE_DATA_BUFFER_SIZE/2), if any
// remaining is relative to payload since buffer is
//bounded from outside
std::size_t remainingBytes = _socketBuffer->getRemaining();
for (std::size_t i = 0; i < remainingBytes; i++)
_socketBuffer->putByte(i, _socketBuffer->getByte());
// restore limit (there might be some data already present
//and readToBuffer needs to know real limit)
_socketBuffer->setLimit(_storedLimit);
// remember alignment offset of end of the message (to be restored)
std::size_t storedAlignmentOffset =
_socketBuffer->getPosition() % PVA_ALIGNMENT;
// skip post-message alignment bytes
if (storedAlignmentOffset > 0)
{
std::size_t toSkip = PVA_ALIGNMENT - storedAlignmentOffset;
readToBuffer(toSkip, true);
std::size_t currentPos = _socketBuffer->getPosition();
_socketBuffer->setPosition(currentPos + toSkip);
}
// we expect segmented message, we expect header
// that (and maybe some control packets) needs to be "removed"
// so that we get combined payload
ReadMode storedMode = _readMode; _readMode = SEGMENTED;
processRead();
_readMode = storedMode;
// make sure we have all the data (maybe we run into SPLIT)
readToBuffer(size - remainingBytes + storedAlignmentOffset, true);
// skip storedAlignmentOffset bytes (sender should padded start of
//segmented message)
// SPLIT cannot mess with this, since start of the message,
//i.e. current position, is always aligned
_socketBuffer->setPosition(
_socketBuffer->getPosition() + storedAlignmentOffset);
// copy before position (i.e. start of the payload)
for (int32_t i = remainingBytes - 1,
j = _socketBuffer->getPosition() - 1; i >= 0; i--, j--)
_socketBuffer->putByte(j, _socketBuffer->getByte(i));
_startPosition = _socketBuffer->getPosition() - remainingBytes;
_socketBuffer->setPosition(_startPosition);
_storedPayloadSize += remainingBytes - storedAlignmentOffset;
_storedPosition = _startPosition;
_storedLimit = _socketBuffer->getLimit();
_socketBuffer->setLimit(
std::min<std::size_t>(
_storedPosition + _storedPayloadSize, _storedLimit));
// sequential small segmented messages in the buffer
ensureData(size);
}
}
catch (io_exception &) {
try {
close();
} catch (io_exception & ) {
// noop, best-effort close
}
throw connection_closed_exception(
"Failed to ensure data to read buffer.");
}
}
std::size_t AbstractCodec::alignedValue(
std::size_t value,
std::size_t alignment) {
std::size_t k = (alignment - 1);
return (value + k) & (~k);
}
void AbstractCodec::alignData(std::size_t alignment) {
std::size_t k = (alignment - 1);
std::size_t pos = _socketBuffer->getPosition();
std::size_t newpos = (pos + k) & (~k);
if (pos == newpos)
return;
std::size_t diff = _socketBuffer->getLimit() - newpos;
if (diff > 0)
{
_socketBuffer->setPosition(newpos);
return;
}
ensureData(diff);
// position has changed, recalculate
newpos = (_socketBuffer->getPosition() + k) & (~k);
_socketBuffer->setPosition(newpos);
}
void AbstractCodec::alignBuffer(std::size_t alignment) {
std::size_t k = (alignment - 1);
std::size_t pos = _sendBuffer->getPosition();
std::size_t newpos = (pos + k) & (~k);
if (pos == newpos)
return;
// there is always enough of space
// since sendBuffer capacity % PVA_ALIGNMENT == 0
_sendBuffer->setPosition(newpos);
}
void AbstractCodec::startMessage(
epics::pvData::int8 command,
std::size_t ensureCapacity) {
_lastMessageStartPosition =
std::numeric_limits<size_t>::max(); // TODO revise this
ensureBuffer(
PVA_MESSAGE_HEADER_SIZE + ensureCapacity + _nextMessagePayloadOffset);
_lastMessageStartPosition = _sendBuffer->getPosition();
_sendBuffer->putByte(PVA_MAGIC);
_sendBuffer->putByte(PVA_VERSION);
_sendBuffer->putByte(
(_lastSegmentedMessageType | _byteOrderFlag)); // data + endian
_sendBuffer->putByte(command); // command
_sendBuffer->putInt(0); // temporary zero payload
// apply offset
if (_nextMessagePayloadOffset > 0)
_sendBuffer->setPosition(
_sendBuffer->getPosition() + _nextMessagePayloadOffset);
}
void AbstractCodec::putControlMessage(
epics::pvData::int8 command,
epics::pvData::int32 data) {
_lastMessageStartPosition =
std::numeric_limits<size_t>::max(); // TODO revise this
ensureBuffer(PVA_MESSAGE_HEADER_SIZE);
_sendBuffer->putByte(PVA_MAGIC);
_sendBuffer->putByte(PVA_VERSION);
_sendBuffer->putByte((0x01 | _byteOrderFlag)); // control + endian
_sendBuffer->putByte(command); // command
_sendBuffer->putInt(data); // data
}
void AbstractCodec::endMessage() {
endMessage(false);
}
void AbstractCodec::endMessage(bool hasMoreSegments) {
if (_lastMessageStartPosition != std::numeric_limits<size_t>::max())
{
std::size_t lastPayloadBytePosition = _sendBuffer->getPosition();
// align
alignBuffer(PVA_ALIGNMENT);
// set paylaod size (non-aligned)
std::size_t payloadSize =
lastPayloadBytePosition -
_lastMessageStartPosition - PVA_MESSAGE_HEADER_SIZE;
_sendBuffer->putInt(_lastMessageStartPosition + 4, payloadSize);
// set segmented bit
if (hasMoreSegments) {
// first segment
if (_lastSegmentedMessageType == 0)
{
std::size_t flagsPosition = _lastMessageStartPosition + 2;
epics::pvData::int8 type = _sendBuffer->getByte(flagsPosition);
// set first segment bit
_sendBuffer->putByte(flagsPosition, (type | 0x10));
// first + last segment bit == in-between segment
_lastSegmentedMessageType = type | 0x30;
_lastSegmentedMessageCommand =
_sendBuffer->getByte(flagsPosition + 1);
}
_nextMessagePayloadOffset = lastPayloadBytePosition % PVA_ALIGNMENT;
}
else
{
// last segment
if (_lastSegmentedMessageType !=
std::numeric_limits<size_t>::max())
{
std::size_t flagsPosition = _lastMessageStartPosition + 2;
// set last segment bit (by clearing first segment bit)
_sendBuffer->putByte(flagsPosition,
(_lastSegmentedMessageType & 0xEF));
_lastSegmentedMessageType = 0;
}
_nextMessagePayloadOffset = 0;
}
// TODO
/*
// manage markers
final int position = sendBuffer.position();
final int bytesLeft = sendBuffer.remaining();
if (position >= nextMarkerPosition && bytesLeft >=
PVAConstants.PVA_MESSAGE_HEADER_SIZE)
{
sendBuffer.put(PVAConstants.PVA_MAGIC);
sendBuffer.put(PVAConstants.PVA_VERSION);
sendBuffer.put((byte)(0x01 | byteOrderFlag)); // control data
sendBuffer.put((byte)0); // marker
sendBuffer.putInt((int)(totalBytesSent + position +
PVAConstants.PVA_MESSAGE_HEADER_SIZE));
nextMarkerPosition = position + markerPeriodBytes;
}
*/
_lastMessageStartPosition = std::numeric_limits<size_t>::max();
}
}
void AbstractCodec::ensureBuffer(std::size_t size) {
if (_sendBuffer->getRemaining() >= size)
return;
// too large for buffer...
if (_maxSendPayloadSize < size) {
std::ostringstream msg;
msg << "requested for buffer size " <<
size << ", but only " << _maxSendPayloadSize << " available.";
std::string s = msg.str();
LOG(logLevelWarn,
"%s at %s:%d.,", msg.str().c_str(), __FILE__, __LINE__);
throw std::invalid_argument(s);
}
while (_sendBuffer->getRemaining() < size)
flush(false);
}
// assumes startMessage was called (or header is in place), because endMessage(true) is later called that peeks and sets _lastSegmentedMessageType
void AbstractCodec::flushSerializeBuffer() {
flush(false);
}
void AbstractCodec::flush(bool lastMessageCompleted) {
// automatic end
endMessage(!lastMessageCompleted);
_sendBuffer->flip();
try {
send(_sendBuffer.get());
} catch (io_exception &) {
try {
if (isOpen())
close();
} catch (io_exception &) {
// noop, best-effort close
}
throw connection_closed_exception("Failed to send buffer.");
}
_sendBuffer->clear();
_lastMessageStartPosition = std::numeric_limits<size_t>::max();
// start with last header
if (!lastMessageCompleted && _lastSegmentedMessageType != 0)
startMessage(_lastSegmentedMessageCommand, 0);
}
void AbstractCodec::processWrite() {
// TODO catch ConnectionClosedException, InvalidStreamException?
switch (_writeMode)
{
case PROCESS_SEND_QUEUE:
processSendQueue();
break;
case WAIT_FOR_READY_SIGNAL:
_writeOpReady = true;
break;
}
}
void AbstractCodec::send(ByteBuffer *buffer)
{
// On Windows, limiting the buffer size is important to prevent
// poor throughput performances when transferring large amount of
// data. See Microsoft KB article KB823764.
// We do it also for other systems just to be safe.
std::size_t maxBytesToSend =
std::min<int32_t>(
_socketSendBufferSize, _remoteTransportSocketReceiveBufferSize) / 2;
std::size_t limit = buffer->getLimit();
std::size_t bytesToSend = limit - buffer->getPosition();
// limit sending
if (bytesToSend > maxBytesToSend)
{
bytesToSend = maxBytesToSend;
buffer->setLimit(buffer->getPosition() + bytesToSend);
}
int tries = 0;
while (buffer->getRemaining() > 0)
{
//int p = buffer.position();
int bytesSent = write(buffer);
/*
if (IS_LOGGABLE(logLevelTrace)) {
hexDump(std::string("AbstractCodec::send WRITE"),
(const int8 *)buffer->getArray(),
buffer->getPosition(), buffer->getRemaining());
}
*/
if (bytesSent < 0)
{
// connection lost
close();
throw connection_closed_exception("bytesSent < 0");
}
else if (bytesSent == 0)
{
sendBufferFull(tries++);
continue;
}
_totalBytesSent += bytesSent;
// readjust limit
if (bytesToSend == maxBytesToSend)
{
bytesToSend = limit - buffer->getPosition();
if(bytesToSend > maxBytesToSend)
bytesToSend = maxBytesToSend;
buffer->setLimit(buffer->getPosition() + bytesToSend);
}
tries = 0;
}
}
void AbstractCodec::processSendQueue()
{
{
std::size_t senderProcessed = 0;
while (senderProcessed++ < MAX_MESSAGE_SEND)
{
TransportSender::shared_pointer sender = _sendQueue.take(-1);
if (sender.get() == 0)
{
// flush
if (_sendBuffer->getPosition() > 0)
flush(true);
sendCompleted(); // do not schedule sending
if (_blockingProcessQueue) {
if (terminated()) // termination
break;
sender = _sendQueue.take(0);
// termination (we want to process even if shutdown)
if (sender.get() == 0)
break;
}
else
return;
}
processSender(sender);
}
}
// flush
if (_sendBuffer->getPosition() > 0)
flush(true);
}
void AbstractCodec::clearSendQueue()
{
_sendQueue.clean();
}
void AbstractCodec::enqueueSendRequest(
TransportSender::shared_pointer const & sender) {
_sendQueue.put(sender);
scheduleSend();
}
void AbstractCodec::setSenderThread()
{
_senderThread = epicsThreadGetIdSelf();
}
void AbstractCodec::processSender(
TransportSender::shared_pointer const & sender)
{
ScopedLock lock(sender);
try {
_lastMessageStartPosition = _sendBuffer->getPosition();
sender->send(_sendBuffer.get(), this);
// automatic end (to set payload size)
endMessage(false);
}
catch (std::exception &e ) {
std::ostringstream msg;
msg << "an exception caught while processing a send message: "
<< e.what();
LOG(logLevelWarn, "%s at %s:%d.",
msg.str().c_str(), __FILE__, __LINE__);
try {
close();
} catch (io_exception & ) {
// noop
}
throw connection_closed_exception(msg.str());
}
}
void AbstractCodec::enqueueSendRequest(
TransportSender::shared_pointer const & sender,
std::size_t requiredBufferSize) {
if (_senderThread == epicsThreadGetIdSelf() &&
_sendQueue.empty() &&
_sendBuffer->getRemaining() >= requiredBufferSize)
{
processSender(sender);
if (_sendBuffer->getPosition() > 0)
{
if (_lowLatency)
flush(true);
else
scheduleSend();
}
}
else
enqueueSendRequest(sender);
}
void AbstractCodec::setRecipient(osiSockAddr const & sendTo) {
_sendTo = sendTo;
}
void AbstractCodec::setByteOrder(int byteOrder)
{
_socketBuffer->setEndianess(byteOrder);
// TODO sync
_sendBuffer->setEndianess(byteOrder);
_byteOrderFlag = EPICS_ENDIAN_BIG == byteOrder ? 0x80 : 0x00;
}
//
//
// BlockingAbstractCodec
//
//
//
void BlockingAbstractCodec::readPollOne() {
throw std::logic_error("should not be called for blocking IO");
}
void BlockingAbstractCodec::writePollOne() {
throw std::logic_error("should not be called for blocking IO");
}
void BlockingAbstractCodec::close() {
if (_isOpen.getAndSet(false))
{
// always close in the same thread, same way, etc.
// wakeup processSendQueue
// clean resources
internalClose(true);
_sendQueue.wakeup();
// post close
internalPostClose(true);
}
}
void BlockingAbstractCodec::internalClose(bool /*force*/) {
}
void BlockingAbstractCodec::internalPostClose(bool /*force*/) {
}
bool BlockingAbstractCodec::terminated() {
return !isOpen();
}
bool BlockingAbstractCodec::isOpen() {
return _isOpen.get();
}
// NOTE: must not be called from constructor (e.g. needs shared_from_this())
void BlockingAbstractCodec::start() {
_readThread = epicsThreadCreate(
"BlockingAbstractCodec-readThread",
epicsThreadPriorityMedium,
epicsThreadGetStackSize(
epicsThreadStackMedium),
BlockingAbstractCodec::receiveThread,
this);
_sendThread = epicsThreadCreate(
"BlockingAbstractCodec-_sendThread",
epicsThreadPriorityMedium,
epicsThreadGetStackSize(
epicsThreadStackMedium),
BlockingAbstractCodec::sendThread,
this);
}
void BlockingAbstractCodec::receiveThread(void *param)
{
BlockingAbstractCodec *bac = static_cast<BlockingAbstractCodec *>(param);
Transport::shared_pointer ptr = bac->shared_from_this();
while (bac->isOpen())
{
try {
bac->processRead();
} catch (std::exception &e) {
LOG(logLevelWarn,
"an exception caught while in receiveThread at %s:%d: %s",
__FILE__, __LINE__, e.what());
} catch (...) {
LOG(logLevelWarn,
"unknown exception caught while in sendThread at %s:%d.",
__FILE__, __LINE__);
}
}
bac->_shutdownEvent.signal();
}
void BlockingAbstractCodec::sendThread(void *param)
{
BlockingAbstractCodec *bac = static_cast<BlockingAbstractCodec *>(param);
Transport::shared_pointer ptr = bac->shared_from_this();
bac->setSenderThread();
while (bac->isOpen())
{
try {
bac->processWrite();
} catch (connection_closed_exception &cce) {
// noop
/*
LOG(logLevelDebug,
"connection closed by remote host while in sendThread at %s:%d: %s",
__FILE__, __LINE__, e.what());
*/
} catch (std::exception &e) {
LOG(logLevelWarn,
"an exception caught while in sendThread at %s:%d: %s",
__FILE__, __LINE__, e.what());
} catch (...) {
LOG(logLevelWarn,
"unknown exception caught while in sendThread at %s:%d.",
__FILE__, __LINE__);
}
}
// wait read thread to die
bac->_shutdownEvent.wait();
// call internal destroy
bac->internalDestroy();
}
void BlockingAbstractCodec::sendBufferFull(int tries) {
// TODO constants
epicsThreadSleep(std::max<double>(tries * 0.1, 1));
}
//
//
// BlockingSocketAbstractCodec
//
//
//
BlockingSocketAbstractCodec::BlockingSocketAbstractCodec(
SOCKET channel,
int32_t sendBufferSize,
int32_t receiveBufferSize):
BlockingAbstractCodec(
std::tr1::shared_ptr<epics::pvData::ByteBuffer>(new ByteBuffer((std::max<std::size_t>((std::size_t)(
MAX_TCP_RECV + MAX_ENSURE_DATA_BUFFER_SIZE), receiveBufferSize) +
(PVA_ALIGNMENT - 1)) & (~(PVA_ALIGNMENT - 1)))),
std::tr1::shared_ptr<epics::pvData::ByteBuffer>(new ByteBuffer((std::max<std::size_t>((std::size_t)( MAX_TCP_RECV +
MAX_ENSURE_DATA_BUFFER_SIZE), receiveBufferSize) + (PVA_ALIGNMENT - 1))
& (~(PVA_ALIGNMENT - 1)))), sendBufferSize),
_channel(channel)
{
// get remote address
osiSocklen_t saSize = sizeof(sockaddr);
int retval = getpeername(_channel, &(_socketAddress.sa), &saSize);
if(unlikely(retval<0)) {
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
LOG(logLevelError,
"Error fetching socket remote address: %s.",
errStr);
}
}
// must be called only once, when there will be no operation on socket (e.g. just before tx/rx thread exists)
void BlockingSocketAbstractCodec::internalDestroy() {
if(_channel != INVALID_SOCKET) {
epicsSocketSystemCallInterruptMechanismQueryInfo info =
epicsSocketSystemCallInterruptMechanismQuery ();
switch ( info )
{
case esscimqi_socketCloseRequired:
epicsSocketDestroy ( _channel );
break;
case esscimqi_socketBothShutdownRequired:
{
/*int status =*/ ::shutdown ( _channel, SHUT_RDWR );
/*
if ( status ) {
char sockErrBuf[64];
epicsSocketConvertErrnoToString (
sockErrBuf, sizeof ( sockErrBuf ) );
LOG(logLevelDebug,
"TCP socket to %s failed to shutdown: %s.",
inetAddressToString(_socketAddress).c_str(), sockErrBuf);
}
*/
epicsSocketDestroy ( _channel );
}
break;
case esscimqi_socketSigAlarmRequired:
// not supported anymore anyway
default:
epicsSocketDestroy(_channel);
}
_channel = INVALID_SOCKET;
}
}
void BlockingSocketAbstractCodec::invalidDataStreamHandler() {
close();
}
int BlockingSocketAbstractCodec::write(
epics::pvData::ByteBuffer *src) {
std::size_t remaining;
while((remaining=src->getRemaining()) > 0) {
int bytesSent = ::send(_channel,
&src->getArray()[src->getPosition()],
remaining, 0);
// NOTE: do not log here, you might override SOCKERRNO relevant to recv() operation above
if(unlikely(bytesSent<0)) {
int socketError = SOCKERRNO;
// spurious EINTR check
if (socketError==SOCK_EINTR)
continue;
}
if (bytesSent > 0) {
src->setPosition(src->getPosition() + bytesSent);
}
return bytesSent;
}
return 0;
}
std::size_t BlockingSocketAbstractCodec::getSocketReceiveBufferSize()
const {
osiSocklen_t intLen = sizeof(int);
int socketRecvBufferSize;
int retval = getsockopt(_channel, SOL_SOCKET, SO_RCVBUF,
(char *)&socketRecvBufferSize, &intLen);
if(retval<0) {
if (IS_LOGGABLE(logLevelDebug))
{
char strBuffer[64];
epicsSocketConvertErrnoToString(strBuffer, sizeof(strBuffer));
LOG(logLevelDebug, "Error getting SO_SNDBUF: %s", strBuffer);
}
}
return socketRecvBufferSize;
}
int BlockingSocketAbstractCodec::read(epics::pvData::ByteBuffer* dst) {
std::size_t remaining;
while((remaining=dst->getRemaining()) > 0) {
// read
std::size_t pos = dst->getPosition();
int bytesRead = recv(_channel,
(char*)(dst->getArray()+pos), remaining, 0);
// NOTE: do not log here, you might override SOCKERRNO relevant to recv() operation above
/*
if (IS_LOGGABLE(logLevelTrace)) {
hexDump(std::string("READ"),
(const int8 *)(dst->getArray()+pos), bytesRead);
}
*/
if(unlikely(bytesRead<=0)) {
if (bytesRead<0)
{
int socketError = SOCKERRNO;
// interrupted or timeout
if (socketError == EINTR ||
socketError == EAGAIN ||
socketError == EWOULDBLOCK)
continue;
}
return -1; // 0 means connection loss for blocking transport, notify codec by returning -1
}
dst->setPosition(dst->getPosition() + bytesRead);
return bytesRead;
}
return 0;
}
void BlockingTCPTransportCodec::internalClose(bool force) {
BlockingSocketAbstractCodec::internalClose(force);
if (IS_LOGGABLE(logLevelDebug))
{
LOG(logLevelDebug,
"TCP socket to %s closed.",
inetAddressToString(_socketAddress).c_str());
}
}
BlockingServerTCPTransportCodec::BlockingServerTCPTransportCodec(
Context::shared_pointer const & context,
SOCKET channel,
std::auto_ptr<ResponseHandler>& responseHandler,
int32_t sendBufferSize,
int32_t receiveBufferSize) :
BlockingTCPTransportCodec(context, channel, responseHandler,
sendBufferSize, receiveBufferSize, PVA_DEFAULT_PRIORITY),
_lastChannelSID(0)
{
// NOTE: priority not yet known, default priority is used to
//register/unregister
// TODO implement priorities in Reactor... not that user will
// change it.. still getPriority() must return "registered" priority!
}
BlockingServerTCPTransportCodec::~BlockingServerTCPTransportCodec() {
}
pvAccessID BlockingServerTCPTransportCodec::preallocateChannelSID() {
Lock lock(_channelsMutex);
// search first free (theoretically possible loop of death)
pvAccessID sid = ++_lastChannelSID;
while(_channels.find(sid)!=_channels.end())
sid = ++_lastChannelSID;
return sid;
}
void BlockingServerTCPTransportCodec::registerChannel(
pvAccessID sid,
ServerChannel::shared_pointer const & channel) {
Lock lock(_channelsMutex);
_channels[sid] = channel;
}
void BlockingServerTCPTransportCodec::unregisterChannel(pvAccessID sid) {
Lock lock(_channelsMutex);
_channels.erase(sid);
}
ServerChannel::shared_pointer
BlockingServerTCPTransportCodec::getChannel(pvAccessID sid) {
Lock lock(_channelsMutex);
std::map<pvAccessID, ServerChannel::shared_pointer>::iterator it =
_channels.find(sid);
if(it!=_channels.end()) return it->second;
return ServerChannel::shared_pointer();
}
int BlockingServerTCPTransportCodec::getChannelCount() {
Lock lock(_channelsMutex);
return static_cast<int>(_channels.size());
}
void BlockingServerTCPTransportCodec::send(ByteBuffer* buffer,
TransportSendControl* control) {
//
// set byte order control message
//
ensureBuffer(PVA_MESSAGE_HEADER_SIZE);
buffer->putByte(PVA_MAGIC);
buffer->putByte(PVA_VERSION);
buffer->putByte(
0x01 | ((EPICS_BYTE_ORDER == EPICS_ENDIAN_BIG)
? 0x80 : 0x00)); // control + big endian
buffer->putByte(2); // set byte order
buffer->putInt(0);
//
// send verification message
//
control->startMessage(CMD_CONNECTION_VALIDATION, 2*sizeof(int32));
// receive buffer size
buffer->putInt(static_cast<int32>(getReceiveBufferSize()));
// socket receive buffer size
buffer->putInt(static_cast<int32>(getSocketReceiveBufferSize()));
// send immediately
control->flush(true);
}
void BlockingServerTCPTransportCodec::destroyAllChannels() {
Lock lock(_channelsMutex);
if(_channels.size()==0) return;
if (IS_LOGGABLE(logLevelDebug))
{
char ipAddrStr[64];
ipAddrToDottedIP(&_socketAddress.ia, ipAddrStr, sizeof(ipAddrStr));
LOG(
logLevelDebug,
"Transport to %s still has %zd channel(s) active and closing...",
ipAddrStr, _channels.size());
}
std::map<pvAccessID, ServerChannel::shared_pointer>::iterator it = _channels.begin();
for(; it!=_channels.end(); it++)
it->second->destroy();
_channels.clear();
}
void BlockingServerTCPTransportCodec::internalClose(bool force) {
Transport::shared_pointer thisSharedPtr = shared_from_this();
BlockingTCPTransportCodec::internalClose(force);
destroyAllChannels();
}
BlockingClientTCPTransportCodec::BlockingClientTCPTransportCodec(
Context::shared_pointer const & context,
SOCKET channel,
std::auto_ptr<ResponseHandler>& responseHandler,
int32_t sendBufferSize,
int32_t receiveBufferSize,
TransportClient::shared_pointer const & client,
epics::pvData::int8 remoteTransportRevision,
float beaconInterval,
int16_t priority ) :
BlockingTCPTransportCodec(context, channel, responseHandler,
sendBufferSize, receiveBufferSize, priority),
_connectionTimeout(beaconInterval*1000),
_unresponsiveTransport(false),
_verifyOrEcho(true),
_verified(false)
{
// initialize owners list, send queue
acquire(client);
// use immediate for clients
//setFlushStrategy(DELAYED);
// setup connection timeout timer (watchdog) - moved to start() method
epicsTimeGetCurrent(&_aliveTimestamp);
}
void BlockingClientTCPTransportCodec::start()
{
TimerCallbackPtr tcb = std::tr1::dynamic_pointer_cast<TimerCallback>(shared_from_this());
_context->getTimer()->schedulePeriodic(tcb, _connectionTimeout, _connectionTimeout);
BlockingTCPTransportCodec::start();
}
BlockingClientTCPTransportCodec::~BlockingClientTCPTransportCodec() {
}
void BlockingClientTCPTransportCodec::callback() {
epicsTimeStamp currentTime;
epicsTimeGetCurrent(&currentTime);
_mutex.lock();
// no exception expected here
double diff = epicsTimeDiffInSeconds(&currentTime, &_aliveTimestamp);
_mutex.unlock();
if(diff>2*_connectionTimeout) {
unresponsiveTransport();
}
// use some k (3/4) to handle "jitter"
else if(diff>=((3*_connectionTimeout)/4)) {
// send echo
TransportSender::shared_pointer transportSender = std::tr1::dynamic_pointer_cast<TransportSender>(shared_from_this());
enqueueSendRequest(transportSender);
}
}
#define EXCEPTION_GUARD(code) try { code; } \
catch (std::exception &e) { LOG(logLevelError, "Unhandled exception caught from code at %s:%d: %s", __FILE__, __LINE__, e.what()); } \
catch (...) { LOG(logLevelError, "Unhandled exception caught from code at %s:%d.", __FILE__, __LINE__); }
void BlockingClientTCPTransportCodec::unresponsiveTransport() {
Lock lock(_mutex);
if(!_unresponsiveTransport) {
_unresponsiveTransport = true;
TransportClientMap_t::iterator it = _owners.begin();
for(; it!=_owners.end(); it++) {
TransportClient::shared_pointer client = it->second.lock();
if (client)
{
EXCEPTION_GUARD(client->transportUnresponsive());
}
}
}
}
bool BlockingClientTCPTransportCodec::acquire(TransportClient::shared_pointer const & client) {
Lock lock(_mutex);
if(isClosed()) return false;
if (IS_LOGGABLE(logLevelDebug))
{
char ipAddrStr[48];
ipAddrToDottedIP(&_socketAddress.ia, ipAddrStr, sizeof(ipAddrStr));
LOG(logLevelDebug, "Acquiring transport to %s.", ipAddrStr);
}
_owners[client->getID()] = TransportClient::weak_pointer(client);
//_owners.insert(TransportClient::weak_pointer(client));
return true;
}
// _mutex is held when this method is called
void BlockingClientTCPTransportCodec::internalClose(bool forced) {
BlockingTCPTransportCodec::internalClose(forced);
TimerCallbackPtr tcb = std::tr1::dynamic_pointer_cast<TimerCallback>(shared_from_this());
_context->getTimer()->cancel(tcb);
}
void BlockingClientTCPTransportCodec::internalPostClose(bool forced) {
BlockingTCPTransportCodec::internalPostClose(forced);
// _owners cannot change when transport is closed
closedNotifyClients();
}
/**
* Notifies clients about disconnect.
*/
void BlockingClientTCPTransportCodec::closedNotifyClients() {
// check if still acquired
size_t refs = _owners.size();
if(refs>0) {
if (IS_LOGGABLE(logLevelDebug))
{
char ipAddrStr[48];
ipAddrToDottedIP(&_socketAddress.ia, ipAddrStr, sizeof(ipAddrStr));
LOG(
logLevelDebug,
"Transport to %s still has %d client(s) active and closing...",
ipAddrStr, refs);
}
TransportClientMap_t::iterator it = _owners.begin();
for(; it!=_owners.end(); it++) {
TransportClient::shared_pointer client = it->second.lock();
if (client)
{
EXCEPTION_GUARD(client->transportClosed());
}
}
}
_owners.clear();
}
//void BlockingClientTCPTransportCodec::release(TransportClient::shared_pointer const & client) {
void BlockingClientTCPTransportCodec::release(pvAccessID clientID) {
Lock lock(_mutex);
if(isClosed()) return;
if (IS_LOGGABLE(logLevelDebug))
{
char ipAddrStr[48];
ipAddrToDottedIP(&_socketAddress.ia, ipAddrStr, sizeof(ipAddrStr));
LOG(logLevelDebug, "Releasing TCP transport to %s.", ipAddrStr);
}
_owners.erase(clientID);
//_owners.erase(TransportClient::weak_pointer(client));
// not used anymore, close it
// TODO consider delayed destruction (can improve performance!!!)
if(_owners.size()==0) close(); // TODO close(false)
}
void BlockingClientTCPTransportCodec::aliveNotification() {
Lock guard(_mutex);
epicsTimeGetCurrent(&_aliveTimestamp);
if(_unresponsiveTransport) responsiveTransport();
}
bool BlockingClientTCPTransportCodec::verify(epics::pvData::int32 timeoutMs) {
return _verifiedEvent.wait(timeoutMs/1000.0);
}
void BlockingClientTCPTransportCodec::verified() {
epics::pvData::Lock lock(_verifiedMutex);
_verified = true;
_verifiedEvent.signal();
}
void BlockingClientTCPTransportCodec::responsiveTransport() {
Lock lock(_mutex);
if(_unresponsiveTransport) {
_unresponsiveTransport = false;
Transport::shared_pointer thisSharedPtr = shared_from_this();
TransportClientMap_t::iterator it = _owners.begin();
for(; it!=_owners.end(); it++) {
TransportClient::shared_pointer client = it->second.lock();
if (client)
{
EXCEPTION_GUARD(client->transportResponsive(thisSharedPtr));
}
}
}
}
void BlockingClientTCPTransportCodec::changedTransport() {
_outgoingIR.reset();
Lock lock(_mutex);
TransportClientMap_t::iterator it = _owners.begin();
for(; it!=_owners.end(); it++) {
TransportClient::shared_pointer client = it->second.lock();
if (client)
{
EXCEPTION_GUARD(client->transportChanged());
}
}
}
void BlockingClientTCPTransportCodec::send(ByteBuffer* buffer,
TransportSendControl* control) {
if(_verifyOrEcho) {
/*
* send verification response message
*/
control->startMessage(CMD_CONNECTION_VALIDATION, 2*sizeof(int32)+sizeof(int16));
// receive buffer size
buffer->putInt(static_cast<int32>(getReceiveBufferSize()));
// socket receive buffer size
buffer->putInt(static_cast<int32>(getSocketReceiveBufferSize()));
// connection priority
buffer->putShort(getPriority());
// send immediately
control->flush(true);
_verifyOrEcho = false;
}
else {
control->startMessage(CMD_ECHO, 0);
// send immediately
control->flush(true);
}
}
}
}
}