mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-04-22 22:40:02 +02:00
2034 lines
66 KiB
TeX
2034 lines
66 KiB
TeX
\batchmode
|
|
\documentclass{report}
|
|
\RequirePackage{ifthen}
|
|
|
|
|
|
\usepackage{amssymb}
|
|
\usepackage[dvips]{graphicx}
|
|
\usepackage{verbatim}
|
|
\usepackage{html}
|
|
|
|
|
|
\usepackage{amsmath}
|
|
\usepackage{latexsym,amssymb}
|
|
\usepackage[mathscr]{eucal}
|
|
\usepackage{amsthm,amsxtra,amscd,upref}
|
|
\usepackage{layout,bm,dcolumn}
|
|
\usepackage{graphicx,color}
|
|
\usepackage{calc}
|
|
|
|
|
|
\usepackage{framed}
|
|
|
|
%
|
|
\providecommand{\DST}[1]{{\ensuremath{\displaystyle{#1}}}}%
|
|
\providecommand{\DSF}[2]{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{#1}}}}{{\ensuremath{\displaystyle{#2}}}}}}}}
|
|
|
|
%
|
|
\providecommand{\vk}[1]{{\ensuremath{\underline{\bm{#1}}}}}%
|
|
\providecommand{\mx}[1]{{\ensuremath{\bm{\mathsf{#1}}}}}%
|
|
\providecommand{\lrb}[1]{{\ensuremath{\left({#1}\right)}}}%
|
|
\providecommand{\lrs}[1]{{\ensuremath{\left[{#1}\right]}}}%
|
|
\providecommand{\lrc}[1]{{\ensuremath{\left\{{#1}\right\}}}}%
|
|
\providecommand{\lrv}[1]{{\ensuremath{\left|{#1}\right|}}}
|
|
|
|
%
|
|
\providecommand{\hell}{{\ensuremath{\hat{\jmath}}}}%
|
|
\providecommand{\zell}{{\ensuremath{\mathfrak{z}}}}%
|
|
\providecommand{\vM}{{\ensuremath{{\ensuremath{\underline{\bm{M}}}}}}}%
|
|
\providecommand{\vr}{{\ensuremath{{\ensuremath{\underline{\bm{r}}}}}}}%
|
|
\providecommand{\vq}{{\ensuremath{{\ensuremath{\underline{\bm{q}}}}}}}%
|
|
\providecommand{\vh}{{\ensuremath{{\ensuremath{\underline{\bm{h}}}}}}}%
|
|
\providecommand{\vkx}{{\ensuremath{{\ensuremath{\underline{\bm{x}}}}}}}%
|
|
\providecommand{\vkxt}{{\ensuremath{{\ensuremath{\underline{\bm{x}}}}^t}}}%
|
|
\providecommand{\vky}{{\ensuremath{{\ensuremath{\underline{\bm{y}}}}}}}%
|
|
\providecommand{\vkyt}{{\ensuremath{{\ensuremath{\underline{\bm{y}}}}^t}}}
|
|
|
|
%
|
|
\providecommand{\vri}[1]{{\ensuremath{{\ensuremath{\underline{\bm{r}}}}_{#1}}}}%
|
|
\providecommand{\vrr}{{\ensuremath{{\ensuremath{\underline{\bm{r}}}}}}}%
|
|
\providecommand{\vqi}[1]{{\ensuremath{{\ensuremath{\underline{\bm{q}}}}_{#1}}}}%
|
|
\providecommand{\vqr}{{\ensuremath{{\ensuremath{\underline{\bm{q}}}}}}}%
|
|
\providecommand{\vhi}[1]{{\ensuremath{{\ensuremath{\underline{\bm{h}}}}_{#1}}}}%
|
|
\providecommand{\vhr}{{\ensuremath{{\ensuremath{\underline{\bm{h}}}}}}}%
|
|
\providecommand{\IMA}{{\ensuremath{\mathrm{i}}}}%
|
|
\providecommand{\EE}{{\ensuremath{\mathrm{e}}}}%
|
|
\providecommand{\half}{{\ensuremath{\frac{1}{2}}}}
|
|
|
|
%
|
|
\providecommand{\deltax}{{\ensuremath{\rho\cos(\beta)}}}%
|
|
\providecommand{\deltay}{{\ensuremath{\rho\sin(\beta)}}}%
|
|
\providecommand{\deltaz}{{\ensuremath{\delta_{z}}}}%
|
|
\providecommand{\deltazs}{{\ensuremath{\widehat{{\ensuremath{\delta_{z}}}}}}}%
|
|
\providecommand{\DD}[1]{{\ensuremath{\mathrm{d}{#1}\, }}}%
|
|
\providecommand{\DDD}[2]{{\ensuremath{\mathrm{d}^{#1}{#2}\, }}}
|
|
|
|
%
|
|
\providecommand{\haf}{{\ensuremath{\scriptstyle{\frac{1}{2}}}}}%
|
|
\providecommand{\unt}{{\ensuremath{\scriptstyle{\frac{1}{3}}}}}%
|
|
\providecommand{\dut}{{\ensuremath{\scriptstyle{\frac{2}{3}}}}}%
|
|
\providecommand{\xref}[1]{(\ref{#1})}%
|
|
\providecommand{\eref}[1]{Eq.~(\ref{#1})}%
|
|
\providecommand{\Beref}[1]{{\textcolor[rgb]{0,0,1}{Eq.~(\ref{#1})}}}%
|
|
\providecommand{\eeref}[2]{Eqs.~(\ref{#1},\ref{#2})}%
|
|
\providecommand{\eeeref}[3]{Eqs.~(\ref{#1},\ref{#2},\ref{#3})}%
|
|
\providecommand{\aref}[1]{Appendix~\ref{#1}}%
|
|
\providecommand{\sref}[1]{Sec.~\ref{#1}}%
|
|
\providecommand{\cref}[1]{Chap.~\ref{#1}}%
|
|
\providecommand{\tref}[1]{Tab.~\ref{#1}}%
|
|
\providecommand{\fref}[1]{Fig.~\ref{#1}}%
|
|
\providecommand{\Rref}[1]{Ref.~\cite{#1}}%
|
|
\providecommand{\degC}{{\ensuremath{{}^{\mathrm{o}}}}}
|
|
|
|
%
|
|
\providecommand{\TT}{{\ensuremath{{2\theta}}}}%
|
|
\providecommand{\TTz}{{\ensuremath{{{{\ensuremath{{2\theta}}}}_{0}}}}}%
|
|
\providecommand{\TTe}{{\ensuremath{{{{\ensuremath{{2\theta}}}}_{e}}}}}%
|
|
\providecommand{\TTB}{{\ensuremath{{{{\ensuremath{{2\theta}}}}_{B}}}}}
|
|
|
|
|
|
|
|
|
|
|
|
\pagecolor[gray]{.7}
|
|
|
|
\usepackage[]{inputenc}
|
|
|
|
|
|
|
|
\makeatletter
|
|
|
|
\makeatletter
|
|
\count@=\the\catcode`\_ \catcode`\_=8
|
|
\newenvironment{tex2html_wrap}{}{}%
|
|
\catcode`\<=12\catcode`\_=\count@
|
|
\newcommand{\providedcommand}[1]{\expandafter\providecommand\csname #1\endcsname}%
|
|
\newcommand{\renewedcommand}[1]{\expandafter\providecommand\csname #1\endcsname{}%
|
|
\expandafter\renewcommand\csname #1\endcsname}%
|
|
\newcommand{\newedenvironment}[1]{\newenvironment{#1}{}{}\renewenvironment{#1}}%
|
|
\let\newedcommand\renewedcommand
|
|
\let\renewedenvironment\newedenvironment
|
|
\makeatother
|
|
\let\mathon=$
|
|
\let\mathoff=$
|
|
\ifx\AtBeginDocument\undefined \newcommand{\AtBeginDocument}[1]{}\fi
|
|
\newbox\sizebox
|
|
\setlength{\hoffset}{0pt}\setlength{\voffset}{0pt}
|
|
\addtolength{\textheight}{\footskip}\setlength{\footskip}{0pt}
|
|
\addtolength{\textheight}{\topmargin}\setlength{\topmargin}{0pt}
|
|
\addtolength{\textheight}{\headheight}\setlength{\headheight}{0pt}
|
|
\addtolength{\textheight}{\headsep}\setlength{\headsep}{0pt}
|
|
\setlength{\textwidth}{349pt}
|
|
\newwrite\lthtmlwrite
|
|
\makeatletter
|
|
\let\realnormalsize=\normalsize
|
|
\global\topskip=2sp
|
|
\def\preveqno{}\let\real@float=\@float \let\realend@float=\end@float
|
|
\def\@float{\let\@savefreelist\@freelist\real@float}
|
|
\def\liih@math{\ifmmode$\else\bad@math\fi}
|
|
\def\end@float{\realend@float\global\let\@freelist\@savefreelist}
|
|
\let\real@dbflt=\@dbflt \let\end@dblfloat=\end@float
|
|
\let\@largefloatcheck=\relax
|
|
\let\if@boxedmulticols=\iftrue
|
|
\def\@dbflt{\let\@savefreelist\@freelist\real@dbflt}
|
|
\def\adjustnormalsize{\def\normalsize{\mathsurround=0pt \realnormalsize
|
|
\parindent=0pt\abovedisplayskip=0pt\belowdisplayskip=0pt}%
|
|
\def\phantompar{\csname par\endcsname}\normalsize}%
|
|
\def\lthtmltypeout#1{{\let\protect\string \immediate\write\lthtmlwrite{#1}}}%
|
|
\newcommand\lthtmlhboxmathA{\adjustnormalsize\setbox\sizebox=\hbox\bgroup\kern.05em }%
|
|
\newcommand\lthtmlhboxmathB{\adjustnormalsize\setbox\sizebox=\hbox to\hsize\bgroup\hfill }%
|
|
\newcommand\lthtmlvboxmathA{\adjustnormalsize\setbox\sizebox=\vbox\bgroup %
|
|
\let\ifinner=\iffalse \let\)\liih@math }%
|
|
\newcommand\lthtmlboxmathZ{\@next\next\@currlist{}{\def\next{\voidb@x}}%
|
|
\expandafter\box\next\egroup}%
|
|
\newcommand\lthtmlmathtype[1]{\gdef\lthtmlmathenv{#1}}%
|
|
\newcommand\lthtmllogmath{\dimen0\ht\sizebox \advance\dimen0\dp\sizebox
|
|
\ifdim\dimen0>.95\vsize
|
|
\lthtmltypeout{%
|
|
*** image for \lthtmlmathenv\space is too tall at \the\dimen0, reducing to .95 vsize ***}%
|
|
\ht\sizebox.95\vsize \dp\sizebox\z@ \fi
|
|
\lthtmltypeout{l2hSize %
|
|
:\lthtmlmathenv:\the\ht\sizebox::\the\dp\sizebox::\the\wd\sizebox.\preveqno}}%
|
|
\newcommand\lthtmlfigureA[1]{\let\@savefreelist\@freelist
|
|
\lthtmlmathtype{#1}\lthtmlvboxmathA}%
|
|
\newcommand\lthtmlpictureA{\bgroup\catcode`\_=8 \lthtmlpictureB}%
|
|
\newcommand\lthtmlpictureB[1]{\lthtmlmathtype{#1}\egroup
|
|
\let\@savefreelist\@freelist \lthtmlhboxmathB}%
|
|
\newcommand\lthtmlpictureZ[1]{\hfill\lthtmlfigureZ}%
|
|
\newcommand\lthtmlfigureZ{\lthtmlboxmathZ\lthtmllogmath\copy\sizebox
|
|
\global\let\@freelist\@savefreelist}%
|
|
\newcommand\lthtmldisplayA{\bgroup\catcode`\_=8 \lthtmldisplayAi}%
|
|
\newcommand\lthtmldisplayAi[1]{\lthtmlmathtype{#1}\egroup\lthtmlvboxmathA}%
|
|
\newcommand\lthtmldisplayB[1]{\edef\preveqno{(\theequation)}%
|
|
\lthtmldisplayA{#1}\let\@eqnnum\relax}%
|
|
\newcommand\lthtmldisplayZ{\lthtmlboxmathZ\lthtmllogmath\lthtmlsetmath}%
|
|
\newcommand\lthtmlinlinemathA{\bgroup\catcode`\_=8 \lthtmlinlinemathB}
|
|
\newcommand\lthtmlinlinemathB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA
|
|
\vrule height1.5ex width0pt }%
|
|
\newcommand\lthtmlinlineA{\bgroup\catcode`\_=8 \lthtmlinlineB}%
|
|
\newcommand\lthtmlinlineB[1]{\lthtmlmathtype{#1}\egroup\lthtmlhboxmathA}%
|
|
\newcommand\lthtmlinlineZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
|
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetinline}
|
|
\newcommand\lthtmlinlinemathZ{\egroup\expandafter\ifdim\dp\sizebox>0pt %
|
|
\expandafter\centerinlinemath\fi\lthtmllogmath\lthtmlsetmath}
|
|
\newcommand\lthtmlindisplaymathZ{\egroup %
|
|
\centerinlinemath\lthtmllogmath\lthtmlsetmath}
|
|
\def\lthtmlsetinline{\hbox{\vrule width.1em \vtop{\vbox{%
|
|
\kern.1em\copy\sizebox}\ifdim\dp\sizebox>0pt\kern.1em\else\kern.3pt\fi
|
|
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
|
\def\lthtmlsetmath{\hbox{\vrule width.1em\kern-.05em\vtop{\vbox{%
|
|
\kern.1em\kern0.8 pt\hbox{\hglue.17em\copy\sizebox\hglue0.8 pt}}\kern.3pt%
|
|
\ifdim\dp\sizebox>0pt\kern.1em\fi \kern0.8 pt%
|
|
\ifdim\hsize>\wd\sizebox \hrule depth1pt\fi}}}
|
|
\def\centerinlinemath{%
|
|
\dimen1=\ifdim\ht\sizebox<\dp\sizebox \dp\sizebox\else\ht\sizebox\fi
|
|
\advance\dimen1by.5pt \vrule width0pt height\dimen1 depth\dimen1
|
|
\dp\sizebox=\dimen1\ht\sizebox=\dimen1\relax}
|
|
|
|
\def\lthtmlcheckvsize{\ifdim\ht\sizebox<\vsize
|
|
\ifdim\wd\sizebox<\hsize\expandafter\hfill\fi \expandafter\vfill
|
|
\else\expandafter\vss\fi}%
|
|
\providecommand{\selectlanguage}[1]{}%
|
|
\makeatletter \tracingstats = 1
|
|
\providecommand{\Beta}{\textrm{B}}
|
|
\providecommand{\Mu}{\textrm{M}}
|
|
\providecommand{\Kappa}{\textrm{K}}
|
|
\providecommand{\Rho}{\textrm{R}}
|
|
\providecommand{\Epsilon}{\textrm{E}}
|
|
\providecommand{\Chi}{\textrm{X}}
|
|
\providecommand{\Iota}{\textrm{J}}
|
|
\providecommand{\omicron}{\textrm{o}}
|
|
\providecommand{\Zeta}{\textrm{Z}}
|
|
\providecommand{\Eta}{\textrm{H}}
|
|
\providecommand{\Nu}{\textrm{N}}
|
|
\providecommand{\Omicron}{\textrm{O}}
|
|
\providecommand{\Tau}{\textrm{T}}
|
|
\providecommand{\Alpha}{\textrm{A}}
|
|
|
|
|
|
\begin{document}
|
|
\pagestyle{empty}\thispagestyle{empty}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength hsize=\the\hsize}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength vsize=\the\vsize}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength hoffset=\the\hoffset}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength voffset=\the\voffset}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength topmargin=\the\topmargin}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength topskip=\the\topskip}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength headheight=\the\headheight}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength headsep=\the\headsep}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength parskip=\the\parskip}\lthtmltypeout{}%
|
|
\lthtmltypeout{latex2htmlLength oddsidemargin=\the\oddsidemargin}\lthtmltypeout{}%
|
|
\makeatletter
|
|
\if@twoside\lthtmltypeout{latex2htmlLength evensidemargin=\the\evensidemargin}%
|
|
\else\lthtmltypeout{latex2htmlLength evensidemargin=\the\oddsidemargin}\fi%
|
|
\lthtmltypeout{}%
|
|
\makeatother
|
|
\setcounter{page}{1}
|
|
\onecolumn
|
|
|
|
% !!! IMAGES START HERE !!!
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7641}%
|
|
$ \chi ^2$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{chapter}
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7721}%
|
|
\includegraphics[width=\textwidth]{multi_detector}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7727}%
|
|
\includegraphics[width=\textwidth]{data_receiver}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7737}%
|
|
$ d$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7740}%
|
|
$ \Updownarrow$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7742}%
|
|
$ \Rightarrow$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmldisplayA{displaymath7744}%
|
|
\begin{displaymath}\textrm{\textbf{MEASUREMENTS}} \\
|
|
\left\Updownarrow \,
|
|
\begin{array}{l} \\
|
|
% \textrm{Measurement loop} \\
|
|
\begin{array}{l} %\\
|
|
\Rightarrow \, \textrm{Start script} \\
|
|
\\
|
|
\textrm{\textbf{SCAN0}}
|
|
\left\Updownarrow
|
|
\,
|
|
\begin{array}{l} \\
|
|
\Rightarrow \, \textrm{Scan0 script} \\
|
|
% \textrm{Scan 0 level} \\
|
|
\\
|
|
\par
|
|
\textrm{\textbf{SCAN1}} \left\Updownarrow
|
|
\,
|
|
\begin{array}{l} \\
|
|
% \textrm{Scan 1 level} \\
|
|
\begin{array}{l} %\\
|
|
\Rightarrow \, \textrm{Scan1 script} \\
|
|
\Rightarrow \, \textrm{Script before} \\
|
|
\\
|
|
\begin{array}{l} \\
|
|
\textrm{\textbf{POSITIONS}} \left\Updownarrow \,
|
|
\begin{array}{l} \\
|
|
\Rightarrow \, \textrm{Header before script} \\
|
|
\\
|
|
\par
|
|
\textrm{\textbf{CYCLES}} \left\Updownarrow \,
|
|
\begin{array}{l} \\
|
|
\\
|
|
\textrm{\textbf{FRAMES}} \left\Updownarrow \right. \\
|
|
\\
|
|
\\
|
|
\end{array}
|
|
\right. \\
|
|
\\
|
|
\Rightarrow \, \textrm{Header after script}\\
|
|
\\
|
|
\end{array}
|
|
\right. \\
|
|
\\
|
|
\\
|
|
\\
|
|
\end{array}
|
|
\par
|
|
\\
|
|
% \\
|
|
\Rightarrow \, \textrm{Script after} \\
|
|
\end{array}
|
|
% \right. \\
|
|
\\
|
|
\\
|
|
\end{array}
|
|
\right. \\
|
|
\\
|
|
\\
|
|
\\
|
|
\end{array}
|
|
\right. \\
|
|
\\
|
|
\Rightarrow \, \textrm{Stop script} \\
|
|
\\
|
|
\end{array}
|
|
% \right. \\
|
|
\\
|
|
\end{array}
|
|
\right.
|
|
\end{displaymath}%
|
|
\lthtmldisplayZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7767}%
|
|
\includegraphics[width=\textwidth]{images/normal_acquisition.eps}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7771}%
|
|
\includegraphics[width=\textwidth]{images/gated_acquisition.eps}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7775}%
|
|
\includegraphics[width=\textwidth]{images/trigger_acquisition.eps}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7779}%
|
|
\includegraphics[width=\textwidth]{images/ro_trigger_acquisition.eps}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7790}%
|
|
$ (108602\&0xFFFFFFFE)>>1 = 54301$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7792}%
|
|
$ (108602\&0x1) =0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsection}
|
|
\stepcounter{chapter}
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7801}%
|
|
\includegraphics[width=\textwidth]{images/effiSiHardXRays2}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7803}%
|
|
$ \mu$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7807}%
|
|
\includegraphics[width=\textwidth]{images/effiThinkBackplanes}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7812}%
|
|
\includegraphics[width=\textwidth]{images/settings}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{chapter}
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7822}%
|
|
\includegraphics[width=\textwidth]{images/thr_scan_expl}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7826}%
|
|
\includegraphics[width=\textwidth]{images/thr_scan_fluo}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7831}%
|
|
$ E_0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7835}%
|
|
$ E_t=E_0/2$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7839}%
|
|
$ E_f$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7843}%
|
|
$ E_t$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7857}%
|
|
$ E_f<E_0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7861}%
|
|
$ E_t>E_f+3$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7863}%
|
|
$ E_t<E_0-3$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7875}%
|
|
$ E_t<E_f-3$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7879}%
|
|
$ E_t>4$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7886}%
|
|
\includegraphics[width=\textwidth]{images/sample_with_fluorescence}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7892}%
|
|
\includegraphics[width=\textwidth]{images/bad_ff_col}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7897}%
|
|
\includegraphics[width=\textwidth]{images/FFSetup}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7904}%
|
|
$ Vthreshold=7$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7906}%
|
|
$ Counts=500$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7908}%
|
|
$ Resolution=4$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7910}%
|
|
$ \pm$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7911}%
|
|
\includegraphics[width=\textwidth]{images/noise_thresholdscanuntrimmed}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7915}%
|
|
\includegraphics[width=\textwidth]{images/trimbitdistribution}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7919}%
|
|
\includegraphics[width=\textwidth]{images/trimbitplot}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlpictureA{tex2html_wrap7923}%
|
|
\includegraphics[width=\textwidth]{images/noise_thresholdscantrimmed}%
|
|
\lthtmlpictureZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7932}%
|
|
$ \cdot$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
\stepcounter{chapter}
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{section}
|
|
\stepcounter{chapter}
|
|
\stepcounter{section}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7946}%
|
|
$ \alpha_{jm}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7948}%
|
|
$ R_m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7950}%
|
|
$ \Phi_m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7952}%
|
|
$ D_m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7954}%
|
|
$ c_m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7956}%
|
|
$ o_m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline7958}%
|
|
$ k_m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7960}%
|
|
$\displaystyle \alpha_{jm}=\Phi_m-{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{180}}}}{{\ensuremath{\displaystyle{\pi}}}}}}}}\right)}}\arctan{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{D_m-pj}}}}{{\ensuremath{\displaystyle{R_m}}}}}}}}\right)}}$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7962}%
|
|
$\displaystyle \alpha_{jm}=o_m+{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{180}}}}{{\ensuremath{\displaystyle{\pi}}}}}}}}\right)}}c_mk_m+{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{180}}}}{{\ensuremath{\displaystyle{\pi}}}}}}}}\right)}}\arctan{\ensuremath{\left[{{\ensuremath{\left({j-c_m}\right)}}k_m}\right]}}$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7965}%
|
|
$\displaystyle c_m$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7967}%
|
|
$\displaystyle =$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7969}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{D_m}}}}{{\ensuremath{\displaystyle{p}}}}}}};$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7971}%
|
|
$\displaystyle k_m$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7975}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{p}}}}{{\ensuremath{\displaystyle{R_m}}}}}}};$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7977}%
|
|
$\displaystyle o_m$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7981}%
|
|
$\displaystyle \Phi_m-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{180}}}}{{\ensuremath{\displaystyle{\pi}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{D_m}}}}{{\ensuremath{\displaystyle{R_m}}}}}}}.$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7984}%
|
|
$\displaystyle \Phi_m$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7988}%
|
|
$\displaystyle o_m+{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{180}}}}{{\ensuremath{\displaystyle{\pi}}}}}}}c_mk_m;$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7990}%
|
|
$\displaystyle R_m$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7994}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{p}}}}{{\ensuremath{\displaystyle{k_m}}}}}}};$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay7996}%
|
|
$\displaystyle D_m$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8000}%
|
|
$\displaystyle c_m p.$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8005}%
|
|
$ {\ensuremath{{2\theta}}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8007}%
|
|
$ 2\theta$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8010}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{d}{}\, }}\bf {\sigma}}}}}{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{d}{}\, }}\Omega}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8012}%
|
|
$ \Omega$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8014}%
|
|
$\displaystyle {I_0}\Delta t \Delta\Omega{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{d}{}\, }}\bf {\sigma}}}}}{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{d}{}\, }}\Omega}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8016}%
|
|
$ \Delta t$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8018}%
|
|
$ \Delta\Omega$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8020}%
|
|
$ I_0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8024}%
|
|
$ \Delta\Omega\propto \Delta {\ensuremath{{2\theta}}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8035}%
|
|
$ P$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8037}%
|
|
$ k$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8039}%
|
|
$ k=1,\ldots,P$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8041}%
|
|
$ N_k$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8043}%
|
|
$ 2\theta\equiv{\ensuremath{{2\theta}}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8045}%
|
|
$\displaystyle b_{k,j}={\ensuremath{\left[{{\ensuremath{{2\theta}}}_{k,j}^{-},{\ensuremath{{2\theta}}}_{k,j}^{+}}\right]}},\qquad j=1,\ldots,N_k
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8047}%
|
|
$\displaystyle \hat{b}_{k,j}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{{2\theta}}}_{k,j}^{+}+{\ensuremath{{2\theta}}}_{k,j}^{-}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8049}%
|
|
$\displaystyle {\ensuremath{\left|{b_{k,j}}\right|}}={\ensuremath{{2\theta}}}_{k,j}^{+}-{\ensuremath{{2\theta}}}_{k,j}^{-}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8051}%
|
|
$ C_{k,j}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8053}%
|
|
$ e_{k,j}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8055}%
|
|
$ m_{k,j}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8057}%
|
|
$ b_{k,j}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8059}%
|
|
$\displaystyle I_{k,j}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e_{k,j}}}}}{{\ensuremath{\displaystyle{m_{k,j}}}}}}}}{\ensuremath{\left({C_{k,j}+\min{\ensuremath{\left({1,C_{k,j}}\right)}}}\right)}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8061}%
|
|
$\displaystyle \sigma_{I_{k,j}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e_{k,j}}}}}{{\ensuremath{\displaystyle{m_{k,j}}}}}}}}\sqrt{{\ensuremath{\left({C_{k,j}+1}\right)}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8063}%
|
|
$\displaystyle r_{k,j}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{I_{k,j}}}}}{{\ensuremath{\displaystyle{{\ensuremath{\left|{b_{k,j}}\right|}}}}}}}}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e_{k,j}}}}}{{\ensuremath{\displaystyle{m_{k,j}{\ensuremath{\left|{b_{k,j}}\right|}}}}}}}}}{\ensuremath{\left({C_{k,j}+\min{\ensuremath{\left({1,C_{k,j}}\right)}}}\right)}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8065}%
|
|
$\displaystyle \sigma_{r_{k,j}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_{I_{k,j}}}}}}{{\ensuremath{\displaystyle{{\ensuremath{\left|{b_{k,j}}\right|}}}}}}}}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e_{k,j}}}}}{{\ensuremath{\displaystyle{{\ensuremath{\left|{b_{k,j}}\right|}}m_{k,j}}}}}}}}\sqrt{{\ensuremath{\left({C_{k,j}+1}\right)}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8067}%
|
|
$ M$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8069}%
|
|
$\displaystyle B_\ell=[{\ensuremath{{2\theta}}}_0+(\ell-1)B, {\ensuremath{{2\theta}}}_0+\ell B],\qquad \ell=1,\ldots,M
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8071}%
|
|
$\displaystyle {\ensuremath{\left|{B_\ell}\right|}}=B$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8073}%
|
|
$\displaystyle \hat{B}_\ell={\ensuremath{{2\theta}}}_0+(\ell-1/2)B,$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8075}%
|
|
$ {\ensuremath{{2\theta}}}_0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8077}%
|
|
$ {\ensuremath{{2\theta}}}_{max}={\ensuremath{{2\theta}}}_0+MB$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8079}%
|
|
$ \ell$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8081}%
|
|
$\displaystyle b_{k,j}$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8082}%
|
|
$\displaystyle \qquad {\ensuremath{\left|{ b_{k,j}\cap B_\ell }\right|}} > 0.
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8085}%
|
|
$\displaystyle \qquad \hat{b}_{k,j}\in B_\ell .
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8089}%
|
|
$ B_\ell$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8091}%
|
|
$ N_E$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8093}%
|
|
$ O_n$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8095}%
|
|
$ O$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8097}%
|
|
$ \sigma_{O_n}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8099}%
|
|
$ \nu_n$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8101}%
|
|
$\displaystyle \langle O\rangle ={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{n=1}^{N_E}\nu_n
|
|
O_n\sigma_{O_n}^{-2}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{n=1}^{N_E}\nu_n
|
|
\sigma_{O_n}^{-2}
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8103}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b_{k,j}\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8105}%
|
|
$ k,j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8109}%
|
|
$\displaystyle X_\ell=\mathop{\sum_{k,j}}_{ {\ensuremath{\left|{ b_{k,j}\cap B_\ell }\right|}} > 0}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b_{k,j}\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}\ r_{k,j}\ {\ensuremath{\left({\sigma_{r_{k,j}}}\right)}}^{-2}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8111}%
|
|
$\displaystyle Y_\ell=\mathop{\sum_{k,j}}_{ {\ensuremath{\left|{ b_{k,j}\cap B_\ell }\right|}} > 0}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b_{k,j}\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}\ {\ensuremath{\left({\sigma_{r_{k,j}}}\right)}}^{-2}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8113}%
|
|
$\displaystyle R_\ell={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{X_\ell}}}}{{\ensuremath{\displaystyle{Y_\ell}}}}}}};
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8115}%
|
|
$\displaystyle \sigma_{R_\ell}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{\sqrt{Y_\ell}}}}}}}}.
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8117}%
|
|
$ R_\ell$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8119}%
|
|
$ \sigma_{R_\ell}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8121}%
|
|
$ B$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8123}%
|
|
$ K$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8127}%
|
|
$\displaystyle \mathop{\sum}_{\ell=1}^M{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{KR_\ell}}}}{{\ensuremath{\displaystyle{K^2\sigma_{R_\ell}^2}}}}}}}=
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{K}}}}}}}
|
|
\mathop{\sum}_{\ell=1}^M{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{R_\ell}}}}{{\ensuremath{\displaystyle{\sigma_{R_\ell}^2}}}}}}}=M
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8131}%
|
|
$\displaystyle K={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
M
|
|
}}}}}}}\mathop{\sum}_{\ell=1}^M{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{R_\ell}}}}{{\ensuremath{\displaystyle{\sigma_{R_\ell}^2}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8133}%
|
|
$\displaystyle \hat{B}_\ell, \quad KR_\ell, \quad K\sigma_{R_\ell}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8144}%
|
|
$ X_\ell=0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8146}%
|
|
$ Y_\ell=0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8148}%
|
|
$ b$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8152}%
|
|
$\displaystyle X_\ell={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}\
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e(C+1)}}}}{{\ensuremath{\displaystyle{m|b|}}}}}}}\
|
|
{\ensuremath{\left({
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{|b|m}}}}{{\ensuremath{\displaystyle{e\sqrt{C+1}}}}}}}}
|
|
}\right)}}^{2}
|
|
={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{|b|m}}}}{{\ensuremath{\displaystyle{e}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8154}%
|
|
$\displaystyle Y_\ell={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}\
|
|
{\ensuremath{\left({
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{|b|m}}}}{{\ensuremath{\displaystyle{e\sqrt{C+1}}}}}}}}
|
|
}\right)}}^{2}
|
|
={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b\cap B_\ell }\right|}}}}}}{{\ensuremath{\displaystyle{B}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{|b|^2m^2}}}}{{\ensuremath{\displaystyle{e^2(C+1)}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8156}%
|
|
$\displaystyle R_\ell={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{X_\ell}}}}{{\ensuremath{\displaystyle{Y_\ell}}}}}}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e(C+1)}}}}{{\ensuremath{\displaystyle{m|b|}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8160}%
|
|
$\displaystyle \sigma_{R_\ell}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{\sqrt{Y_\ell}}}}}}}}=
|
|
\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{B}}}}{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b\cap B_\ell }\right|}}}}}}}}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{e\sqrt{(C+1)}}}}}{{\ensuremath{\displaystyle{|b|m}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8164}%
|
|
$\displaystyle \sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{B}}}}{{\ensuremath{\displaystyle{{\ensuremath{\left|{ b\cap B_\ell }\right|}}}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8167}%
|
|
$ \hat{b}_{j,k}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8169}%
|
|
$ \hat{B}_\ell$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8172}%
|
|
$ C_0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8176}%
|
|
$ \sqrt{C_0}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8178}%
|
|
$ n$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8180}%
|
|
$\displaystyle P(n)={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{C_0^n{\ensuremath{\mathrm{e}}}^{-C_0}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
n!}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8182}%
|
|
$\displaystyle \mathop{\sum}_{n=0}^{+\infty}
|
|
P(n)=1\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8184}%
|
|
$\displaystyle \langle n\rangle=\mathop{\sum}_{n=0}^{+\infty}
|
|
nP(n)=C_0\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8186}%
|
|
$\displaystyle \langle n^2\rangle=\mathop{\sum}_{n=0}^{+\infty}
|
|
n^2 P(n)=C_0^2+C_0\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8188}%
|
|
$\displaystyle \sigma_{C_0}=\sqrt{\langle n^2\rangle-\langle n\rangle^2}=\sqrt{C_0}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8192}%
|
|
$\displaystyle \chi^2 = \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left({F_j-O_j}\right)}}^2
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8194}%
|
|
$ O_j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8196}%
|
|
$ F_j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8198}%
|
|
$ \sigma_j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8200}%
|
|
$\displaystyle \chi_{(0)}^2 = \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left({F_j-C_j}\right)}}^2
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8202}%
|
|
$\displaystyle \chi_{(1)}^2 = \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left({F_j-{\ensuremath{\left({C_j+\min{\ensuremath{\left({1,C_j}\right)}}}\right)}}}\right)}}^2
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j+1
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8208}%
|
|
$ N_{\mathrm{obs}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8210}%
|
|
$ C_j,\quad j=1\ldots N_{\mathrm{obs}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8212}%
|
|
$ x$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8216}%
|
|
$\displaystyle x=\langle x\rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j\ .
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8218}%
|
|
$\displaystyle \sigma_x=\sqrt{\langle x^2\rangle-\langle x\rangle^2}=\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j^2-{\ensuremath{\left({
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j
|
|
}\right)}}
|
|
}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8220}%
|
|
$\displaystyle \sigma_x={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}}}}}}}}\sqrt{ \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j }
|
|
=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x\rangle}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8223}%
|
|
$ C_j=0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8225}%
|
|
$ N_{\mathrm{obs}}^*$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8227}%
|
|
$\displaystyle x=\langle x\rangle^*={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}^*}}}}}}}
|
|
\mathop{\sum}_ {\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
C_j={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{ N_{\mathrm{obs}}^*}}}}}}}
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}C_j = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}\langle x\rangle
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8229}%
|
|
$\displaystyle \sigma_{x^*}= {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}\sigma_x = \sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}
|
|
\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x\rangle}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x\rangle^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8231}%
|
|
$ C_j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8238}%
|
|
$\displaystyle \chi^2 = \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\left({x-O_j}\right)}}^2
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8240}%
|
|
$\displaystyle x= \langle x \rangle_{\!\mathrm{w}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{O_j
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8244}%
|
|
$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w}}} = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
1
|
|
}}}}{{\ensuremath{\displaystyle{\sqrt{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8246}%
|
|
$\displaystyle \mathsf{GoF}=
|
|
\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{O_j^2
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{\ensuremath{\left[{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{O_j
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}}
|
|
}\right]}}^2
|
|
}}}}{{\ensuremath{\displaystyle{ \mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_j^2
|
|
}}}}}}} }}}}}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}-1
|
|
}}}}}}}
|
|
}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8248}%
|
|
$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w}}}^{\mathrm{corrected}} = \mathsf{GoF}\ \sigma_{\langle x \rangle_{\!\mathrm{w}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8251}%
|
|
$ O_j=C_j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8253}%
|
|
$ \sigma_j^2=C_j$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8255}%
|
|
$\displaystyle \langle x \rangle_{\!\mathrm{w(1)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{N_{\mathrm{obs}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{j=1}^{N_{\mathrm{obs}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8263}%
|
|
$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}} = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
1
|
|
}}}}{{\ensuremath{\displaystyle{\sqrt{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}}
|
|
}}}}}}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x \rangle_{\!\mathrm{w(1)}}}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*
|
|
}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8265}%
|
|
$\displaystyle \mathsf{GoF}_{(1)}=
|
|
\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
\!\!\!\!C_j
|
|
-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{\ensuremath{\left[{
|
|
N_{\mathrm{obs}}^*
|
|
}\right]}}^2
|
|
}}}}{{\ensuremath{\displaystyle{ \mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j
|
|
}}}}}}} }}}}}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*-1
|
|
}}}}}}}
|
|
}
|
|
=\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*-1}}}}}}}
|
|
{\ensuremath{\left({
|
|
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(1)}}
|
|
}\right)}}
|
|
}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8267}%
|
|
$ \langle x\rangle^*$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8269}%
|
|
$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w(1)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(1)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(1)}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8272}%
|
|
$ O_j=C_j+\min{\ensuremath{\left({1,C_j}\right)}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8274}%
|
|
$ \sigma_j^2=C_j+1$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8276}%
|
|
$\displaystyle \langle x \rangle_{\!\mathrm{w(2)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{N_{\mathrm{obs}}^*}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j+1
|
|
}}}}}}}
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8278}%
|
|
$\displaystyle \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}} = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
1
|
|
}}}}{{\ensuremath{\displaystyle{\sqrt{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j+1
|
|
}}}}}}}
|
|
}}}}}}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\langle x \rangle_{\!\mathrm{w(2)}}}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*
|
|
}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8280}%
|
|
$\displaystyle \mathsf{GoF}_{(2)}=
|
|
\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
\!\!\!\!C_j+N_{\mathrm{obs}}^*
|
|
-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{\ensuremath{\left[{
|
|
N_{\mathrm{obs}}^*
|
|
}\right]}}^2
|
|
}}}}{{\ensuremath{\displaystyle{ \mathop{\sum}_{\stackrel{1\leqslant j\leqslant N_{\mathrm{obs}}}{{C_j>0}}}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
C_j+1
|
|
}}}}}}} }}}}}}}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
N_{\mathrm{obs}}^*-1
|
|
}}}}}}}
|
|
}
|
|
=\sqrt{
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*}}}}{{\ensuremath{\displaystyle{N_{\mathrm{obs}}^*-1}}}}}}}
|
|
{\ensuremath{\left({
|
|
\langle x\rangle^*-\langle x \rangle_{\!\mathrm{w(2)}}+1
|
|
}\right)}}
|
|
}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8284}%
|
|
$\displaystyle {\sigma}_{\langle x \rangle_{\!\mathrm{w(2)}}}^{\mathrm{corrected}} = \mathsf{GoF}_{(2)}\ \sigma_{\langle x \rangle_{\!\mathrm{w(2)}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8291}%
|
|
$\displaystyle \epsilon_x = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_x}}}}{{\ensuremath{\displaystyle{x}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8295}%
|
|
$ O(\epsilon_x^2)$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8299}%
|
|
$ \propto\epsilon_x$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8303}%
|
|
$ O(\epsilon_x^3)$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8306}%
|
|
$ N_{\mathrm{obs}}=2$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8308}%
|
|
$ C_1$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8310}%
|
|
$ C_2$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8312}%
|
|
$\displaystyle \langle x \rangle={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{C_1+C_2}}}}{{\ensuremath{\displaystyle{2}}}}}}}; \qquad \sigma_x={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sqrt{C_1+C_2}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8314}%
|
|
$\displaystyle \langle x \rangle_{\mathrm{w(2)}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{2(C_1+1)(C_2+1)}}}}{{\ensuremath{\displaystyle{C_1+C_2+2}}}}}}}; \qquad
|
|
\sigma_{\langle x \rangle_{\mathrm{w(2)}}}=\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1+1)(C_2+1)}}}}{{\ensuremath{\displaystyle{C_1+C_2+2}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8316}%
|
|
$ C_1,C_2$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8318}%
|
|
$ \lambda$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8320}%
|
|
$\displaystyle E{\ensuremath{\left({\langle x \rangle}\right)}} = \mathop{\sum}_{m,n=0}^{+\infty}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{n+m}}}}{{\ensuremath{\displaystyle{2}}}}}}}P(n)P(m)=\mathop{\sum}_{m=0}^{+\infty}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{m}}}}{{\ensuremath{\displaystyle{2}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^m{\ensuremath{\mathrm{e}}}^{-\lambda}}}}}{{\ensuremath{\displaystyle{m!}}}}}}}
|
|
+\mathop{\sum}_{n=0}^{+\infty}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{n}}}}{{\ensuremath{\displaystyle{2}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^n{\ensuremath{\mathrm{e}}}^{-\lambda}}}}}{{\ensuremath{\displaystyle{n!}}}}}}}
|
|
=\lambda
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8322}%
|
|
$\displaystyle E{\ensuremath{\left({\sigma_x^2}\right)}} = \mathop{\sum}_{m,n=0}^{+\infty}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{n+m}}}}{{\ensuremath{\displaystyle{4}}}}}}}P(n)P(m)={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
\lambda}}}}{{\ensuremath{\displaystyle{2}}}}}}};\qquad E{\ensuremath{\left({\sigma_x}\right)}} =\sqrt{{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda}}}}{{\ensuremath{\displaystyle{2}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8324}%
|
|
$\displaystyle \langle x \rangle_{\mathrm{w(2)}}=\langle x \rangle + 1 -{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8326}%
|
|
$\displaystyle E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}}\right)}} =
|
|
\mathop{\sum}_{m,n=0}^{+\infty}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(n-m)^2}}}}{{\ensuremath{\displaystyle{2(n+m+2) }}}}}}}P(n)P(m)={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
|
|
\mathop{\sum}_{m,n=0}^{+\infty}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(n-m)^2}}}}{{\ensuremath{\displaystyle{(n+m+2) }}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^{n+m}}}}}{{\ensuremath{\displaystyle{n!m!}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8328}%
|
|
$ s=n+m$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8330}%
|
|
$ s=0\ldots +\infty$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8332}%
|
|
$ n-m=s-2k$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8334}%
|
|
$ k=0\ldots s$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8336}%
|
|
$\displaystyle E{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(C_1-C_2)^2}}}}{{\ensuremath{\displaystyle{4(\langle x \rangle+1)}}}}}}}}\right)}} =
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{2}}}}}}}
|
|
\mathop{\sum}_{s=0}^{+\infty}
|
|
\mathop{\sum}_{k=0}^{s}
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{(s-2k)^2(s+1)}}}}{{\ensuremath{\displaystyle{(s+2)! }}}}}}}{\lambda^{s}}
|
|
\binom{s}{k}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2}}}}}}}-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2\lambda}}}}}}}+{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1-{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^2}}}}}}}
|
|
%{n!m!}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8338}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle_{\mathrm{w(2)}}-\langle x \rangle}\right)}}}}}}{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle}\right)}}}}}}}}}=
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2\lambda}}}}}}}+{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{2\lambda^2}}}}}}}-{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1-{\ensuremath{\mathrm{e}}}^{-2\lambda}}}}}{{\ensuremath{\displaystyle{4\lambda^3}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8340}%
|
|
$ \langle x \rangle$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8342}%
|
|
$\displaystyle \epsilon = {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_x}}}}{{\ensuremath{\displaystyle{\langle x \rangle}}}}}}} =
|
|
{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\lambda^{1/2}}}}}{{\ensuremath{\displaystyle{\sqrt{2} \lambda}}}}}}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{1}}}}{{\ensuremath{\displaystyle{\sqrt{2\lambda}}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8344}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle_{\mathrm{w(2)}}-\langle x \rangle}\right)}}}}}}{{\ensuremath{\displaystyle{E{\ensuremath{\left({\langle x \rangle}\right)}}}}}}}}}=
|
|
O(\epsilon^2)
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsubsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8349}%
|
|
$ \lambda=1,10,100,\ldots,1000000$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8353}%
|
|
$ N=10^8$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8359}%
|
|
$ \xi_\lambda=\sqrt{\lambda/N}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8361}%
|
|
$ \epsilon_\lambda=\sqrt{\lambda/N}/\lambda=1/\sqrt{N\lambda}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8363}%
|
|
$ E_\lambda$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8367}%
|
|
$ e_\lambda=E_\lambda/\lambda$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8369}%
|
|
$ e_\lambda/\epsilon_\lambda$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8371}%
|
|
$ \lambda =$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8373}%
|
|
$ \xi_\lambda = $%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8375}%
|
|
$ \epsilon_\lambda$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8377}%
|
|
$ {\langle x \rangle_{\!\mathrm{w(1)}}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8379}%
|
|
$ {\langle x \rangle_{\!\mathrm{w(2)}}}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8387}%
|
|
$ e_\lambda$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8731}%
|
|
$ {\langle x \rangle_{\!\mathrm{w(1)}}}\ :$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8735}%
|
|
$ {\langle x \rangle^*}\ $%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8737}%
|
|
$ \lambda<100$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8739}%
|
|
$ {\langle x \rangle}\ $%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{subsection}
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8764}%
|
|
$\displaystyle X_0=\eta_0 C_0
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8766}%
|
|
$ \eta_0$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8768}%
|
|
$ X$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8770}%
|
|
$\displaystyle P'(X)=P(X/\eta_0)=P(n)\qquad\Biggl|\Biggr.\qquad \frac{X}{\eta_0}\equiv n\in\mathbb{Z}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8774}%
|
|
$\displaystyle \langle X\rangle=\mathop{\sum}_{n=0}^{+\infty}
|
|
\eta_0 nP(n)=\eta_0 C_0=X_0\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8776}%
|
|
$\displaystyle \langle X^2\rangle=\mathop{\sum}_{n=0}^{+\infty}
|
|
\eta_0^2 n^2 P(n)=\eta_0^2(C_0^2+C_0)=X_0^2+\eta_0 X_0\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8778}%
|
|
$\displaystyle \sigma_X=\sqrt{\langle X^2\rangle-\langle X\rangle^2}=\sqrt{\eta_0 X_0}=\eta_0\sqrt{C_0}=\sqrt{\eta_0}\sqrt{X_0}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8780}%
|
|
$ \sigma_X=\sqrt{\langle X\rangle}=\sqrt{X_0}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8782}%
|
|
$\displaystyle \sigma_X=\sqrt{\eta_0}\sqrt{X_0}=\eta_0\sqrt{C_0}=\eta_0\sigma_{C_0}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_inline8786}%
|
|
$ \sigma_{\eta_0}$%
|
|
\lthtmlinlinemathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8788}%
|
|
$\displaystyle \widehat{P}(\eta)={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{
|
|
{\ensuremath{\mathrm{e}}}^{
|
|
-\frac{1}{2}
|
|
{\ensuremath{\left({
|
|
\frac{\eta-\eta_0}{\sigma_{\eta_0}}
|
|
}\right)}}^2
|
|
}
|
|
}}}}{{\ensuremath{\displaystyle{
|
|
\sigma_{\eta_0}\sqrt{2\pi}
|
|
}}}}}}}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8790}%
|
|
$\displaystyle \int_{-\infty}^{+\infty}{\ensuremath{\mathrm{d}{\eta}\, }}\mathop{\sum}_{n=0}^{+\infty}
|
|
P(n)\widehat{P}(\eta)=1\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8792}%
|
|
$\displaystyle \langle X\rangle=\int_{-\infty}^{+\infty}{\ensuremath{\mathrm{d}{\eta}\, }}\mathop{\sum}_{n=0}^{+\infty}
|
|
\widehat{P}(\eta)\eta nP(n)=
|
|
\mathop{\sum}_{n=0}^{+\infty}
|
|
nP(n)
|
|
\int_{-\infty}^{+\infty}{\ensuremath{\mathrm{d}{\eta}\, }} \widehat{P}(\eta)\eta
|
|
=
|
|
\eta_0 C_0=X_0\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8794}%
|
|
$\displaystyle \langle X^2\rangle=\int_{-\infty}^{+\infty}{\ensuremath{\mathrm{d}{\eta}\, }}\mathop{\sum}_{n=0}^{+\infty}
|
|
\widehat{P}(\eta)\eta^2 n^2 P(n)=
|
|
\int_{-\infty}^{+\infty}{\ensuremath{\mathrm{d}{\eta}\, }}\widehat{P}(\eta)\eta^2
|
|
\mathop{\sum}_{n=0}^{+\infty}
|
|
n^2 P(n)
|
|
=
|
|
(\eta_0^2+\sigma_{\eta_0}^2)(C_0^2+C_0)\ ;
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
{\newpage\clearpage
|
|
\lthtmlinlinemathA{tex2html_wrap_indisplay8796}%
|
|
$\displaystyle {\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_X}}}}{{\ensuremath{\displaystyle{\langle X\rangle}}}}}}}={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sqrt{\langle X^2\rangle-\langle X\rangle^2}}}}}{{\ensuremath{\displaystyle{\langle X\rangle}}}}}}}
|
|
={\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sqrt{
|
|
\eta_0^2 C_0+\sigma_{\eta_0}^2C_0^2+\sigma_{\eta_0}^2 C_0
|
|
}}}}}{{\ensuremath{\displaystyle{\eta_0C_0}}}}}}}=
|
|
\sqrt{
|
|
{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{ \sigma_{C_0}}}}}{{\ensuremath{\displaystyle{C_0}}}}}}}}\right)}}^2
|
|
+{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_{\eta_0}}}}}{{\ensuremath{\displaystyle{\eta_0}}}}}}}}\right)}}^2+{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_{\eta_0}}}}}{{\ensuremath{\displaystyle{\eta_0}}}}}}}{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_{C_0}}}}}{{\ensuremath{\displaystyle{C_0}}}}}}}}\right)}}^2
|
|
}\approx\sqrt{
|
|
{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{ \sigma_{C_0}}}}}{{\ensuremath{\displaystyle{C_0}}}}}}}}\right)}}^2
|
|
+{\ensuremath{\left({{\ensuremath{\displaystyle{\frac{{\ensuremath{\displaystyle{\sigma_{\eta_0}}}}}{{\ensuremath{\displaystyle{\eta_0}}}}}}}}\right)}}^2
|
|
}
|
|
$%
|
|
\lthtmlindisplaymathZ
|
|
\lthtmlcheckvsize\clearpage}
|
|
|
|
\stepcounter{section}
|
|
|
|
\end{document}
|