Files
pvAccess/src/remote/codec.cpp
Dirk Zimoch 4e8b3326a5 Fix MSVC warning C4101
unreferenced local variable

In this case: exceptions caught but never used.
No need to give them a variable name.
2025-11-06 08:18:16 -08:00

1964 lines
58 KiB
C++

/**
* Copyright - See the COPYRIGHT that is included with this distribution.
* pvAccessCPP is distributed subject to a Software License Agreement found
* in file LICENSE that is included with this distribution.
*/
#include <map>
#include <string>
#include <vector>
#include <limits>
#include <stdexcept>
#include <sstream>
#include <sys/types.h>
#include <osiSock.h>
#include <epicsTime.h>
#include <epicsThread.h>
#include <epicsVersion.h>
#include <errlog.h>
#include <epicsAtomic.h>
#include <pv/byteBuffer.h>
#include <pv/pvType.h>
#include <pv/lock.h>
#include <pv/timer.h>
#include <pv/event.h>
#include <pv/reftrack.h>
#define epicsExportSharedSymbols
#include <pv/blockingTCP.h>
#include <pv/remote.h>
#include <pv/inetAddressUtil.h>
#include <pv/hexDump.h>
#include <pv/logger.h>
#include <pv/likely.h>
#include <pv/codec.h>
#include <pv/serializationHelper.h>
#include <pv/serverChannelImpl.h>
#include <pv/clientContextImpl.h>
using namespace std;
using namespace epics::pvData;
using namespace epics::pvAccess;
typedef epicsGuard<epicsMutex> Guard;
namespace {
struct BreakTransport : TransportSender
{
virtual ~BreakTransport() {}
virtual void send(epics::pvData::ByteBuffer* buffer, TransportSendControl* control) OVERRIDE FINAL
{
throw epics::pvAccess::detail::connection_closed_exception("Break");
}
};
} // namespace
namespace epics {
namespace pvAccess {
/* HACK!
* RTEMS allows blocking sockets to be interrupted by shutdown() (aka. esscimqi_socketBothShutdownRequired).
* However, a concurrent close() is a race which can leave a send()/recv() call permanently stuck!
* The _right_ way to handle this (aside from fixing the stack) would be to sequence
* shutdown() -> exitWait() -> destroy()
* This is hard to handle since this must be done for _both_ sender and receiver thread,
* which presents difficulties owing to how the Transport hierarchy since Transport::close()
* can happen on either worker, or a user thread.
* Rather than try to straighten this mess out properly, we add this "wait" in-between
* shutdown() and close() to hopefully wait for the workers (or other worker) to return
* from send()/recv().
*/
void hackAroundRTEMSSocketInterrupt()
{
#ifdef __rtems__
epicsThreadId self = epicsThreadGetIdSelf();
unsigned orig = epicsThreadGetPrioritySelf();
epicsThreadSetPriority(self, epicsThreadPriorityMin);
epicsThreadSleep(0.0000001);
epicsThreadSetPriority(self, orig);
#endif
}
size_t Transport::num_instances;
Transport::Transport()
:_totalBytesSent(0u)
,_totalBytesRecv(0u)
{
REFTRACE_INCREMENT(num_instances);
}
Transport::~Transport()
{
REFTRACE_DECREMENT(num_instances);
}
namespace detail {
const std::size_t AbstractCodec::MAX_MESSAGE_PROCESS = 100;
const std::size_t AbstractCodec::MAX_MESSAGE_SEND = 100;
const std::size_t AbstractCodec::MAX_ENSURE_SIZE = 1024;
const std::size_t AbstractCodec::MAX_ENSURE_DATA_SIZE = MAX_ENSURE_SIZE/2;
const std::size_t AbstractCodec::MAX_ENSURE_BUFFER_SIZE = MAX_ENSURE_SIZE;
const std::size_t AbstractCodec::MAX_ENSURE_DATA_BUFFER_SIZE = 1024;
static
size_t bufSizeSelect(size_t request)
{
return std::max(request, size_t(MAX_TCP_RECV + AbstractCodec::MAX_ENSURE_DATA_BUFFER_SIZE));
}
AbstractCodec::AbstractCodec(
bool serverFlag,
size_t sendBufferSize,
size_t receiveBufferSize,
int32_t socketSendBufferSize,
bool blockingProcessQueue):
//PROTECTED
_readMode(NORMAL), _version(0), _flags(0), _command(0), _payloadSize(0),
_remoteTransportSocketReceiveBufferSize(MAX_TCP_RECV),
_senderThread(0),
_writeMode(PROCESS_SEND_QUEUE),
_writeOpReady(false),
_socketBuffer(bufSizeSelect(receiveBufferSize)),
_sendBuffer(bufSizeSelect(sendBufferSize)),
//PRIVATE
_storedPayloadSize(0), _storedPosition(0), _startPosition(0),
_maxSendPayloadSize(_sendBuffer.getSize() - 2*PVA_MESSAGE_HEADER_SIZE), // start msg + control
_lastMessageStartPosition(std::numeric_limits<size_t>::max()),_lastSegmentedMessageType(0),
_lastSegmentedMessageCommand(0), _nextMessagePayloadOffset(0),
_byteOrderFlag(EPICS_BYTE_ORDER == EPICS_ENDIAN_BIG ? 0x80 : 0x00),
_clientServerFlag(serverFlag ? 0x40 : 0x00)
{
if (_socketBuffer.getSize() < 2*MAX_ENSURE_SIZE)
throw std::invalid_argument(
"receiveBuffer.capacity() < 2*MAX_ENSURE_SIZE");
if (_sendBuffer.getSize() < 2*MAX_ENSURE_SIZE)
throw std::invalid_argument("sendBuffer() < 2*MAX_ENSURE_SIZE");
// initialize to be empty
_socketBuffer.setPosition(_socketBuffer.getLimit());
_startPosition = _socketBuffer.getPosition();
// clear send
_sendBuffer.clear();
}
// thows io_exception, connection_closed_exception, invalid_stream_exception
void AbstractCodec::processRead() {
switch (_readMode)
{
case NORMAL:
processReadNormal();
break;
case SEGMENTED:
processReadSegmented();
break;
case SPLIT:
throw std::logic_error("ReadMode == SPLIT not supported");
}
}
void AbstractCodec::processHeader() {
Guard G(_mutex); // guards access to _version et al.
// magic code
int8_t magicCode = _socketBuffer.getByte();
// version
int8_t ver = _socketBuffer.getByte();
if(_version!=ver) {
// enable timeout if both ends support
_version = ver;
setRxTimeout(getRevision()>1);
}
// flags
_flags = _socketBuffer.getByte();
// command
_command = _socketBuffer.getByte();
// read payload size
_payloadSize = _socketBuffer.getInt();
// check magic code
if (magicCode != PVA_MAGIC || _version==0)
{
LOG(logLevelError,
"Invalid header received from the client : %s %02x%02x%02x%02x disconnecting...",
inetAddressToString(*getLastReadBufferSocketAddress()).c_str(),
unsigned(magicCode), unsigned(_version), unsigned(_flags), unsigned(_command));
invalidDataStreamHandler();
throw invalid_data_stream_exception("invalid header received");
}
}
void AbstractCodec::processReadNormal() {
try
{
std::size_t messageProcessCount = 0;
while (messageProcessCount++ < MAX_MESSAGE_PROCESS)
{
// read as much as available, but at least for a header
// readFromSocket checks if reading from socket is really necessary
if (!readToBuffer(PVA_MESSAGE_HEADER_SIZE, false)) {
return;
}
// read header fields
processHeader();
bool isControl = ((_flags & 0x01) == 0x01);
if (isControl) {
processControlMessage();
}
else
{
// segmented sanity check
bool notFirstSegment = (_flags & 0x20) != 0;
if (notFirstSegment)
{
// not-first segmented message with zero payload is "kind of" valid
// TODO this should check if previous message was first- or middle-segmented message
if (_payloadSize == 0)
continue;
LOG(logLevelError,
"Protocol Violation: Not-a-first segmented message received in normal mode"
" from the client at %s:%d: %s, disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw invalid_data_stream_exception(
"not-a-first segmented message received in normal mode");
}
_storedPayloadSize = _payloadSize;
_storedPosition = _socketBuffer.getPosition();
_storedLimit = _socketBuffer.getLimit();
_socketBuffer.setLimit(std::min(_storedPosition + _storedPayloadSize, _storedLimit));
bool postProcess = true;
try
{
// handle response
processApplicationMessage();
if (!isOpen())
return;
postProcess = false;
postProcessApplicationMessage();
}
catch(...)
{
if (!isOpen())
return;
if (postProcess)
{
postProcessApplicationMessage();
}
throw;
}
}
}
}
catch (invalid_data_stream_exception & )
{
// noop, should be already handled (and logged)
}
catch (connection_closed_exception & )
{
// noop, should be already handled (and logged)
}
}
void AbstractCodec::postProcessApplicationMessage()
{
// can be closed by now
// isOpen() should be efficiently implemented
while (true)
//while (isOpen())
{
// set position as whole message was read
//(in case code haven't done so)
std::size_t newPosition = _storedPosition + _storedPayloadSize;
// aligned buffer size ensures that there is enough space
//in buffer,
// however data might not be fully read
// discard the rest of the packet
if (newPosition > _storedLimit)
{
// processApplicationMessage() did not read up
//quite some buffer
// we only handle unused alignment bytes
int bytesNotRead =
newPosition - _socketBuffer.getPosition();
assert(bytesNotRead>=0);
if (bytesNotRead==0)
{
// reveal currently existing padding
_socketBuffer.setLimit(_storedLimit);
continue;
}
// TODO we do not handle this for now (maybe never)
LOG(logLevelWarn,
"unprocessed read buffer from client at %s:%d: %s,"
" disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw invalid_data_stream_exception(
"unprocessed read buffer");
}
_socketBuffer.setLimit(_storedLimit);
_socketBuffer.setPosition(newPosition);
break;
}
}
void AbstractCodec::processReadSegmented() {
while (true)
{
// read as much as available, but at least for a header
// readFromSocket checks if reading from socket is really necessary
readToBuffer(PVA_MESSAGE_HEADER_SIZE, true);
// read header fields
processHeader();
bool isControl = ((_flags & 0x01) == 0x01);
if (isControl)
processControlMessage();
else
{
// last segment bit set (means in-between segment or last segment)
// we expect this, no non-control messages between
//segmented message are supported
// NOTE: for now... it is easy to support non-semgented
//messages between segmented messages
bool notFirstSegment = (_flags & 0x20) != 0;
if (!notFirstSegment)
{
LOG(logLevelWarn,
"Protocol Violation: Not-a-first segmented message expected from the client at"
" %s:%d: %s, disconnecting...",
__FILE__, __LINE__, inetAddressToString(*getLastReadBufferSocketAddress()).c_str());
invalidDataStreamHandler();
throw invalid_data_stream_exception(
"not-a-first segmented message expected");
}
_storedPayloadSize = _payloadSize;
// return control to caller code
return;
}
}
}
bool AbstractCodec::readToBuffer(
std::size_t requiredBytes,
bool persistent) {
// do we already have requiredBytes available?
std::size_t remainingBytes = _socketBuffer.getRemaining();
if (remainingBytes >= requiredBytes) {
return true;
}
// assumption: remainingBytes < MAX_ENSURE_DATA_BUFFER_SIZE &&
// requiredBytes < (socketBuffer.capacity() - 1)
//
// copy unread part to the beginning of the buffer
// to make room for new data (as much as we can read)
// NOTE: requiredBytes is expected to be small (order of 10 bytes)
//
// a new start position, we are careful to preserve alignment
_startPosition = MAX_ENSURE_SIZE;
std::size_t endPosition = _startPosition + remainingBytes;
for (std::size_t i = _startPosition; i < endPosition; i++)
_socketBuffer.putByte(i, _socketBuffer.getByte());
// update buffer to the new position
_socketBuffer.setLimit(_socketBuffer.getSize());
_socketBuffer.setPosition(endPosition);
// read at least requiredBytes bytes
std::size_t requiredPosition = _startPosition + requiredBytes;
while (_socketBuffer.getPosition() < requiredPosition)
{
int bytesRead = read(&_socketBuffer);
if (bytesRead < 0)
{
close();
throw connection_closed_exception("bytesRead < 0");
}
// non-blocking IO support
else if (bytesRead == 0)
{
if (persistent)
readPollOne();
else
{
// set pointers (aka flip)
_socketBuffer.setLimit(_socketBuffer.getPosition());
_socketBuffer.setPosition(_startPosition);
return false;
}
}
atomic::add(_totalBytesRecv, bytesRead);
}
// set pointers (aka flip)
_socketBuffer.setLimit(_socketBuffer.getPosition());
_socketBuffer.setPosition(_startPosition);
return true;
}
void AbstractCodec::ensureData(std::size_t size) {
// enough of data?
if (_socketBuffer.getRemaining() >= size)
return;
// to large for buffer...
if (size > MAX_ENSURE_DATA_SIZE) {// half for SPLIT, half for SEGMENTED
std::ostringstream msg;
msg << "requested for buffer size " << size
<< ", but maximum " << MAX_ENSURE_DATA_SIZE << " is allowed.";
LOG(logLevelWarn,
"%s at %s:%d.,", msg.str().c_str(), __FILE__, __LINE__);
throw std::invalid_argument(msg.str());
}
try
{
// subtract what was already processed
std::size_t pos = _socketBuffer.getPosition();
_storedPayloadSize -= pos - _storedPosition;
// SPLIT message case
// no more data and we have some payload left => read buffer
// NOTE: (storedPayloadSize >= size) does not work if size
//spans over multiple messages
if (_storedPayloadSize >= (_storedLimit-pos))
{
// just read up remaining payload
// this will move current (<size) part of the buffer
// to the beginning of the buffer
ReadMode storedMode = _readMode;
_readMode = SPLIT;
readToBuffer(size, true);
_readMode = storedMode;
_storedPosition = _socketBuffer.getPosition();
_storedLimit = _socketBuffer.getLimit();
_socketBuffer.setLimit(
std::min<std::size_t>(
_storedPosition + _storedPayloadSize, _storedLimit));
// check needed, if not enough data is available or
// we run into segmented message
ensureData(size);
}
// SEGMENTED message case
else
{
// TODO check flags
//if (flags && SEGMENTED_FLAGS_MASK == 0)
// throw IllegalStateException("segmented message expected,
//but current message flag does not indicate it");
// copy remaining bytes of payload to safe area
//[0 to MAX_ENSURE_DATA_BUFFER_SIZE/2), if any
// remaining is relative to payload since buffer is
//bounded from outside
std::size_t remainingBytes = _socketBuffer.getRemaining();
for (std::size_t i = 0; i < remainingBytes; i++)
_socketBuffer.putByte(i, _socketBuffer.getByte());
// restore limit (there might be some data already present
//and readToBuffer needs to know real limit)
_socketBuffer.setLimit(_storedLimit);
// we expect segmented message, we expect header
// that (and maybe some control packets) needs to be "removed"
// so that we get combined payload
ReadMode storedMode = _readMode;
_readMode = SEGMENTED;
processRead();
_readMode = storedMode;
// make sure we have all the data (maybe we run into SPLIT)
readToBuffer(size - remainingBytes, true);
// SPLIT cannot mess with this, since start of the message,
//i.e. current position, is always aligned
_socketBuffer.setPosition(
_socketBuffer.getPosition());
// copy before position (i.e. start of the payload)
for (int32_t i = remainingBytes - 1,
j = _socketBuffer.getPosition() - 1; i >= 0; i--, j--)
_socketBuffer.putByte(j, _socketBuffer.getByte(i));
_startPosition = _socketBuffer.getPosition() - remainingBytes;
_socketBuffer.setPosition(_startPosition);
_storedPayloadSize += remainingBytes;
_storedPosition = _startPosition;
_storedLimit = _socketBuffer.getLimit();
_socketBuffer.setLimit(
std::min<std::size_t>(
_storedPosition + _storedPayloadSize, _storedLimit));
// sequential small segmented messages in the buffer
ensureData(size);
}
}
catch (io_exception &) {
try {
close();
} catch (io_exception & ) {
// noop, best-effort close
}
throw connection_closed_exception(
"Failed to ensure data to read buffer.");
}
}
std::size_t AbstractCodec::alignedValue(
std::size_t value,
std::size_t alignment) {
std::size_t k = (alignment - 1);
return (value + k) & (~k);
}
static const char PADDING_BYTES[] =
{
static_cast<char>(0xFF),
static_cast<char>(0xFF),
static_cast<char>(0xFF),
static_cast<char>(0xFF),
static_cast<char>(0xFF),
static_cast<char>(0xFF),
static_cast<char>(0xFF),
static_cast<char>(0xFF)
};
void AbstractCodec::startMessage(
epics::pvData::int8 command,
std::size_t ensureCapacity,
epics::pvData::int32 payloadSize) {
_lastMessageStartPosition =
std::numeric_limits<size_t>::max(); // TODO revise this
ensureBuffer(
PVA_MESSAGE_HEADER_SIZE + ensureCapacity + _nextMessagePayloadOffset);
_lastMessageStartPosition = _sendBuffer.getPosition();
_sendBuffer.putByte(PVA_MAGIC);
_sendBuffer.putByte(_clientServerFlag ? PVA_SERVER_PROTOCOL_REVISION : PVA_CLIENT_PROTOCOL_REVISION);
_sendBuffer.putByte(
(_lastSegmentedMessageType | _byteOrderFlag | _clientServerFlag)); // data message
_sendBuffer.putByte(command); // command
_sendBuffer.putInt(payloadSize);
// apply offset
if (_nextMessagePayloadOffset > 0)
_sendBuffer.setPosition(
_sendBuffer.getPosition() + _nextMessagePayloadOffset);
}
void AbstractCodec::putControlMessage(
epics::pvData::int8 command,
epics::pvData::int32 data) {
_lastMessageStartPosition =
std::numeric_limits<size_t>::max(); // TODO revise this
ensureBuffer(PVA_MESSAGE_HEADER_SIZE);
_sendBuffer.putByte(PVA_MAGIC);
_sendBuffer.putByte(_clientServerFlag ? PVA_SERVER_PROTOCOL_REVISION : PVA_CLIENT_PROTOCOL_REVISION);
_sendBuffer.putByte((0x01 | _byteOrderFlag | _clientServerFlag)); // control message
_sendBuffer.putByte(command); // command
_sendBuffer.putInt(data); // data
}
void AbstractCodec::endMessage() {
endMessage(false);
}
void AbstractCodec::endMessage(bool hasMoreSegments) {
if (_lastMessageStartPosition != std::numeric_limits<size_t>::max())
{
std::size_t lastPayloadBytePosition = _sendBuffer.getPosition();
// set paylaod size (non-aligned)
std::size_t payloadSize =
lastPayloadBytePosition -
_lastMessageStartPosition - PVA_MESSAGE_HEADER_SIZE;
_sendBuffer.putInt(_lastMessageStartPosition + 4, payloadSize);
// set segmented bit
if (hasMoreSegments) {
// first segment
if (_lastSegmentedMessageType == 0)
{
std::size_t flagsPosition = _lastMessageStartPosition + 2;
epics::pvData::int8 type = _sendBuffer.getByte(flagsPosition);
// set first segment bit
_sendBuffer.putByte(flagsPosition, (type | 0x10));
// first + last segment bit == in-between segment
_lastSegmentedMessageType = type | 0x30;
_lastSegmentedMessageCommand =
_sendBuffer.getByte(flagsPosition + 1);
}
_nextMessagePayloadOffset = 0;
}
else
{
// last segment
if (_lastSegmentedMessageType != 0)
{
std::size_t flagsPosition = _lastMessageStartPosition + 2;
// set last segment bit (by clearing first segment bit)
_sendBuffer.putByte(flagsPosition,
(_lastSegmentedMessageType & 0xEF));
_lastSegmentedMessageType = 0;
}
_nextMessagePayloadOffset = 0;
}
// TODO
/*
// manage markers
final int position = sendBuffer.position();
final int bytesLeft = sendBuffer.remaining();
if (position >= nextMarkerPosition && bytesLeft >=
PVAConstants.PVA_MESSAGE_HEADER_SIZE)
{
sendBuffer.put(PVAConstants.PVA_MAGIC);
sendBuffer.put(PVAConstants.PVA_VERSION);
sendBuffer.put((byte)(0x01 | byteOrderFlag)); // control data
sendBuffer.put((byte)0); // marker
sendBuffer.putInt((int)(totalBytesSent + position +
PVAConstants.PVA_MESSAGE_HEADER_SIZE));
nextMarkerPosition = position + markerPeriodBytes;
}
*/
_lastMessageStartPosition = std::numeric_limits<size_t>::max();
}
}
void AbstractCodec::ensureBuffer(std::size_t size) {
if (_sendBuffer.getRemaining() >= size)
return;
// too large for buffer...
if (_maxSendPayloadSize < size) {
std::ostringstream msg;
msg << "requested for buffer size " <<
size << ", but only " << _maxSendPayloadSize << " available.";
std::string s = msg.str();
LOG(logLevelWarn,
"%s at %s:%d.,", msg.str().c_str(), __FILE__, __LINE__);
throw std::invalid_argument(s);
}
while (_sendBuffer.getRemaining() < size)
flush(false);
}
// assumes startMessage was called (or header is in place), because endMessage(true) is later called that peeks and sets _lastSegmentedMessageType
void AbstractCodec::flushSerializeBuffer() {
flush(false);
}
void AbstractCodec::flushSendBuffer() {
_sendBuffer.flip();
try {
send(&_sendBuffer);
} catch (io_exception &) {
try {
if (isOpen())
close();
} catch (io_exception &) {
// noop, best-effort close
}
throw connection_closed_exception("Failed to send buffer.");
}
_sendBuffer.clear();
_lastMessageStartPosition = std::numeric_limits<size_t>::max();
}
void AbstractCodec::flush(bool lastMessageCompleted) {
// automatic end
endMessage(!lastMessageCompleted);
// flush send buffer
flushSendBuffer();
// start with last header
if (!lastMessageCompleted && _lastSegmentedMessageType != 0)
startMessage(_lastSegmentedMessageCommand, 0);
}
// thows io_exception, connection_closed_exception
void AbstractCodec::processWrite() {
switch (_writeMode)
{
case PROCESS_SEND_QUEUE:
processSendQueue();
break;
case WAIT_FOR_READY_SIGNAL:
_writeOpReady = true;
break;
}
}
void AbstractCodec::send(ByteBuffer *buffer)
{
// On Windows, limiting the buffer size is important to prevent
// poor throughput performances when transferring large amount of
// data over non-blocking socket. See Microsoft KB article KB823764.
// We do it also for other systems just to be safe.
std::size_t maxBytesToSend = (size_t)-1;
// std::min<int32_t>(
// _socketSendBufferSize, _remoteTransportSocketReceiveBufferSize) / 2;
std::size_t limit = buffer->getLimit();
std::size_t bytesToSend = limit - buffer->getPosition();
// limit sending
if (bytesToSend > maxBytesToSend)
{
bytesToSend = maxBytesToSend;
buffer->setLimit(buffer->getPosition() + bytesToSend);
}
int tries = 0;
while (buffer->getRemaining() > 0)
{
//int p = buffer.position();
int bytesSent = write(buffer);
if (bytesSent < 0)
{
// connection lost
close();
throw connection_closed_exception("bytesSent < 0");
}
else if (bytesSent == 0)
{
sendBufferFull(tries++);
continue;
}
atomic::add(_totalBytesSent, bytesSent);
// readjust limit
if (bytesToSend == maxBytesToSend)
{
bytesToSend = limit - buffer->getPosition();
if(bytesToSend > maxBytesToSend)
bytesToSend = maxBytesToSend;
buffer->setLimit(buffer->getPosition() + bytesToSend);
}
tries = 0;
}
}
void AbstractCodec::processSendQueue()
{
{
std::size_t senderProcessed = 0;
while (senderProcessed++ < MAX_MESSAGE_SEND)
{
TransportSender::shared_pointer sender;
_sendQueue.pop_front_try(sender);
if (sender.get() == 0)
{
// flush
if (_sendBuffer.getPosition() > 0)
flush(true);
sendCompleted(); // do not schedule sending
if (terminated()) // termination
break;
// termination (we want to process even if shutdown)
_sendQueue.pop_front(sender);
}
try {
processSender(sender);
} catch(...) {
if (_sendBuffer.getPosition() > 0)
flush(true);
sendCompleted();
throw;
}
}
}
// flush
if (_sendBuffer.getPosition() > 0)
flush(true);
}
void AbstractCodec::enqueueSendRequest(
TransportSender::shared_pointer const & sender) {
_sendQueue.push_back(sender);
scheduleSend();
}
void AbstractCodec::setSenderThread()
{
_senderThread = epicsThreadGetIdSelf();
}
void AbstractCodec::processSender(
TransportSender::shared_pointer const & sender)
{
ScopedLock lock(sender);
try {
_lastMessageStartPosition = _sendBuffer.getPosition();
size_t before = atomic::get(_totalBytesSent) + _sendBuffer.getPosition();
sender->send(&_sendBuffer, this);
// automatic end (to set payload size)
endMessage(false);
size_t after = atomic::get(_totalBytesSent) + _sendBuffer.getPosition();
atomic::add(sender->bytesTX, after - before);
}
catch (connection_closed_exception & ) {
throw;
}
catch (std::exception &e ) {
std::ostringstream msg;
msg << "an exception caught while processing a send message: "
<< e.what();
LOG(logLevelWarn, "%s at %s:%d.",
msg.str().c_str(), __FILE__, __LINE__);
try {
close();
} catch (io_exception & ) {
// noop
}
throw connection_closed_exception(msg.str());
}
}
void AbstractCodec::enqueueSendRequest(
TransportSender::shared_pointer const & sender,
std::size_t requiredBufferSize) {
if (_senderThread == epicsThreadGetIdSelf() &&
_sendQueue.empty() &&
_sendBuffer.getRemaining() >= requiredBufferSize)
{
processSender(sender);
if (_sendBuffer.getPosition() > 0)
{
scheduleSend();
}
}
else
enqueueSendRequest(sender);
}
void AbstractCodec::setRecipient(osiSockAddr const & sendTo) {
_sendTo = sendTo;
}
void AbstractCodec::setByteOrder(int byteOrder)
{
_socketBuffer.setEndianess(byteOrder);
// TODO sync
_sendBuffer.setEndianess(byteOrder);
_byteOrderFlag = EPICS_ENDIAN_BIG == byteOrder ? 0x80 : 0x00;
}
bool AbstractCodec::directSerialize(ByteBuffer* /*existingBuffer*/, const char* toSerialize,
std::size_t elementCount, std::size_t elementSize)
{
// TODO overflow check of "size_t count", overflow int32 field of payloadSize header field
// TODO max message size in connection validation
std::size_t count = elementCount * elementSize;
// TODO find smart limit
// check if direct mode actually pays off
if (count < 64*1024)
return false;
//
// first end current message, and write a header of next "directly serialized" message
//
// first end current message indicating the we will segment
endMessage(true);
// append segmented message header with payloadSize == count
// TODO size_t to int32
startMessage(_lastSegmentedMessageCommand, 0, static_cast<int32>(count));
// flush
flushSendBuffer();
// TODO think if alignment is preserved after...
//
// send toSerialize buffer
//
ByteBuffer wrappedBuffer(const_cast<char*>(toSerialize), count);
send(&wrappedBuffer);
//
// continue where we left before calling directSerialize
//
startMessage(_lastSegmentedMessageCommand, 0);
return true;
}
bool AbstractCodec::directDeserialize(ByteBuffer *existingBuffer, char* deserializeTo,
std::size_t elementCount, std::size_t elementSize)
{
return false;
}
//
//
// BlockingAbstractCodec
//
//
//
BlockingTCPTransportCodec::~BlockingTCPTransportCodec()
{
REFTRACE_DECREMENT(num_instances);
waitJoin();
}
void BlockingTCPTransportCodec::readPollOne() {
throw std::logic_error("should not be called for blocking IO");
}
void BlockingTCPTransportCodec::writePollOne() {
throw std::logic_error("should not be called for blocking IO");
}
void BlockingTCPTransportCodec::close() {
if (_isOpen.getAndSet(false))
{
// always close in the same thread, same way, etc.
// wakeup processSendQueue
// clean resources (close socket)
internalClose();
// Break sender from queue wait
BreakTransport::shared_pointer B(new BreakTransport);
enqueueSendRequest(B);
}
}
void BlockingTCPTransportCodec::waitJoin()
{
assert(!_isOpen.get());
_sendThread.exitWait();
_readThread.exitWait();
}
void BlockingTCPTransportCodec::internalClose()
{
{
epicsSocketSystemCallInterruptMechanismQueryInfo info =
epicsSocketSystemCallInterruptMechanismQuery ();
switch ( info )
{
case esscimqi_socketCloseRequired:
epicsSocketDestroy ( _channel );
break;
case esscimqi_socketBothShutdownRequired:
{
/*int status =*/ ::shutdown ( _channel, SHUT_RDWR );
hackAroundRTEMSSocketInterrupt();
/*
if ( status ) {
char sockErrBuf[64];
epicsSocketConvertErrnoToString (
sockErrBuf, sizeof ( sockErrBuf ) );
LOG(logLevelDebug,
"TCP socket to %s failed to shutdown: %s.",
inetAddressToString(_socketAddress).c_str(), sockErrBuf);
}
*/
epicsSocketDestroy ( _channel );
}
break;
case esscimqi_socketSigAlarmRequired:
// not supported anymore anyway
default:
epicsSocketDestroy(_channel);
}
}
Transport::shared_pointer thisSharedPtr = this->shared_from_this();
_context->getTransportRegistry()->remove(thisSharedPtr);
if (IS_LOGGABLE(logLevelDebug))
{
LOG(logLevelDebug,
"TCP socket to %s is to be closed.",
_socketName.c_str());
}
}
bool BlockingTCPTransportCodec::terminated() {
return !isOpen();
}
bool BlockingTCPTransportCodec::isOpen() {
return _isOpen.get();
}
// NOTE: must not be called from constructor (e.g. needs shared_from_this())
void BlockingTCPTransportCodec::start() {
_readThread.start();
_sendThread.start();
}
void BlockingTCPTransportCodec::receiveThread()
{
/* This innocuous ref. is an important hack.
* The code behind Transport::close() will cause
* channels and operations to drop references
* to this transport. This ref. keeps it from
* being destroyed way down the call stack, from
* which it is apparently not possible to return
* safely. Rather than try to untangle this
* knot, just keep this ref...
*/
Transport::shared_pointer ptr(this->shared_from_this());
// initially enable timeout for all clients to weed out
// impersonators (security scanners?)
setRxTimeout(true);
while (this->isOpen())
{
try {
this->processRead();
continue;
} catch (std::exception &e) {
PRINT_EXCEPTION(e);
LOG(logLevelError,
"an exception caught while in receiveThread at %s:%d: %s",
__FILE__, __LINE__, e.what());
} catch (...) {
LOG(logLevelError,
"unknown exception caught while in receiveThread at %s:%d.",
__FILE__, __LINE__);
}
// exception
close();
}
}
void BlockingTCPTransportCodec::sendThread()
{
// cf. the comment in receiveThread()
Transport::shared_pointer ptr(this->shared_from_this());
this->setSenderThread();
while (this->isOpen())
{
try {
this->processWrite();
continue;
} catch (connection_closed_exception &) {
// noop
} catch (std::exception &e) {
PRINT_EXCEPTION(e);
LOG(logLevelWarn,
"an exception caught while in sendThread at %s:%d: %s",
__FILE__, __LINE__, e.what());
} catch (...) {
LOG(logLevelWarn,
"unknown exception caught while in sendThread at %s:%d.",
__FILE__, __LINE__);
}
// exception
close();
}
_sendQueue.clear();
}
void BlockingTCPTransportCodec::setRxTimeout(bool ena)
{
/* Inactivity timeouts with PVA have a long (and growing) history.
*
* - Originally pvAccessCPP clients didn't send CMD_ECHO, and servers would never timeout.
* - Since module version 7.0.0 (in Base 7.0.3) clients send echo every 15 seconds, and
* either peer will timeout after 30 seconds of inactivity.
* - pvAccessJava clients send CMD_ECHO every 30 seconds, and timeout after 60 seconds.
*
* So this was a bug, with c++ server timeout racing with Java client echo.
*
* - As a compromise, continue to send echo every 15 seconds, but increase default timeout to 40.
*/
double timeout = !ena ? 0.0 : 4.0/3.0*std::max(0.0, _context->getConfiguration()->getPropertyAsDouble("EPICS_PVA_CONN_TMO", 30.0));
#ifdef _WIN32
DWORD timo = DWORD(timeout*1000); // in milliseconds
#else
timeval timo;
timo.tv_sec = unsigned(timeout);
timo.tv_usec = (timeout-timo.tv_sec)*1e6;
#endif
int ret = setsockopt(_channel, SOL_SOCKET, SO_RCVTIMEO, (char*)&timo, sizeof(timo));
if(ret==-1) {
int err = SOCKERRNO;
static int lasterr;
if(err!=lasterr) {
errlogPrintf("%s: Unable to set RX timeout: %d\n", _socketName.c_str(), err);
lasterr = err;
}
}
}
void BlockingTCPTransportCodec::sendBufferFull(int tries) {
// TODO constants
epicsThreadSleep(std::max<double>(tries * 0.1, 1));
}
//
//
// BlockingTCPTransportCodec
//
//
//
size_t BlockingTCPTransportCodec::num_instances;
BlockingTCPTransportCodec::BlockingTCPTransportCodec(bool serverFlag, const Context::shared_pointer &context,
SOCKET channel, const ResponseHandler::shared_pointer &responseHandler,
size_t sendBufferSize,
size_t receiveBufferSize, int16 priority)
:AbstractCodec(
serverFlag,
sendBufferSize,
receiveBufferSize,
sendBufferSize,
true)
,_readThread(epics::pvData::Thread::Config(this, &BlockingTCPTransportCodec::receiveThread)
.prio(epicsThreadPriorityCAServerLow)
.name("TCP-rx")
.stack(epicsThreadStackBig)
.autostart(false))
,_sendThread(epics::pvData::Thread::Config(this, &BlockingTCPTransportCodec::sendThread)
.prio(epicsThreadPriorityCAServerLow)
.name("TCP-tx")
.stack(epicsThreadStackBig)
.autostart(false))
,_channel(channel)
,_context(context), _responseHandler(responseHandler)
,_remoteTransportReceiveBufferSize(MAX_TCP_RECV)
,_priority(priority)
,_verified(false)
{
REFTRACE_INCREMENT(num_instances);
_isOpen.getAndSet(true);
// get remote address
osiSocklen_t saSize = sizeof(sockaddr);
int retval = getpeername(_channel, &(_socketAddress.sa), &saSize);
if(unlikely(retval<0)) {
char errStr[64];
epicsSocketConvertErrnoToString(errStr, sizeof(errStr));
LOG(logLevelError,
"Error fetching socket remote address: %s.",
errStr);
_socketName = "<unknown>:0";
} else {
char ipAddrStr[24];
ipAddrToDottedIP(&_socketAddress.ia, ipAddrStr, sizeof(ipAddrStr));
_socketName = ipAddrStr;
}
}
void BlockingTCPTransportCodec::invalidDataStreamHandler() {
close();
}
int BlockingTCPTransportCodec::write(
epics::pvData::ByteBuffer *src) {
std::size_t remaining;
while((remaining=src->getRemaining()) > 0) {
int bytesSent = ::send(_channel,
&src->getBuffer()[src->getPosition()],
remaining, 0);
// NOTE: do not log here, you might override SOCKERRNO relevant to recv() operation above
// TODO winsock return 0 on disconnect (blocking socket) ?
if(unlikely(bytesSent<0)) {
int socketError = SOCKERRNO;
// spurious EINTR check
if (socketError==SOCK_EINTR)
continue;
else if (socketError==SOCK_ENOBUFS)
return 0;
}
if (bytesSent > 0) {
src->setPosition(src->getPosition() + bytesSent);
}
return bytesSent;
}
return 0;
}
int BlockingTCPTransportCodec::read(epics::pvData::ByteBuffer* dst) {
std::size_t remaining;
while((remaining=dst->getRemaining()) > 0) {
// read
std::size_t pos = dst->getPosition();
int bytesRead = ::recv(_channel,
(char*)(dst->getBuffer()+pos), remaining, 0);
// NOTE: do not log here, you might override SOCKERRNO relevant to recv() operation above
if(unlikely(bytesRead==0)) {
return -1; // 0 means connection loss for blocking transport, notify codec by returning -1
} else if(unlikely(bytesRead<0)) {
int err = SOCKERRNO;
if(err==SOCK_EINTR) {
// interrupted by signal. Retry
continue;
} else if(err==SOCK_EWOULDBLOCK || err==EAGAIN || err==SOCK_EINPROGRESS
|| err==SOCK_ETIMEDOUT
|| err==SOCK_ECONNABORTED || err==SOCK_ECONNRESET
) {
// different ways of saying timeout.
// Linux: EAGAIN or EWOULDBLOCK, or EINPROGRESS
// WIN32: WSAETIMEDOUT
// others that RSRV checks for, but may not need to, ECONNABORTED, ECONNRESET
// Note: with windows, after ETIMEOUT leaves the socket in an undefined state.
// so it must be closed. (cf. SO_RCVTIMEO)
return -1;
} else {
// some other (fatal) error
if(_isOpen.get())
errlogPrintf("%s : Connection closed with RX socket error %d\n", _socketName.c_str(), err);
return -1;
}
}
dst->setPosition(dst->getPosition() + bytesRead);
return bytesRead;
}
return 0;
}
bool BlockingTCPTransportCodec::verify(epics::pvData::int32 timeoutMs) {
return _verifiedEvent.wait(timeoutMs/1000.0) && _verified;
}
void BlockingTCPTransportCodec::verified(epics::pvData::Status const & status) {
epics::pvData::Lock lock(_mutex);
if (IS_LOGGABLE(logLevelDebug) && !status.isOK())
{
LOG(logLevelDebug, "Failed to verify connection to %s: %s.", _socketName.c_str(), status.getMessage().c_str());
}
{
Guard G(_mutex);
_verified = status.isSuccess();
}
_verifiedEvent.signal();
}
void BlockingTCPTransportCodec::authNZMessage(epics::pvData::PVStructure::shared_pointer const & data) {
AuthenticationSession::shared_pointer sess;
{
Guard G(_mutex);
sess = _authSession;
}
if (sess)
sess->messageReceived(data);
else
{
char ipAddrStr[24];
ipAddrToDottedIP(&_socketAddress.ia, ipAddrStr, sizeof(ipAddrStr));
LOG(logLevelWarn, "authNZ message received from '%s' but no security plug-in session active.", ipAddrStr);
}
}
class SecurityPluginMessageTransportSender : public TransportSender {
public:
POINTER_DEFINITIONS(SecurityPluginMessageTransportSender);
SecurityPluginMessageTransportSender(PVStructure::const_shared_pointer const & data) :
_data(data)
{
}
void send(ByteBuffer* buffer, TransportSendControl* control) {
control->startMessage(CMD_AUTHNZ, 0);
SerializationHelper::serializeFull(buffer, control, _data);
// send immediately
control->flush(true);
}
private:
PVStructure::const_shared_pointer _data;
};
void BlockingTCPTransportCodec::sendSecurityPluginMessage(epics::pvData::PVStructure::const_shared_pointer const & data) {
SecurityPluginMessageTransportSender::shared_pointer spmts(new SecurityPluginMessageTransportSender(data));
enqueueSendRequest(spmts);
}
BlockingServerTCPTransportCodec::BlockingServerTCPTransportCodec(
Context::shared_pointer const & context,
SOCKET channel,
ResponseHandler::shared_pointer const & responseHandler,
int32_t sendBufferSize,
int32_t receiveBufferSize)
:BlockingTCPTransportCodec(true, context, channel, responseHandler,
sendBufferSize, receiveBufferSize, PVA_DEFAULT_PRIORITY)
,_lastChannelSID(0x12003400)
,_verificationStatus(pvData::Status::fatal("Uninitialized error"))
,_verifyOrVerified(false)
{
// NOTE: priority not yet known, default priority is used to
//register/unregister
// TODO implement priorities in Reactor... not that user will
// change it.. still getPriority() must return "registered" priority!
}
BlockingServerTCPTransportCodec::~BlockingServerTCPTransportCodec() {
}
pvAccessID BlockingServerTCPTransportCodec::preallocateChannelSID() {
Lock lock(_channelsMutex);
// search first free (theoretically possible loop of death)
pvAccessID sid = ++_lastChannelSID;
while(_channels.find(sid)!=_channels.end())
sid = ++_lastChannelSID;
return sid;
}
void BlockingServerTCPTransportCodec::registerChannel(
pvAccessID sid,
ServerChannel::shared_pointer const & channel) {
Lock lock(_channelsMutex);
_channels[sid] = channel;
}
void BlockingServerTCPTransportCodec::unregisterChannel(pvAccessID sid) {
Lock lock(_channelsMutex);
_channels.erase(sid);
}
ServerChannel::shared_pointer
BlockingServerTCPTransportCodec::getChannel(pvAccessID sid) {
Lock lock(_channelsMutex);
std::map<pvAccessID, ServerChannel::shared_pointer>::iterator it =
_channels.find(sid);
if(it!=_channels.end()) return it->second;
return ServerChannel::shared_pointer();
}
size_t BlockingServerTCPTransportCodec::getChannelCount() const {
Lock lock(_channelsMutex);
return _channels.size();
}
void BlockingServerTCPTransportCodec::getChannels(std::vector<ServerChannel::shared_pointer>& channels) const
{
Lock lock(_channelsMutex);
for(_channels_t::const_iterator it(_channels.begin()), end(_channels.end());
it!=end; ++it)
{
channels.push_back(it->second);
}
}
void BlockingServerTCPTransportCodec::send(ByteBuffer* buffer,
TransportSendControl* control) {
if (!_verifyOrVerified)
{
_verifyOrVerified = true;
//
// set byte order control message
//
ensureBuffer(PVA_MESSAGE_HEADER_SIZE);
buffer->putByte(PVA_MAGIC);
buffer->putByte(PVA_SERVER_PROTOCOL_REVISION);
buffer->putByte(
0x01 | 0x40 | ((EPICS_BYTE_ORDER == EPICS_ENDIAN_BIG)
? 0x80 : 0x00)); // control + server + endian
buffer->putByte(CMD_SET_ENDIANESS); // set byte order
buffer->putInt(0);
//
// send verification message
//
control->startMessage(CMD_CONNECTION_VALIDATION, 4+2);
// receive buffer size
buffer->putInt(static_cast<int32>(getReceiveBufferSize()));
// server introspection registy max size
// TODO
buffer->putShort(0x7FFF);
// list of authNZ plugin names advertised to this client
AuthenticationRegistry::list_t plugins;
AuthenticationRegistry::servers().snapshot(plugins); // copy
std::vector<std::string> validSPNames;
validSPNames.reserve(plugins.size()); // assume all will be valid
PeerInfo info;
info.transport = "pva";
info.peer = _socketName;
info.transportVersion = this->getRevision();
// filter plugins which may be used by this peer
for(AuthenticationRegistry::list_t::iterator it(plugins.begin()), end(plugins.end());
it!=end; ++it)
{
info.authority = it->first;
if(it->second->isValidFor(info))
validSPNames.push_back(it->first);
}
SerializeHelper::writeSize(validSPNames.size(), buffer, this);
for (vector<string>::const_iterator iter(validSPNames.begin()), end(validSPNames.end());
iter != end; iter++)
{
SerializeHelper::serializeString(*iter, buffer, this);
}
{
Guard G(_mutex);
advertisedAuthPlugins.swap(validSPNames);
}
// send immediately
control->flush(true);
}
else
{
//
// send verified message
//
control->startMessage(CMD_CONNECTION_VALIDATED, 0);
pvData::Status sts;
{
Lock lock(_mutex);
sts = _verificationStatus;
}
sts.serialize(buffer, control);
// send immediately
control->flush(true);
}
}
void BlockingServerTCPTransportCodec::destroyAllChannels() {
Lock lock(_channelsMutex);
if(_channels.size()==0) return;
if (IS_LOGGABLE(logLevelDebug))
{
LOG(
logLevelDebug,
"Transport to %s still has %zu channel(s) active and closing...",
_socketName.c_str(), _channels.size());
}
_channels_t temp;
temp.swap(_channels);
for(_channels_t::iterator it(temp.begin()), end(temp.end()); it!=end; ++it)
it->second->destroy();
}
void BlockingServerTCPTransportCodec::internalClose() {
Transport::shared_pointer thisSharedPtr = shared_from_this();
BlockingTCPTransportCodec::internalClose();
destroyAllChannels();
}
void BlockingServerTCPTransportCodec::authenticationCompleted(epics::pvData::Status const & status,
const std::tr1::shared_ptr<PeerInfo>& peer)
{
if (IS_LOGGABLE(logLevelDebug))
{
LOG(logLevelDebug, "Authentication completed with status '%s' for PVA client: %s.", Status::StatusTypeName[status.getType()], _socketName.c_str());
}
if(peer)
AuthorizationRegistry::plugins().run(peer);
bool isVerified;
{
Guard G(_mutex);
isVerified = _verified;
if(status.isSuccess())
_peerInfo = peer;
else
_peerInfo.reset();
}
if (!isVerified)
verified(status);
else if (!status.isSuccess())
{
string errorMessage = "Re-authentication failed: " + status.getMessage();
if (!status.getStackDump().empty())
errorMessage += "\n" + status.getStackDump();
LOG(logLevelInfo, "%s", errorMessage.c_str());
close();
}
}
void BlockingServerTCPTransportCodec::authNZInitialize(const std::string& securityPluginName,
const epics::pvData::PVStructure::shared_pointer& data)
{
AuthenticationPlugin::shared_pointer plugin(AuthenticationRegistry::servers().lookup(securityPluginName));
// attempting the force use of an un-advertised/non-existant plugin is treated as a protocol error.
// We cheat here by assuming the the registry doesn't often change after server start,
// and don't test if securityPluginName is in advertisedAuthPlugins
if(!plugin)
throw std::runtime_error(_socketName+" failing attempt to select non-existant auth. plugin "+securityPluginName);
PeerInfo::shared_pointer info(new PeerInfo);
info->peer = _socketName;
info->transport = "pva";
info->transportVersion = getRevision();
info->authority = securityPluginName;
if (!plugin->isValidFor(*info))
verified(pvData::Status::error("invalid security plug-in name"));
if (IS_LOGGABLE(logLevelDebug))
{
LOG(logLevelDebug, "Accepted security plug-in '%s' for PVA client: %s.", securityPluginName.c_str(), _socketName.c_str());
}
AuthenticationSession::shared_pointer sess(plugin->createSession(info, shared_from_this(), data));
Guard G(_mutex);
_authSessionName = securityPluginName;
_authSession.swap(sess);
}
BlockingClientTCPTransportCodec::BlockingClientTCPTransportCodec(
Context::shared_pointer const & context,
SOCKET channel,
ResponseHandler::shared_pointer const & responseHandler,
int32_t sendBufferSize,
int32_t receiveBufferSize,
ClientChannelImpl::shared_pointer const & client,
epics::pvData::int8 /*remoteTransportRevision*/,
float heartbeatInterval,
int16_t priority ) :
BlockingTCPTransportCodec(false, context, channel, responseHandler,
sendBufferSize, receiveBufferSize, priority),
_connectionTimeout(heartbeatInterval),
_verifyOrEcho(true),
sendQueued(true) // don't start sending echo until after auth complete
{
// initialize owners list, send queue
acquire(client);
// use immediate for clients
//setFlushStrategy(DELAYED);
}
void BlockingClientTCPTransportCodec::start()
{
TimerCallbackPtr tcb = std::tr1::dynamic_pointer_cast<TimerCallback>(shared_from_this());
// add some randomness to our timer phase
double R = float(rand())/RAND_MAX; // [0, 1]
// shape a bit
R = R*0.5 + 0.5; // [0.5, 1.0]
_context->getTimer()->schedulePeriodic(tcb, _connectionTimeout/2.0*R, _connectionTimeout/2.0);
BlockingTCPTransportCodec::start();
}
BlockingClientTCPTransportCodec::~BlockingClientTCPTransportCodec() {
}
void BlockingClientTCPTransportCodec::callback()
{
{
Guard G(_mutex);
if(sendQueued) return;
sendQueued = true;
}
// send echo
TransportSender::shared_pointer transportSender = std::tr1::dynamic_pointer_cast<TransportSender>(shared_from_this());
enqueueSendRequest(transportSender);
}
#define EXCEPTION_GUARD(code) try { code; } \
catch (std::exception &e) { LOG(logLevelError, "Unhandled exception caught from code at %s:%d: %s", __FILE__, __LINE__, e.what()); } \
catch (...) { LOG(logLevelError, "Unhandled exception caught from code at %s:%d.", __FILE__, __LINE__); }
bool BlockingClientTCPTransportCodec::acquire(ClientChannelImpl::shared_pointer const & client) {
Lock lock(_mutex);
if(isClosed()) return false;
if (IS_LOGGABLE(logLevelDebug))
{
LOG(logLevelDebug, "Acquiring transport to %s.", _socketName.c_str());
}
_owners[client->getID()] = ClientChannelImpl::weak_pointer(client);
//_owners.insert(ClientChannelImpl::weak_pointer(client));
return true;
}
// _mutex is held when this method is called
void BlockingClientTCPTransportCodec::internalClose() {
BlockingTCPTransportCodec::internalClose();
TimerCallbackPtr tcb = std::tr1::dynamic_pointer_cast<TimerCallback>(shared_from_this());
_context->getTimer()->cancel(tcb);
// _owners cannot change when transport is closed
// Notifies clients about disconnect.
// check if still acquired
size_t refs = _owners.size();
if(refs>0) {
if (IS_LOGGABLE(logLevelDebug))
{
LOG(
logLevelDebug,
"Transport to %s still has %zu client(s) active and closing...",
_socketName.c_str(), refs);
}
TransportClientMap_t::iterator it = _owners.begin();
for(; it!=_owners.end(); it++) {
ClientChannelImpl::shared_pointer client = it->second.lock();
if (client)
{
EXCEPTION_GUARD(client->transportClosed());
}
}
}
_owners.clear();
}
//void BlockingClientTCPTransportCodec::release(ClientChannelImpl::shared_pointer const & client) {
void BlockingClientTCPTransportCodec::release(pvAccessID clientID) {
Lock lock(_mutex);
if(isClosed()) return;
if (IS_LOGGABLE(logLevelDebug))
{
LOG(logLevelDebug, "Releasing TCP transport to %s.", _socketName.c_str());
}
_owners.erase(clientID);
//_owners.erase(ClientChannelImpl::weak_pointer(client));
// not used anymore, close it
// TODO consider delayed destruction (can improve performance!!!)
if(_owners.size()==0) {
lock.unlock();
close();
}
}
void BlockingClientTCPTransportCodec::send(ByteBuffer* buffer,
TransportSendControl* control)
{
bool voe;
{
Guard G(_mutex);
sendQueued = false;
voe = _verifyOrEcho;
_verifyOrEcho = false;
}
if(voe) {
/*
* send verification response message
*/
control->startMessage(CMD_CONNECTION_VALIDATION, 4+2+2);
// receive buffer size
buffer->putInt(static_cast<int32>(getReceiveBufferSize()));
// max introspection registry size
// TODO
buffer->putShort(0x7FFF);
// QoS (aka connection priority)
buffer->putShort(getPriority());
std::string pluginName;
AuthenticationSession::shared_pointer session;
{
Guard G(_mutex);
pluginName = _authSessionName;
session = _authSession;
}
if (session)
{
// selected authNZ plug-in name
SerializeHelper::serializeString(_authSessionName, buffer, control);
// optional authNZ plug-in initialization data
SerializationHelper::serializeFull(buffer, control, session->initializationData());
}
else
{
//TODO: allowed?
// emptry authNZ plug-in name
SerializeHelper::serializeString("", buffer, control);
// no authNZ plug-in initialization data
SerializationHelper::serializeNullField(buffer, control);
}
// send immediately
control->flush(true);
}
else {
control->startMessage(CMD_ECHO, 0);
// send immediately
control->flush(true);
}
}
void BlockingClientTCPTransportCodec::authNZInitialize(const std::vector<std::string>& offeredSecurityPlugins)
{
AuthenticationRegistry& plugins = AuthenticationRegistry::clients();
std::string selectedName;
AuthenticationPlugin::shared_pointer plugin;
// because of a missing break; the original SecurityPlugin effectively treated the offered list as being
// in order of increasing preference (last is preferred).
// we continue with this because, hey isn't compatibility fun...
for(std::vector<std::string>::const_reverse_iterator it(offeredSecurityPlugins.rbegin()), end(offeredSecurityPlugins.rend());
it!=end; ++it)
{
plugin = plugins.lookup(*it);
if(plugin) {
selectedName = *it;
break;
}
}
if(!plugin) {
// mis-match and legacy. some early servers (java?) don't advertise any plugins.
// treat this as anonymous
selectedName = "anonymous";
plugin = plugins.lookup(selectedName);
assert(plugin); // fallback required
}
{
PeerInfo::shared_pointer info(new PeerInfo);
info->peer = _socketName; // this is the server name
info->transport = "pva";
info->transportVersion = getRevision();
info->authority = selectedName;
AuthenticationSession::shared_pointer sess(plugin->createSession(info, shared_from_this(), pvData::PVStructure::shared_pointer()));
Guard G(_mutex);
_authSessionName = selectedName;
_authSession = sess;
}
TransportSender::shared_pointer transportSender = std::tr1::dynamic_pointer_cast<TransportSender>(shared_from_this());
enqueueSendRequest(transportSender);
}
void BlockingClientTCPTransportCodec::authenticationCompleted(epics::pvData::Status const & status,
const std::tr1::shared_ptr<PeerInfo>& peer)
{
// noop for client side (server will send ConnectionValidation message)
}
void BlockingClientTCPTransportCodec::verified(epics::pvData::Status const & status)
{
AuthenticationSession::shared_pointer sess;
{
Guard G(_mutex);
sess = _authSession;
}
if(sess)
sess->authenticationComplete(status);
this->BlockingTCPTransportCodec::verified(status);
}
}
}
}