2020-02-03 16:44:14 +01:00

1213 lines
41 KiB
C++
Executable File

#include "DetectorImpl.h"
#include "SharedMemory.h"
#include "ZmqSocket.h"
#include "detectorData.h"
#include "file_utils.h"
#include "logger.h"
#include "slsDetector.h"
#include "sls_detector_exceptions.h"
#include "versionAPI.h"
#include "ToString.h"
#include "container_utils.h"
#include "network_utils.h"
#include "string_utils.h"
#include <cstring>
#include <iomanip>
#include <iostream>
#include <rapidjson/document.h> //json header in zmq stream
#include <sstream>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/types.h>
#include <chrono>
#include <future>
#include <vector>
using namespace sls;
DetectorImpl::DetectorImpl(int multi_id, bool verify, bool update)
: multiId(multi_id), multi_shm(multi_id, -1) {
setupMultiDetector(verify, update);
}
DetectorImpl::~DetectorImpl() = default;
void DetectorImpl::setupMultiDetector(bool verify, bool update) {
initSharedMemory(verify);
initializeMembers(verify);
if (update) {
updateUserdetails();
}
}
void DetectorImpl::setAcquiringFlag(bool flag) {
multi_shm()->acquiringFlag = flag;
}
int DetectorImpl::getMultiId() const { return multiId; }
std::string DetectorImpl::getPackageVersion() const { return GITBRANCH; }
int64_t DetectorImpl::getClientSoftwareVersion() const { return APILIB; }
void DetectorImpl::freeSharedMemory(int multiId, int detPos) {
// single
if (detPos >= 0) {
SharedMemory<sharedSlsDetector> temp_shm(multiId, detPos);
if (temp_shm.IsExisting()) {
temp_shm.RemoveSharedMemory();
}
return;
}
// multi - get number of detectors from shm
SharedMemory<sharedMultiSlsDetector> multiShm(multiId, -1);
int numDetectors = 0;
if (multiShm.IsExisting()) {
multiShm.OpenSharedMemory();
numDetectors = multiShm()->numberOfDetectors;
multiShm.RemoveSharedMemory();
}
for (int i = 0; i < numDetectors; ++i) {
SharedMemory<sharedSlsDetector> shm(multiId, i);
shm.RemoveSharedMemory();
}
}
void DetectorImpl::freeSharedMemory() {
zmqSocket.clear();
for (auto &d : detectors) {
d->freeSharedMemory();
}
detectors.clear();
// clear multi detector shm
multi_shm.RemoveSharedMemory();
client_downstream = false;
}
std::string DetectorImpl::getUserDetails() {
if (detectors.empty()) {
return std::string("none");
}
std::ostringstream sstream;
sstream << "\nHostname: ";
for (auto &d : detectors) {
sstream << (d->isFixedPatternSharedMemoryCompatible() ? d->getHostname()
: "Unknown")
<< "+";
}
sstream << "\nType: ";
// get type from multi shm
if (multi_shm()->shmversion >= MULTI_SHMAPIVERSION) {
sstream << ToString(multi_shm()->multiDetectorType);
}
// get type from slsdet shm
else {
for (auto &d : detectors) {
sstream << (d->isFixedPatternSharedMemoryCompatible()
? ToString(d->getDetectorType())
: "Unknown")
<< "+";
}
}
sstream << "\nPID: " << multi_shm()->lastPID
<< "\nUser: " << multi_shm()->lastUser
<< "\nDate: " << multi_shm()->lastDate << std::endl;
return sstream.str();
}
bool DetectorImpl::getInitialChecks() const {
return multi_shm()->initialChecks;
}
void DetectorImpl::setInitialChecks(const bool value) {
multi_shm()->initialChecks = value;
}
void DetectorImpl::initSharedMemory(bool verify) {
if (!multi_shm.IsExisting()) {
multi_shm.CreateSharedMemory();
initializeDetectorStructure();
} else {
multi_shm.OpenSharedMemory();
if (verify && multi_shm()->shmversion != MULTI_SHMVERSION) {
FILE_LOG(logERROR) << "Multi shared memory (" << multiId
<< ") version mismatch "
"(expected 0x"
<< std::hex << MULTI_SHMVERSION << " but got 0x"
<< multi_shm()->shmversion << std::dec
<< ". Clear Shared memory to continue.";
throw SharedMemoryError("Shared memory version mismatch!");
}
}
}
void DetectorImpl::initializeDetectorStructure() {
multi_shm()->shmversion = MULTI_SHMVERSION;
multi_shm()->numberOfDetectors = 0;
multi_shm()->multiDetectorType = GENERIC;
multi_shm()->numberOfDetector.x = 0;
multi_shm()->numberOfDetector.y = 0;
multi_shm()->numberOfChannels.x = 0;
multi_shm()->numberOfChannels.y = 0;
multi_shm()->acquiringFlag = false;
multi_shm()->receiver_upstream = false;
multi_shm()->initialChecks = true;
}
void DetectorImpl::initializeMembers(bool verify) {
// DetectorImpl
zmqSocket.clear();
// get objects from single det shared memory (open)
for (int i = 0; i < multi_shm()->numberOfDetectors; i++) {
try {
detectors.push_back(
sls::make_unique<slsDetector>(multiId, i, verify));
} catch (...) {
detectors.clear();
throw;
}
}
}
void DetectorImpl::updateUserdetails() {
multi_shm()->lastPID = getpid();
memset(multi_shm()->lastUser, 0, SHORT_STRING_LENGTH);
memset(multi_shm()->lastDate, 0, SHORT_STRING_LENGTH);
try {
sls::strcpy_safe(multi_shm()->lastUser, exec("whoami").c_str());
sls::strcpy_safe(multi_shm()->lastDate, exec("date").c_str());
} catch (...) {
sls::strcpy_safe(multi_shm()->lastUser, "errorreading");
sls::strcpy_safe(multi_shm()->lastDate, "errorreading");
}
}
bool DetectorImpl::isAcquireReady() {
if (multi_shm()->acquiringFlag) {
FILE_LOG(logWARNING)
<< "Acquire has already started. "
"If previous acquisition terminated unexpectedly, "
"reset busy flag to restart.(sls_detector_put clearbusy)";
return false;
}
multi_shm()->acquiringFlag = true;
return true;
}
std::string DetectorImpl::exec(const char *cmd) {
int bufsize = 128;
char buffer[bufsize];
std::string result = "";
FILE *pipe = popen(cmd, "r");
if (pipe == nullptr) {
throw RuntimeError("Could not open pipe");
}
try {
while (feof(pipe) == 0) {
if (fgets(buffer, bufsize, pipe) != nullptr) {
result += buffer;
}
}
} catch (...) {
pclose(pipe);
throw;
}
pclose(pipe);
result.erase(result.find_last_not_of(" \t\n\r") + 1);
return result;
}
void DetectorImpl::setVirtualDetectorServers(const int numdet,
const int port) {
std::vector<std::string> hostnames;
for (int i = 0; i < numdet; ++i) {
// * 2 is for control and stop port
hostnames.push_back(std::string("localhost:") +
std::to_string(port + i * 2));
}
setHostname(hostnames);
}
void DetectorImpl::setHostname(const std::vector<std::string> &name) {
// this check is there only to allow the previous detsizechan command
if (multi_shm()->numberOfDetectors != 0) {
FILE_LOG(logWARNING)
<< "There are already detector(s) in shared memory."
"Freeing Shared memory now.";
bool initialChecks = multi_shm()->initialChecks;
freeSharedMemory();
setupMultiDetector();
multi_shm()->initialChecks = initialChecks;
}
for (const auto &hostname : name) {
addSlsDetector(hostname);
}
updateDetectorSize();
}
void DetectorImpl::addSlsDetector(const std::string &hostname) {
FILE_LOG(logINFO) << "Adding detector " << hostname;
int port = DEFAULT_PORTNO;
std::string host = hostname;
auto res = sls::split(hostname, ':');
if (res.size() > 1) {
host = res[0];
port = std::stoi(res[1]);
}
if (host != "localhost") {
for (auto &d : detectors) {
if (d->getHostname() == host) {
FILE_LOG(logWARNING)
<< "Detector " << host
<< "already part of the multiDetector!" << std::endl
<< "Remove it before adding it back in a new position!";
return;
}
}
}
// get type by connecting
detectorType type = slsDetector::getTypeFromDetector(host, port);
auto pos = detectors.size();
detectors.emplace_back(
sls::make_unique<slsDetector>(type, multiId, pos, false));
multi_shm()->numberOfDetectors = detectors.size();
detectors[pos]->setControlPort(port);
detectors[pos]->setStopPort(port + 1);
detectors[pos]->setHostname(host, multi_shm()->initialChecks);
// detector type updated by now
multi_shm()->multiDetectorType = Parallel(&slsDetector::getDetectorType, {}).tsquash("Inconsistent detector types.");
}
void DetectorImpl::updateDetectorSize() {
FILE_LOG(logDEBUG) << "Updating Multi-Detector Size: " << size();
const slsDetectorDefs::xy det_size = detectors[0]->getNumberOfChannels();
int maxy = multi_shm()->numberOfChannels.y;
if (maxy == 0) {
maxy = det_size.y * size();
}
int ndety = maxy / det_size.y;
int ndetx = size() / ndety;
if ((maxy % det_size.y) > 0) {
++ndetx;
}
multi_shm()->numberOfDetector.x = ndetx;
multi_shm()->numberOfDetector.y = ndety;
multi_shm()->numberOfChannels.x = det_size.x * ndetx;
multi_shm()->numberOfChannels.y = det_size.y * ndety;
FILE_LOG(logDEBUG) << "\n\tNumber of Detectors in X direction:"
<< multi_shm()->numberOfDetector.x
<< "\n\tNumber of Detectors in Y direction:"
<< multi_shm()->numberOfDetector.y
<< "\n\tNumber of Channels in X direction:"
<< multi_shm()->numberOfChannels.x
<< "\n\tNumber of Channels in Y direction:"
<< multi_shm()->numberOfChannels.y;
for (auto &d : detectors) {
d->updateMultiSize(multi_shm()->numberOfDetector);
}
}
int DetectorImpl::size() const { return detectors.size(); }
slsDetectorDefs::xy DetectorImpl::getNumberOfDetectors() const {
return multi_shm()->numberOfDetector;
}
slsDetectorDefs::xy DetectorImpl::getNumberOfChannels() const {
return multi_shm()->numberOfChannels;
}
void DetectorImpl::setNumberOfChannels(const slsDetectorDefs::xy c) {
if (size() > 1) {
throw RuntimeError(
"Set the number of channels before setting hostname.");
}
multi_shm()->numberOfChannels = c;
}
void DetectorImpl::setGapPixelsinReceiver(bool enable) {
Parallel(&slsDetector::enableGapPixels, {}, static_cast<int>(enable));
// update number of channels
Result<slsDetectorDefs::xy> res =
Parallel(&slsDetector::getNumberOfChannels, {});
multi_shm()->numberOfChannels.x = 0;
multi_shm()->numberOfChannels.y = 0;
for (auto &it : res) {
multi_shm()->numberOfChannels.x += it.x;
multi_shm()->numberOfChannels.y += it.y;
}
}
int DetectorImpl::createReceivingDataSockets(const bool destroy) {
if (destroy) {
FILE_LOG(logINFO) << "Going to destroy data sockets";
// close socket
zmqSocket.clear();
client_downstream = false;
FILE_LOG(logINFO) << "Destroyed Receiving Data Socket(s)";
return OK;
}
FILE_LOG(logINFO) << "Going to create data sockets";
size_t numSockets = detectors.size();
size_t numSocketsPerDetector = 1;
if (multi_shm()->multiDetectorType == EIGER) {
numSocketsPerDetector = 2;
}
if (Parallel(&slsDetector::getNumberofUDPInterfacesFromShm, {}).squash() == 2) {
numSocketsPerDetector = 2;
}
numSockets *= numSocketsPerDetector;
for (size_t iSocket = 0; iSocket < numSockets; ++iSocket) {
uint32_t portnum = (detectors[iSocket / numSocketsPerDetector]
->getClientStreamingPort());
portnum += (iSocket % numSocketsPerDetector);
try {
zmqSocket.push_back(sls::make_unique<ZmqSocket>(
detectors[iSocket / numSocketsPerDetector]
->getClientStreamingIP().str()
.c_str(),
portnum));
FILE_LOG(logINFO) << "Zmq Client[" << iSocket << "] at "
<< zmqSocket.back()->GetZmqServerAddress();
} catch (...) {
FILE_LOG(logERROR)
<< "Could not create Zmq socket on port " << portnum;
createReceivingDataSockets(true);
return FAIL;
}
}
client_downstream = true;
FILE_LOG(logINFO) << "Receiving Data Socket(s) created";
return OK;
}
void DetectorImpl::readFrameFromReceiver() {
int nX = 0;
int nY = 0;
int nDetPixelsX = 0;
int nDetPixelsY = 0;
bool gappixelsenable = false;
bool quadEnable = false;
bool eiger = false;
bool numInterfaces = Parallel(&slsDetector::getNumberofUDPInterfacesFromShm, {}).squash(); // cannot pick up from zmq
bool runningList[zmqSocket.size()], connectList[zmqSocket.size()];
int numRunning = 0;
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (zmqSocket[i]->Connect() == 0) {
connectList[i] = true;
runningList[i] = true;
++numRunning;
} else {
// to remember the list it connected to, to disconnect later
connectList[i] = false;
FILE_LOG(logERROR) << "Could not connect to socket "
<< zmqSocket[i]->GetZmqServerAddress();
runningList[i] = false;
}
}
int numConnected = numRunning;
bool data = false;
char *image = nullptr;
char *multiframe = nullptr;
char *multigappixels = nullptr;
int multisize = 0;
// only first message header
uint32_t size = 0, nPixelsX = 0, nPixelsY = 0, dynamicRange = 0;
float bytesPerPixel = 0;
// header info every header
std::string currentFileName = "";
uint64_t currentAcquisitionIndex = -1, currentFrameIndex = -1,
currentFileIndex = -1;
uint32_t currentSubFrameIndex = -1, coordX = -1, coordY = -1,
flippedDataX = -1;
// wait for real time acquisition to start
bool running = true;
sem_wait(&sem_newRTAcquisition);
if (getJoinThreadFlag()) {
running = false;
}
while (running) {
// reset data
data = false;
if (multiframe != nullptr) {
memset(multiframe, 0xFF, multisize);
}
// get each frame
for (unsigned int isocket = 0; isocket < zmqSocket.size(); ++isocket) {
// if running
if (runningList[isocket]) {
// HEADER
{
rapidjson::Document doc;
if (zmqSocket[isocket]->ReceiveHeader(
isocket, doc, SLS_DETECTOR_JSON_HEADER_VERSION) ==
0) {
// parse error, version error or end of acquisition for
// socket
runningList[isocket] = false;
--numRunning;
continue;
}
// if first message, allocate (all one time stuff)
if (image == nullptr) {
// allocate
size = doc["size"].GetUint();
multisize = size * zmqSocket.size();
image = new char[size];
multiframe = new char[multisize];
memset(multiframe, 0xFF, multisize);
// dynamic range
dynamicRange = doc["bitmode"].GetUint();
bytesPerPixel = (float)dynamicRange / 8;
// shape
nPixelsX = doc["shape"][0].GetUint();
nPixelsY = doc["shape"][1].GetUint();
// detector shape
nX = doc["detshape"][0].GetUint();
nY = doc["detshape"][1].GetUint();
nY *= numInterfaces;
nDetPixelsX = nX * nPixelsX;
nDetPixelsY = nY * nPixelsY;
// det type
eiger =
(doc["detType"].GetUint() == static_cast<int>(3))
? true
: false; // to be changed to EIGER when firmware
// updates its header data
gappixelsenable =
(doc["gappixels"].GetUint() == 0) ? false : true;
quadEnable =
(doc["quad"].GetUint() == 0) ? false : true;
FILE_LOG(logDEBUG1)
<< "One Time Header Info:"
"\n\tsize: "
<< size << "\n\tmultisize: " << multisize
<< "\n\tdynamicRange: " << dynamicRange
<< "\n\tbytesPerPixel: " << bytesPerPixel
<< "\n\tnPixelsX: " << nPixelsX
<< "\n\tnPixelsY: " << nPixelsY << "\n\tnX: " << nX
<< "\n\tnY: " << nY << "\n\teiger: " << eiger
<< "\n\tgappixelsenable: " << gappixelsenable
<< "\n\tquadEnable: " << quadEnable;
}
// each time, parse rest of header
currentFileName = doc["fname"].GetString();
currentAcquisitionIndex = doc["acqIndex"].GetUint64();
currentFrameIndex = doc["fIndex"].GetUint64();
currentFileIndex = doc["fileIndex"].GetUint64();
currentSubFrameIndex = doc["expLength"].GetUint();
coordY = doc["row"].GetUint();
coordX = doc["column"].GetUint();
if (eiger) {
coordY = (nY - 1) - coordY;
}
flippedDataX = doc["flippedDataX"].GetUint();
FILE_LOG(logDEBUG1)
<< "Header Info:"
"\n\tcurrentFileName: "
<< currentFileName << "\n\tcurrentAcquisitionIndex: "
<< currentAcquisitionIndex
<< "\n\tcurrentFrameIndex: " << currentFrameIndex
<< "\n\tcurrentFileIndex: " << currentFileIndex
<< "\n\tcurrentSubFrameIndex: " << currentSubFrameIndex
<< "\n\tcoordX: " << coordX << "\n\tcoordY: " << coordY
<< "\n\tflippedDataX: " << flippedDataX;
}
// DATA
data = true;
zmqSocket[isocket]->ReceiveData(isocket, image, size);
// creating multi image
{
uint32_t xoffset = coordX * nPixelsX * bytesPerPixel;
uint32_t yoffset = coordY * nPixelsY;
uint32_t singledetrowoffset = nPixelsX * bytesPerPixel;
uint32_t rowoffset = nX * singledetrowoffset;
if (multi_shm()->multiDetectorType == CHIPTESTBOARD) {
singledetrowoffset = size;
}
FILE_LOG(logDEBUG1)
<< "Multi Image Info:"
"\n\txoffset: "
<< xoffset << "\n\tyoffset: " << yoffset
<< "\n\tsingledetrowoffset: " << singledetrowoffset
<< "\n\trowoffset: " << rowoffset;
if (eiger && (flippedDataX != 0U)) {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy((multiframe) +
((yoffset + (nPixelsY - 1 - i)) *
rowoffset) +
xoffset,
image + (i * singledetrowoffset),
singledetrowoffset);
}
} else {
for (uint32_t i = 0; i < nPixelsY; ++i) {
memcpy((multiframe) +
((yoffset + i) * rowoffset) + xoffset,
image + (i * singledetrowoffset),
singledetrowoffset);
}
}
}
}
}
FILE_LOG(logDEBUG) << "Call Back Info:"
<< "\n\t nDetPixelsX: " << nDetPixelsX
<< "\n\t nDetPixelsY: " << nDetPixelsY
<< "\n\t databytes: " << multisize
<< "\n\t dynamicRange: " << dynamicRange;
// send data to callback
if (data) {
setCurrentProgress(currentFrameIndex + 1);
// 4bit gap pixels
if (dynamicRange == 4 && gappixelsenable) {
if (quadEnable) {
nDetPixelsX += 2;
nDetPixelsY += 2;
} else {
nDetPixelsX = nX * (nPixelsX + 3);
nDetPixelsY = nY * (nPixelsY + 1);
}
int n = processImageWithGapPixels(multiframe, multigappixels,
quadEnable);
FILE_LOG(logDEBUG) << "Call Back Info Recalculated:"
<< "\n\t nDetPixelsX: " << nDetPixelsX
<< "\n\t nDetPixelsY: " << nDetPixelsY
<< "\n\t databytes: " << n;
thisData = new detectorData(
getCurrentProgress(), currentFileName.c_str(), nDetPixelsX,
nDetPixelsY, multigappixels, n, dynamicRange,
currentFileIndex);
}
// normal pixels
else {
thisData = new detectorData(
getCurrentProgress(), currentFileName.c_str(), nDetPixelsX,
nDetPixelsY, multiframe, multisize, dynamicRange,
currentFileIndex);
}
dataReady(thisData, currentFrameIndex,
((dynamicRange == 32 && eiger) ? currentSubFrameIndex : -1),
pCallbackArg);
delete thisData;
}
// all done
if (numRunning == 0) {
// let main thread know that all dummy packets have been received
//(also from external process),
// main thread can now proceed to measurement finished call back
sem_post(&sem_endRTAcquisition);
// wait for next scan/measurement, else join thread
sem_wait(&sem_newRTAcquisition);
// done with complete acquisition
if (getJoinThreadFlag()) {
running = false;
} else {
// starting a new scan/measurement (got dummy data)
for (size_t i = 0; i < zmqSocket.size(); ++i) {
runningList[i] = connectList[i];
}
numRunning = numConnected;
}
}
}
// Disconnect resources
for (size_t i = 0; i < zmqSocket.size(); ++i) {
if (connectList[i]) {
zmqSocket[i]->Disconnect();
}
}
// free resources
if (image != nullptr)
delete[] image;
if (multiframe)
delete[] multiframe;
if (multigappixels)
delete[] multigappixels;
}
int DetectorImpl::processImageWithGapPixels(char *image, char *&gpImage,
bool quadEnable) {
// eiger 4 bit mode
int nxb =
multi_shm()->numberOfDetector.x * (512 + 3); //(divided by 2 already)
int nyb = multi_shm()->numberOfDetector.y * (256 + 1);
int nchipInRow = 4;
int nxchip = multi_shm()->numberOfDetector.x * 4;
int nychip = multi_shm()->numberOfDetector.y * 1;
if (quadEnable) {
nxb = multi_shm()->numberOfDetector.x *
(256 + 1); //(divided by 2 already)
nyb = multi_shm()->numberOfDetector.y * (512 + 2);
nxchip /= 2;
nychip *= 2;
nchipInRow /= 2;
}
int gapdatabytes = nxb * nyb;
// allocate
if (gpImage == nullptr) {
gpImage = new char[gapdatabytes];
}
// fill value
memset(gpImage, 0xFF, gapdatabytes);
const int b1chipx = 128;
const int b1chipy = 256;
char *src = nullptr;
char *dst = nullptr;
// copying line by line
src = image;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip row
for (int ichipy = 0; ichipy < b1chipy;
++ichipy) { // for each row in a chip
for (int col = 0; col < nxchip; ++col) { // for each chip in a row
memcpy(dst, src, b1chipx);
src += b1chipx;
dst += b1chipx;
if (((col + 1) % nchipInRow) != 0) { // skip gap pixels
++dst;
}
}
}
dst += (2 * nxb);
}
// vertical filling of values
{
uint8_t temp, g1, g2;
int mod;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip row
for (int ichipy = 0; ichipy < b1chipy;
++ichipy) { // for each row in a chip
for (int col = 0; col < nxchip;
++col) { // for each chip in a row
dst += b1chipx;
mod = (col + 1) % nchipInRow; // get gap pixels
// copy gap pixel(chip 0, 1, 2)
if (mod != 0) {
// neighbouring gap pixels to left
temp = (*((uint8_t *)(dst - 1)));
g1 = ((temp & 0xF) / 2);
(*((uint8_t *)(dst - 1))) = (temp & 0xF0) + g1;
// neighbouring gap pixels to right
temp = (*((uint8_t *)(dst + 1)));
g2 = ((temp >> 4) / 2);
(*((uint8_t *)(dst + 1))) = (g2 << 4) + (temp & 0x0F);
// gap pixels
(*((uint8_t *)dst)) = (g1 << 4) + g2;
// increment to point to proper chip destination
++dst;
}
}
}
dst += (2 * nxb);
}
}
// return gapdatabytes;
// horizontal filling
{
uint8_t temp, g1, g2;
char *dst_prevline = nullptr;
dst = gpImage;
for (int row = 0; row < nychip; ++row) { // for each chip row
dst += (b1chipy * nxb);
// horizontal copying of gap pixels from neighboring past line
// (bottom parts)
if (row < nychip - 1) {
dst_prevline = dst - nxb;
for (int gapline = 0; gapline < nxb; ++gapline) {
temp = (*((uint8_t *)dst_prevline));
g1 = ((temp >> 4) / 2);
g2 = ((temp & 0xF) / 2);
(*((uint8_t *)dst_prevline)) = (g1 << 4) + g2;
(*((uint8_t *)dst)) = (*((uint8_t *)dst_prevline));
++dst;
++dst_prevline;
}
}
// horizontal copying of gap pixels from neihboring future line (top
// part)
if (row > 0) {
dst -= ((b1chipy + 1) * nxb);
dst_prevline = dst + nxb;
for (int gapline = 0; gapline < nxb; ++gapline) {
temp = (*((uint8_t *)dst_prevline));
g1 = ((temp >> 4) / 2);
g2 = ((temp & 0xF) / 2);
temp = (g1 << 4) + g2;
(*((uint8_t *)dst_prevline)) = temp;
(*((uint8_t *)dst)) = temp;
++dst;
++dst_prevline;
}
dst += ((b1chipy + 1) * nxb);
}
dst += nxb;
}
}
return gapdatabytes;
}
bool DetectorImpl::enableDataStreamingToClient(int enable) {
if (enable >= 0) {
// destroy data threads
if (enable == 0) {
createReceivingDataSockets(true);
// create data threads
} else {
if (createReceivingDataSockets() == FAIL) {
throw RuntimeError("Could not create data threads in client.");
}
}
}
return client_downstream;
}
void DetectorImpl::savePattern(const std::string &fname) {
// std::ofstream outfile;
// outfile.open(fname.c_str(), std::ios_base::out);
// if (!outfile.is_open()) {
// throw RuntimeError("Could not create file to save pattern");
// }
// // get pattern limits
// auto r = Parallel(&slsDetector::setPatternLoopAddresses, {}, -1, -1, -1)
// .tsquash("Inconsistent pattern limits");
// // pattern words
// for (int i = r[0]; i <= r[1]; ++i) {
// std::ostringstream os;
// os << "patword 0x" << std::hex << i;
// std::string cmd = os.str();
// multiSlsDetectorClient(cmd, GET_ACTION, this, outfile);
// }
// // rest of pattern file
// const std::vector<std::string> commands{
// "patioctrl",
// "patclkctrl",
// "patlimits",
// "patloop0",
// "patnloop0",
// "patloop1",
// "patnloop1",
// "patloop2",
// "patnloop2",
// "patwait0",
// "patwaittime0",
// "patwait1",
// "patwaittime1",
// "patwait2",
// "patwaittime2",
// "patmask",
// "patsetbit",
// };
// for (const auto &cmd : commands)
// multiSlsDetectorClient(cmd, GET_ACTION, this, outfile);
}
void DetectorImpl::registerAcquisitionFinishedCallback(
void (*func)(double, int, void *), void *pArg) {
acquisition_finished = func;
acqFinished_p = pArg;
}
void DetectorImpl::registerDataCallback(
void (*userCallback)(detectorData *, uint64_t, uint32_t, void *),
void *pArg) {
dataReady = userCallback;
pCallbackArg = pArg;
enableDataStreamingToClient(dataReady == nullptr ? 0 : 1);
}
double DetectorImpl::setTotalProgress() {
int64_t nf = Parallel(&slsDetector::getNumberOfFramesFromShm, {})
.tsquash("Inconsistent number of frames");
int64_t nc = Parallel(&slsDetector::getNumberOfTriggersFromShm, {})
.tsquash("Inconsistent number of triggers");
if (nf == 0 || nc == 0) {
throw RuntimeError("Number of frames or triggers is 0");
}
int ns = 1;
if (multi_shm()->multiDetectorType == JUNGFRAU) {
ns = Parallel(&slsDetector::getNumberOfAdditionalStorageCellsFromShm, {})
.tsquash("Inconsistent number of additional storage cells");
++ns;
}
totalProgress = nf * nc * ns;
FILE_LOG(logDEBUG1) << "nf " << nf << " nc " << nc << " ns " << ns;
FILE_LOG(logDEBUG1) << "Set total progress " << totalProgress << std::endl;
return totalProgress;
}
double DetectorImpl::getCurrentProgress() {
std::lock_guard<std::mutex> lock(mp);
return 100. * progressIndex / totalProgress;
}
void DetectorImpl::incrementProgress() {
std::lock_guard<std::mutex> lock(mp);
progressIndex += 1;
std::cout << std::fixed << std::setprecision(2) << std::setw(6)
<< 100. * progressIndex / totalProgress
<< " \%";
std::cout << '\r' << std::flush;
}
void DetectorImpl::setCurrentProgress(int64_t i) {
std::lock_guard<std::mutex> lock(mp);
progressIndex = (double)i;
std::cout << std::fixed << std::setprecision(2) << std::setw(6)
<< 100. * progressIndex / totalProgress
<< " \%";
std::cout << '\r' << std::flush;
}
int DetectorImpl::acquire() {
// ensure acquire isnt started multiple times by same client
if (!isAcquireReady()) {
return FAIL;
}
try {
struct timespec begin, end;
clock_gettime(CLOCK_REALTIME, &begin);
// in the real time acquisition loop, processing thread will wait for a post
// each time
sem_init(&sem_newRTAcquisition, 1, 0);
// in the real time acquistion loop, main thread will wait for processing
// thread to be done each time (which in turn waits for receiver/ext
// process)
sem_init(&sem_endRTAcquisition, 1, 0);
bool receiver = Parallel(&slsDetector::getUseReceiverFlag, {}).squash(false);
progressIndex = 0;
setJoinThreadFlag(false);
// verify receiver is idle
if (receiver) {
if (Parallel(&slsDetector::getReceiverStatus, {}).squash(ERROR) != IDLE) {
Parallel(&slsDetector::stopReceiver, {});
}
}
setTotalProgress();
startProcessingThread();
// start receiver
if (receiver) {
Parallel(&slsDetector::startReceiver, {});
// let processing thread listen to these packets
sem_post(&sem_newRTAcquisition);
}
// start and read all
try {
if (multi_shm()->multiDetectorType == EIGER) {
Parallel(&slsDetector::prepareAcquisition, {});
}
Parallel(&slsDetector::startAndReadAll, {});
} catch (...) {
Parallel(&slsDetector::stopReceiver, {});
throw;
}
// stop receiver
if (receiver) {
Parallel(&slsDetector::stopReceiver, {});
if (dataReady != nullptr) {
sem_wait(&sem_endRTAcquisition); // waits for receiver's
}
// external process to be
// done sending data to gui
Parallel(&slsDetector::incrementFileIndex, {});
}
// waiting for the data processing thread to finish!
setJoinThreadFlag(true);
sem_post(&sem_newRTAcquisition);
dataProcessingThread.join();
if (acquisition_finished != nullptr) {
// same status for all, else error
int status = static_cast<int>(ERROR);
auto t = Parallel(&slsDetector::getRunStatus, {});
if (t.equal())
status = t.front();
acquisition_finished(getCurrentProgress(), status,
acqFinished_p);
}
sem_destroy(&sem_newRTAcquisition);
sem_destroy(&sem_endRTAcquisition);
clock_gettime(CLOCK_REALTIME, &end);
FILE_LOG(logDEBUG1) << "Elapsed time for acquisition:"
<< ((end.tv_sec - begin.tv_sec) +
(end.tv_nsec - begin.tv_nsec) / 1000000000.0)
<< " seconds";
} catch (...) {
setAcquiringFlag(false);
throw;
}
setAcquiringFlag(false);
return OK;
}
void DetectorImpl::startProcessingThread() {
setTotalProgress();
dataProcessingThread = std::thread(&DetectorImpl::processData, this);
}
void DetectorImpl::processData() {
if (Parallel(&slsDetector::getUseReceiverFlag, {}).squash(false)) {
if (dataReady != nullptr) {
readFrameFromReceiver();
}
// only update progress
else {
int64_t caught = -1;
while (true) {
// to exit acquire by typing q
if (kbhit() != 0) {
if (fgetc(stdin) == 'q') {
FILE_LOG(logINFO)
<< "Caught the command to stop acquisition";
Parallel(&slsDetector::stopAcquisition, {});
}
}
// get progress
caught = Parallel(&slsDetector::getFramesCaughtByReceiver, {0}).squash();
// updating progress
if (caught != -1) {
setCurrentProgress(caught);
}
// exiting loop
if (getJoinThreadFlag()) {
break;
}
// otherwise error when connecting to the receiver too fast
std::this_thread::sleep_for(std::chrono::milliseconds(100));
}
}
}
}
bool DetectorImpl::getJoinThreadFlag() const {
std::lock_guard<std::mutex> lock(mp);
return jointhread;
}
void DetectorImpl::setJoinThreadFlag(bool value) {
std::lock_guard<std::mutex> lock(mp);
jointhread = value;
}
int DetectorImpl::kbhit() {
struct timeval tv;
fd_set fds;
tv.tv_sec = 0;
tv.tv_usec = 0;
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds); // STDIN_FILENO is 0
select(STDIN_FILENO + 1, &fds, nullptr, nullptr, &tv);
return FD_ISSET(STDIN_FILENO, &fds);
}
std::vector<char> DetectorImpl::readProgrammingFile(const std::string &fname) {
// validate type of file
bool isPof = false;
switch (multi_shm()->multiDetectorType) {
case JUNGFRAU:
case CHIPTESTBOARD:
if (fname.find(".pof") == std::string::npos) {
throw RuntimeError("Programming file must be a pof file.");
}
isPof = true;
break;
case MYTHEN3:
case GOTTHARD2:
if (fname.find(".rbf") == std::string::npos) {
throw RuntimeError("Programming file must be an rbf file.");
}
break;
default:
throw RuntimeError("Not implemented for this detector");
}
FILE_LOG(logINFO)
<< "Updating Firmware. This can take awhile. Please be patient...";
FILE_LOG(logDEBUG1) << "Programming FPGA with file name:" << fname;
size_t filesize = 0;
// check if it exists
struct stat st;
if (stat(fname.c_str(), &st) != 0) {
throw RuntimeError("Program FPGA: Programming file does not exist");
}
// open src
FILE *src = fopen(fname.c_str(), "rb");
if (src == nullptr) {
throw RuntimeError(
"Program FPGA: Could not open source file for programming: " +
fname);
}
// create temp destination file
char destfname[] = "/tmp/SLS_DET_MCB.XXXXXX";
int dst = mkstemp(destfname); // create temporary file and open it in r/w
if (dst == -1) {
fclose(src);
throw RuntimeError(
std::string(
"Could not create destination file in /tmp for programming: ") +
destfname);
}
// convert src to dst rawbin
FILE_LOG(logDEBUG1) << "Converting " << fname << " to " << destfname;
{
const int pofNumHeaderBytes = 0x11C;
const int pofNumPadding = 0x80;
const int pofFooterOfst = 0x1000000;
int dstFilePos = 0;
if (isPof) {
// Read header and discard
for (int i = 0; i < pofNumHeaderBytes; ++i) {
fgetc(src);
}
// Write 0xFF to destination 0x80 times (padding)
{
char c = 0xFF;
while (dstFilePos < pofNumPadding) {
write(dst, &c, 1);
++dstFilePos;
}
}
}
// Swap bits from source and write to dest
while (!feof(src)) {
// pof: exit early to discard footer
if (isPof && dstFilePos >= pofFooterOfst) {
break;
}
// read source
int s = fgetc(src);
if (s < 0) {
break;
}
// swap bits
int d = 0;
for (int i = 0; i < 8; ++i) {
d = d |
(((s & (1 << i)) >> i) << (7 - i));
}
write(dst, &d, 1);
++dstFilePos;
}
// validate pof: read less than footer offset
if (isPof && dstFilePos < pofFooterOfst) {
throw RuntimeError(
"Could not convert programming file. EOF before end of flash");
}
}
if (fclose(src) != 0) {
throw RuntimeError("Program FPGA: Could not close source file");
}
if (close(dst) != 0) {
throw RuntimeError("Program FPGA: Could not close destination file");
}
FILE_LOG(logDEBUG1) << "File has been converted to " << destfname;
// loading dst file to memory
FILE *fp = fopen(destfname, "r");
if (fp == nullptr) {
throw RuntimeError("Program FPGA: Could not open rawbin file");
}
if (fseek(fp, 0, SEEK_END) != 0) {
throw RuntimeError("Program FPGA: Seek error in rawbin file");
}
filesize = ftell(fp);
if (filesize <= 0) {
throw RuntimeError("Program FPGA: Could not get length of rawbin file");
}
rewind(fp);
std::vector<char> buffer(filesize, 0);
if (fread(buffer.data(), sizeof(char), filesize, fp) != filesize) {
throw RuntimeError("Program FPGA: Could not read rawbin file");
}
if (fclose(fp) != 0) {
throw RuntimeError(
"Program FPGA: Could not close destination file after converting");
}
unlink(destfname); // delete temporary file
FILE_LOG(logDEBUG1)
<< "Successfully loaded the rawbin file to program memory";
FILE_LOG(logINFO) << "Read file into memory";
return buffer;
}